move files to files-2.6.24, not required with newer kernels
[openwrt/staging/florian.git] / target / linux / rdc / files-2.6.24 / arch / x86 / boot / compressed / LzmaDecode.c
1 /*
2 LzmaDecode.c
3 LZMA Decoder (optimized for Speed version)
4
5 LZMA SDK 4.17 Copyright (c) 1999-2005 Igor Pavlov (2005-04-05)
6 http://www.7-zip.org/
7
8 LZMA SDK is licensed under two licenses:
9 1) GNU Lesser General Public License (GNU LGPL)
10 2) Common Public License (CPL)
11 It means that you can select one of these two licenses and
12 follow rules of that license.
13
14 SPECIAL EXCEPTION:
15 Igor Pavlov, as the author of this Code, expressly permits you to
16 statically or dynamically link your Code (or bind by name) to the
17 interfaces of this file without subjecting your linked Code to the
18 terms of the CPL or GNU LGPL. Any modifications or additions
19 to this file, however, are subject to the LGPL or CPL terms.
20 */
21
22 #include "LzmaDecode.h"
23
24 #ifndef Byte
25 #define Byte unsigned char
26 #endif
27
28 #define kNumTopBits 24
29 #define kTopValue ((UInt32)1 << kNumTopBits)
30
31 #define kNumBitModelTotalBits 11
32 #define kBitModelTotal (1 << kNumBitModelTotalBits)
33 #define kNumMoveBits 5
34
35 #define RC_READ_BYTE (*Buffer++)
36
37 #define RC_INIT2 Code = 0; Range = 0xFFFFFFFF; \
38 { int i; for(i = 0; i < 5; i++) { RC_TEST; Code = (Code << 8) | RC_READ_BYTE; }}
39
40 #ifdef _LZMA_IN_CB
41
42 #define RC_TEST { if (Buffer == BufferLim) \
43 { UInt32 size; int result = InCallback->Read(InCallback, &Buffer, &size); if (result != LZMA_RESULT_OK) return result; \
44 BufferLim = Buffer + size; if (size == 0) return LZMA_RESULT_DATA_ERROR; }}
45
46 #define RC_INIT Buffer = BufferLim = 0; RC_INIT2
47
48 #else
49
50 #define RC_TEST { if (Buffer == BufferLim) return LZMA_RESULT_DATA_ERROR; }
51
52 #define RC_INIT(buffer, bufferSize) Buffer = buffer; BufferLim = buffer + bufferSize; RC_INIT2
53
54 #endif
55
56 #define RC_NORMALIZE if (Range < kTopValue) { RC_TEST; Range <<= 8; Code = (Code << 8) | RC_READ_BYTE; }
57
58 #define IfBit0(p) RC_NORMALIZE; bound = (Range >> kNumBitModelTotalBits) * *(p); if (Code < bound)
59 #define UpdateBit0(p) Range = bound; *(p) += (kBitModelTotal - *(p)) >> kNumMoveBits;
60 #define UpdateBit1(p) Range -= bound; Code -= bound; *(p) -= (*(p)) >> kNumMoveBits;
61
62 #define RC_GET_BIT2(p, mi, A0, A1) IfBit0(p) \
63 { UpdateBit0(p); mi <<= 1; A0; } else \
64 { UpdateBit1(p); mi = (mi + mi) + 1; A1; }
65
66 #define RC_GET_BIT(p, mi) RC_GET_BIT2(p, mi, ; , ;)
67
68 #define RangeDecoderBitTreeDecode(probs, numLevels, res) \
69 { int i = numLevels; res = 1; \
70 do { CProb *p = probs + res; RC_GET_BIT(p, res) } while(--i != 0); \
71 res -= (1 << numLevels); }
72
73
74 #define kNumPosBitsMax 4
75 #define kNumPosStatesMax (1 << kNumPosBitsMax)
76
77 #define kLenNumLowBits 3
78 #define kLenNumLowSymbols (1 << kLenNumLowBits)
79 #define kLenNumMidBits 3
80 #define kLenNumMidSymbols (1 << kLenNumMidBits)
81 #define kLenNumHighBits 8
82 #define kLenNumHighSymbols (1 << kLenNumHighBits)
83
84 #define LenChoice 0
85 #define LenChoice2 (LenChoice + 1)
86 #define LenLow (LenChoice2 + 1)
87 #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
88 #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
89 #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
90
91
92 #define kNumStates 12
93 #define kNumLitStates 7
94
95 #define kStartPosModelIndex 4
96 #define kEndPosModelIndex 14
97 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
98
99 #define kNumPosSlotBits 6
100 #define kNumLenToPosStates 4
101
102 #define kNumAlignBits 4
103 #define kAlignTableSize (1 << kNumAlignBits)
104
105 #define kMatchMinLen 2
106
107 #define IsMatch 0
108 #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
109 #define IsRepG0 (IsRep + kNumStates)
110 #define IsRepG1 (IsRepG0 + kNumStates)
111 #define IsRepG2 (IsRepG1 + kNumStates)
112 #define IsRep0Long (IsRepG2 + kNumStates)
113 #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
114 #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
115 #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
116 #define LenCoder (Align + kAlignTableSize)
117 #define RepLenCoder (LenCoder + kNumLenProbs)
118 #define Literal (RepLenCoder + kNumLenProbs)
119
120 #if Literal != LZMA_BASE_SIZE
121 StopCompilingDueBUG
122 #endif
123
124 #ifdef _LZMA_OUT_READ
125
126 typedef struct _LzmaVarState
127 {
128 Byte *Buffer;
129 Byte *BufferLim;
130 UInt32 Range;
131 UInt32 Code;
132 #ifdef _LZMA_IN_CB
133 ILzmaInCallback *InCallback;
134 #endif
135 Byte *Dictionary;
136 UInt32 DictionarySize;
137 UInt32 DictionaryPos;
138 UInt32 GlobalPos;
139 UInt32 Reps[4];
140 int lc;
141 int lp;
142 int pb;
143 int State;
144 int RemainLen;
145 Byte TempDictionary[4];
146 } LzmaVarState;
147
148 int LzmaDecoderInit(
149 unsigned char *buffer, UInt32 bufferSize,
150 int lc, int lp, int pb,
151 unsigned char *dictionary, UInt32 dictionarySize,
152 #ifdef _LZMA_IN_CB
153 ILzmaInCallback *InCallback
154 #else
155 unsigned char *inStream, UInt32 inSize
156 #endif
157 )
158 {
159 Byte *Buffer;
160 Byte *BufferLim;
161 UInt32 Range;
162 UInt32 Code;
163 LzmaVarState *vs = (LzmaVarState *)buffer;
164 CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
165 UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
166 UInt32 i;
167 if (bufferSize < numProbs * sizeof(CProb) + sizeof(LzmaVarState))
168 return LZMA_RESULT_NOT_ENOUGH_MEM;
169 vs->Dictionary = dictionary;
170 vs->DictionarySize = dictionarySize;
171 vs->DictionaryPos = 0;
172 vs->GlobalPos = 0;
173 vs->Reps[0] = vs->Reps[1] = vs->Reps[2] = vs->Reps[3] = 1;
174 vs->lc = lc;
175 vs->lp = lp;
176 vs->pb = pb;
177 vs->State = 0;
178 vs->RemainLen = 0;
179 dictionary[dictionarySize - 1] = 0;
180 for (i = 0; i < numProbs; i++)
181 p[i] = kBitModelTotal >> 1;
182
183 #ifdef _LZMA_IN_CB
184 RC_INIT;
185 #else
186 RC_INIT(inStream, inSize);
187 #endif
188 vs->Buffer = Buffer;
189 vs->BufferLim = BufferLim;
190 vs->Range = Range;
191 vs->Code = Code;
192 #ifdef _LZMA_IN_CB
193 vs->InCallback = InCallback;
194 #endif
195
196 return LZMA_RESULT_OK;
197 }
198
199 int LzmaDecode(unsigned char *buffer,
200 unsigned char *outStream, UInt32 outSize,
201 UInt32 *outSizeProcessed)
202 {
203 LzmaVarState *vs = (LzmaVarState *)buffer;
204 Byte *Buffer = vs->Buffer;
205 Byte *BufferLim = vs->BufferLim;
206 UInt32 Range = vs->Range;
207 UInt32 Code = vs->Code;
208 #ifdef _LZMA_IN_CB
209 ILzmaInCallback *InCallback = vs->InCallback;
210 #endif
211 CProb *p = (CProb *)(buffer + sizeof(LzmaVarState));
212 int state = vs->State;
213 Byte previousByte;
214 UInt32 rep0 = vs->Reps[0], rep1 = vs->Reps[1], rep2 = vs->Reps[2], rep3 = vs->Reps[3];
215 UInt32 nowPos = 0;
216 UInt32 posStateMask = (1 << (vs->pb)) - 1;
217 UInt32 literalPosMask = (1 << (vs->lp)) - 1;
218 int lc = vs->lc;
219 int len = vs->RemainLen;
220 UInt32 globalPos = vs->GlobalPos;
221
222 Byte *dictionary = vs->Dictionary;
223 UInt32 dictionarySize = vs->DictionarySize;
224 UInt32 dictionaryPos = vs->DictionaryPos;
225
226 Byte tempDictionary[4];
227 if (dictionarySize == 0)
228 {
229 dictionary = tempDictionary;
230 dictionarySize = 1;
231 tempDictionary[0] = vs->TempDictionary[0];
232 }
233
234 if (len == -1)
235 {
236 *outSizeProcessed = 0;
237 return LZMA_RESULT_OK;
238 }
239
240 while(len != 0 && nowPos < outSize)
241 {
242 UInt32 pos = dictionaryPos - rep0;
243 if (pos >= dictionarySize)
244 pos += dictionarySize;
245 outStream[nowPos++] = dictionary[dictionaryPos] = dictionary[pos];
246 if (++dictionaryPos == dictionarySize)
247 dictionaryPos = 0;
248 len--;
249 }
250 if (dictionaryPos == 0)
251 previousByte = dictionary[dictionarySize - 1];
252 else
253 previousByte = dictionary[dictionaryPos - 1];
254 #else
255
256 int LzmaDecode(
257 Byte *buffer, UInt32 bufferSize,
258 int lc, int lp, int pb,
259 #ifdef _LZMA_IN_CB
260 ILzmaInCallback *InCallback,
261 #else
262 unsigned char *inStream, UInt32 inSize,
263 #endif
264 unsigned char *outStream, UInt32 outSize,
265 UInt32 *outSizeProcessed)
266 {
267 UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (lc + lp));
268 CProb *p = (CProb *)buffer;
269
270 UInt32 i;
271 int state = 0;
272 Byte previousByte = 0;
273 UInt32 rep0 = 1, rep1 = 1, rep2 = 1, rep3 = 1;
274 UInt32 nowPos = 0;
275 UInt32 posStateMask = (1 << pb) - 1;
276 UInt32 literalPosMask = (1 << lp) - 1;
277 int len = 0;
278
279 Byte *Buffer;
280 Byte *BufferLim;
281 UInt32 Range;
282 UInt32 Code;
283
284 if (bufferSize < numProbs * sizeof(CProb))
285 return LZMA_RESULT_NOT_ENOUGH_MEM;
286 for (i = 0; i < numProbs; i++)
287 p[i] = kBitModelTotal >> 1;
288
289
290 #ifdef _LZMA_IN_CB
291 RC_INIT;
292 #else
293 RC_INIT(inStream, inSize);
294 #endif
295 #endif
296
297 *outSizeProcessed = 0;
298 while(nowPos < outSize)
299 {
300 CProb *prob;
301 UInt32 bound;
302 int posState = (int)(
303 (nowPos
304 #ifdef _LZMA_OUT_READ
305 + globalPos
306 #endif
307 )
308 & posStateMask);
309
310 prob = p + IsMatch + (state << kNumPosBitsMax) + posState;
311 IfBit0(prob)
312 {
313 int symbol = 1;
314 UpdateBit0(prob)
315 prob = p + Literal + (LZMA_LIT_SIZE *
316 (((
317 (nowPos
318 #ifdef _LZMA_OUT_READ
319 + globalPos
320 #endif
321 )
322 & literalPosMask) << lc) + (previousByte >> (8 - lc))));
323
324 if (state >= kNumLitStates)
325 {
326 int matchByte;
327 #ifdef _LZMA_OUT_READ
328 UInt32 pos = dictionaryPos - rep0;
329 if (pos >= dictionarySize)
330 pos += dictionarySize;
331 matchByte = dictionary[pos];
332 #else
333 matchByte = outStream[nowPos - rep0];
334 #endif
335 do
336 {
337 int bit;
338 CProb *probLit;
339 matchByte <<= 1;
340 bit = (matchByte & 0x100);
341 probLit = prob + 0x100 + bit + symbol;
342 RC_GET_BIT2(probLit, symbol, if (bit != 0) break, if (bit == 0) break)
343 }
344 while (symbol < 0x100);
345 }
346 while (symbol < 0x100)
347 {
348 CProb *probLit = prob + symbol;
349 RC_GET_BIT(probLit, symbol)
350 }
351 previousByte = (Byte)symbol;
352
353 outStream[nowPos++] = previousByte;
354 #ifdef _LZMA_OUT_READ
355 dictionary[dictionaryPos] = previousByte;
356 if (++dictionaryPos == dictionarySize)
357 dictionaryPos = 0;
358 #endif
359 if (state < 4) state = 0;
360 else if (state < 10) state -= 3;
361 else state -= 6;
362 }
363 else
364 {
365 UpdateBit1(prob);
366 prob = p + IsRep + state;
367 IfBit0(prob)
368 {
369 UpdateBit0(prob);
370 rep3 = rep2;
371 rep2 = rep1;
372 rep1 = rep0;
373 state = state < kNumLitStates ? 0 : 3;
374 prob = p + LenCoder;
375 }
376 else
377 {
378 UpdateBit1(prob);
379 prob = p + IsRepG0 + state;
380 IfBit0(prob)
381 {
382 UpdateBit0(prob);
383 prob = p + IsRep0Long + (state << kNumPosBitsMax) + posState;
384 IfBit0(prob)
385 {
386 #ifdef _LZMA_OUT_READ
387 UInt32 pos;
388 #endif
389 UpdateBit0(prob);
390 if (nowPos
391 #ifdef _LZMA_OUT_READ
392 + globalPos
393 #endif
394 == 0)
395 return LZMA_RESULT_DATA_ERROR;
396 state = state < kNumLitStates ? 9 : 11;
397 #ifdef _LZMA_OUT_READ
398 pos = dictionaryPos - rep0;
399 if (pos >= dictionarySize)
400 pos += dictionarySize;
401 previousByte = dictionary[pos];
402 dictionary[dictionaryPos] = previousByte;
403 if (++dictionaryPos == dictionarySize)
404 dictionaryPos = 0;
405 #else
406 previousByte = outStream[nowPos - rep0];
407 #endif
408 outStream[nowPos++] = previousByte;
409 continue;
410 }
411 else
412 {
413 UpdateBit1(prob);
414 }
415 }
416 else
417 {
418 UInt32 distance;
419 UpdateBit1(prob);
420 prob = p + IsRepG1 + state;
421 IfBit0(prob)
422 {
423 UpdateBit0(prob);
424 distance = rep1;
425 }
426 else
427 {
428 UpdateBit1(prob);
429 prob = p + IsRepG2 + state;
430 IfBit0(prob)
431 {
432 UpdateBit0(prob);
433 distance = rep2;
434 }
435 else
436 {
437 UpdateBit1(prob);
438 distance = rep3;
439 rep3 = rep2;
440 }
441 rep2 = rep1;
442 }
443 rep1 = rep0;
444 rep0 = distance;
445 }
446 state = state < kNumLitStates ? 8 : 11;
447 prob = p + RepLenCoder;
448 }
449 {
450 int numBits, offset;
451 CProb *probLen = prob + LenChoice;
452 IfBit0(probLen)
453 {
454 UpdateBit0(probLen);
455 probLen = prob + LenLow + (posState << kLenNumLowBits);
456 offset = 0;
457 numBits = kLenNumLowBits;
458 }
459 else
460 {
461 UpdateBit1(probLen);
462 probLen = prob + LenChoice2;
463 IfBit0(probLen)
464 {
465 UpdateBit0(probLen);
466 probLen = prob + LenMid + (posState << kLenNumMidBits);
467 offset = kLenNumLowSymbols;
468 numBits = kLenNumMidBits;
469 }
470 else
471 {
472 UpdateBit1(probLen);
473 probLen = prob + LenHigh;
474 offset = kLenNumLowSymbols + kLenNumMidSymbols;
475 numBits = kLenNumHighBits;
476 }
477 }
478 RangeDecoderBitTreeDecode(probLen, numBits, len);
479 len += offset;
480 }
481
482 if (state < 4)
483 {
484 int posSlot;
485 state += kNumLitStates;
486 prob = p + PosSlot +
487 ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
488 kNumPosSlotBits);
489 RangeDecoderBitTreeDecode(prob, kNumPosSlotBits, posSlot);
490 if (posSlot >= kStartPosModelIndex)
491 {
492 int numDirectBits = ((posSlot >> 1) - 1);
493 rep0 = (2 | ((UInt32)posSlot & 1));
494 if (posSlot < kEndPosModelIndex)
495 {
496 rep0 <<= numDirectBits;
497 prob = p + SpecPos + rep0 - posSlot - 1;
498 }
499 else
500 {
501 numDirectBits -= kNumAlignBits;
502 do
503 {
504 RC_NORMALIZE
505 Range >>= 1;
506 rep0 <<= 1;
507 if (Code >= Range)
508 {
509 Code -= Range;
510 rep0 |= 1;
511 }
512 }
513 while (--numDirectBits != 0);
514 prob = p + Align;
515 rep0 <<= kNumAlignBits;
516 numDirectBits = kNumAlignBits;
517 }
518 {
519 int i = 1;
520 int mi = 1;
521 do
522 {
523 CProb *prob3 = prob + mi;
524 RC_GET_BIT2(prob3, mi, ; , rep0 |= i);
525 i <<= 1;
526 }
527 while(--numDirectBits != 0);
528 }
529 }
530 else
531 rep0 = posSlot;
532 if (++rep0 == (UInt32)(0))
533 {
534 /* it's for stream version */
535 len = -1;
536 break;
537 }
538 }
539
540 len += kMatchMinLen;
541 if (rep0 > nowPos
542 #ifdef _LZMA_OUT_READ
543 + globalPos || rep0 > dictionarySize
544 #endif
545 )
546 return LZMA_RESULT_DATA_ERROR;
547 do
548 {
549 #ifdef _LZMA_OUT_READ
550 UInt32 pos = dictionaryPos - rep0;
551 if (pos >= dictionarySize)
552 pos += dictionarySize;
553 previousByte = dictionary[pos];
554 dictionary[dictionaryPos] = previousByte;
555 if (++dictionaryPos == dictionarySize)
556 dictionaryPos = 0;
557 #else
558 previousByte = outStream[nowPos - rep0];
559 #endif
560 len--;
561 outStream[nowPos++] = previousByte;
562 }
563 while(len != 0 && nowPos < outSize);
564 }
565 }
566 RC_NORMALIZE;
567
568 #ifdef _LZMA_OUT_READ
569 vs->Buffer = Buffer;
570 vs->BufferLim = BufferLim;
571 vs->Range = Range;
572 vs->Code = Code;
573 vs->DictionaryPos = dictionaryPos;
574 vs->GlobalPos = globalPos + nowPos;
575 vs->Reps[0] = rep0;
576 vs->Reps[1] = rep1;
577 vs->Reps[2] = rep2;
578 vs->Reps[3] = rep3;
579 vs->State = state;
580 vs->RemainLen = len;
581 vs->TempDictionary[0] = tempDictionary[0];
582 #endif
583
584 *outSizeProcessed = nowPos;
585 return LZMA_RESULT_OK;
586 }