uboot: support boards with tantos switch and small code and format cleanups
[openwrt/staging/wigyori.git] / package / uboot-ifxmips / files / drivers / ifx_sw.c
1 /*
2 * DANUBE internal switch ethernet driver.
3 *
4 * (C) Copyright 2003
5 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
6 *
7 * See file CREDITS for list of people who contributed to this
8 * project.
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of
13 * the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
23 * MA 02111-1307 USA
24 */
25
26
27 #include <common.h>
28
29 #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) \
30 && defined(CONFIG_DANUBE_SWITCH)
31
32 #include <malloc.h>
33 #include <net.h>
34 #include <asm/danube.h>
35 #include <asm/addrspace.h>
36 #include <asm/pinstrap.h>
37
38 #define MII_MODE 1
39 #define REV_MII_MODE 2
40
41 #define TX_CHAN_NO 7
42 #define RX_CHAN_NO 6
43
44 #define NUM_RX_DESC PKTBUFSRX
45 #define NUM_TX_DESC 8
46 #define MAX_PACKET_SIZE 1536
47 #define TOUT_LOOP 100
48 #define PHY0_ADDR 1 /*fixme: set the correct value here*/
49
50 #define DMA_WRITE_REG(reg, value) *((volatile u32 *)reg) = (u32)value
51 #define DMA_READ_REG(reg, value) value = (u32)*((volatile u32*)reg)
52
53 #define SW_WRITE_REG(reg, value) *((volatile u32*)reg) = (u32)value
54 #define SW_READ_REG(reg, value) value = (u32)*((volatile u32*)reg)
55
56 #define TANTOS_CHIP_ID 0x2599
57
58 typedef struct
59 {
60 union
61 {
62 struct
63 {
64 volatile u32 OWN :1;
65 volatile u32 C :1;
66 volatile u32 Sop :1;
67 volatile u32 Eop :1;
68 volatile u32 reserved :3;
69 volatile u32 Byteoffset :2;
70 volatile u32 reserve :7;
71 volatile u32 DataLen :16;
72 }field;
73
74 volatile u32 word;
75 }status;
76
77 volatile u32 DataPtr;
78 } danube_rx_descriptor_t;
79
80 typedef struct
81 {
82 union
83 {
84 struct
85 {
86 volatile u32 OWN :1;
87 volatile u32 C :1;
88 volatile u32 Sop :1;
89 volatile u32 Eop :1;
90 volatile u32 Byteoffset :5;
91 volatile u32 reserved :7;
92 volatile u32 DataLen :16;
93 }field;
94
95 volatile u32 word;
96 }status;
97
98 volatile u32 DataPtr;
99 } danube_tx_descriptor_t;
100
101
102
103
104 static danube_rx_descriptor_t rx_des_ring[NUM_RX_DESC] __attribute__ ((aligned(8)));
105 static danube_tx_descriptor_t tx_des_ring[NUM_TX_DESC] __attribute__ ((aligned(8)));
106 static int tx_num, rx_num;
107
108 int danube_switch_init(struct eth_device *dev, bd_t * bis);
109 int danube_switch_send(struct eth_device *dev, volatile void *packet,int length);
110 int danube_switch_recv(struct eth_device *dev);
111 void danube_switch_halt(struct eth_device *dev);
112 static void danube_init_switch_chip(int mode);
113 static void danube_dma_init(void);
114
115
116
117 int danube_switch_initialize(bd_t * bis)
118 {
119 struct eth_device *dev;
120 unsigned short chipid;
121
122 #if 0
123 printf("Entered danube_switch_initialize()\n");
124 #endif
125
126 if (!(dev = (struct eth_device *) malloc (sizeof *dev)))
127 {
128 printf("Failed to allocate memory\n");
129 return 0;
130 }
131 memset(dev, 0, sizeof(*dev));
132
133 danube_dma_init();
134 danube_init_switch_chip(REV_MII_MODE);
135
136 #ifdef CLK_OUT2_25MHZ
137 *DANUBE_GPIO_P0_DIR=0x0000ae78;
138 *DANUBE_GPIO_P0_ALTSEL0=0x00008078;
139 //joelin for Mii-1 *DANUBE_GPIO_P0_ALTSEL1=0x80000080;
140 *DANUBE_GPIO_P0_ALTSEL1=0x80000000; //joelin for Mii-1
141 *DANUBE_CGU_IFCCR=0x00400010;
142 *DANUBE_GPIO_P0_OD=0x0000ae78;
143 #endif
144
145 /*patch for 6996*/
146
147 *DANUBE_RCU_RST_REQ |=1;
148 mdelay(200);
149 *DANUBE_RCU_RST_REQ &=(unsigned long)~1;
150 mdelay(1);
151 /*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
152 *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
153 */
154 /*while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
155 *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
156 */
157 /***************/
158 sprintf(dev->name, "danube Switch");
159 dev->init = danube_switch_init;
160 dev->halt = danube_switch_halt;
161 dev->send = danube_switch_send;
162 dev->recv = danube_switch_recv;
163
164 eth_register(dev);
165
166 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
167 *DANUBE_PPE_ETOP_MDIO_ACC =0xc1010000;
168 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
169 chipid = (unsigned short)(*DANUBE_PPE_ETOP_MDIO_ACC & 0xffff);
170
171 if (chipid != TANTOS_CHIP_ID) // not tantos switch.
172 {
173 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
174 *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
175 while((*DANUBE_PPE_ETOP_MDIO_ACC)&0x80000000);
176 *DANUBE_PPE_ETOP_MDIO_ACC =0x8003840F;
177 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
178 *DANUBE_PPE_ETOP_MDIO_ACC =0x8005840F;
179 //while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
180 //*DANUBE_PPE_ETOP_MDIO_ACC =0x8006840F;
181 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
182 *DANUBE_PPE_ETOP_MDIO_ACC =0x8007840F;
183 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
184 *DANUBE_PPE_ETOP_MDIO_ACC =0x8008840F;
185 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
186 *DANUBE_PPE_ETOP_MDIO_ACC =0x8001840F;
187 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
188 *DANUBE_PPE_ETOP_MDIO_ACC =0x80123602;
189 #ifdef CLK_OUT2_25MHZ
190 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
191 *DANUBE_PPE_ETOP_MDIO_ACC =0x80334000;
192 #endif
193 }
194 else // Tantos switch chip
195 {
196 //printf("Tantos Switch detected!!\n\r");
197
198 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
199 *DANUBE_PPE_ETOP_MDIO_ACC =0x80a10004;
200
201 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
202 *DANUBE_PPE_ETOP_MDIO_ACC =0x80c10004;
203
204 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
205 *DANUBE_PPE_ETOP_MDIO_ACC =0x80f50773;
206
207 /* Software workaround. */
208 /* PHY reset from P0 to P4. */
209 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
210
211 mdelay(1);
212 *DANUBE_PPE_ETOP_MDIO_ACC =0x81218000;
213 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
214 mdelay(1);
215 /* P0 */
216 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200400;
217 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
218 mdelay(1);
219 /* P1 */
220 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200420;
221 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
222 mdelay(1);
223 /* P2 */
224 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200440;
225 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
226 mdelay(1);
227 /* P3 */
228 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200460;
229 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
230 mdelay(1);
231 /* p4 */
232 *DANUBE_PPE_ETOP_MDIO_ACC =0x81200480;
233 while(*DANUBE_PPE_ETOP_MDIO_ACC&0x80000000);
234 mdelay(1);
235 }
236
237 return 1;
238 }
239
240 int danube_switch_init(struct eth_device *dev, bd_t * bis)
241 {
242 int i;
243
244 tx_num=0;
245 rx_num=0;
246
247 /* Reset DMA */
248 // serial_puts("i \n\0");
249
250 *DANUBE_DMA_CS=RX_CHAN_NO;
251 *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
252 *DANUBE_DMA_CPOLL= 0x80000040;
253 /*set descriptor base*/
254 *DANUBE_DMA_CDBA=(u32)rx_des_ring;
255 *DANUBE_DMA_CDLEN=NUM_RX_DESC;
256 *DANUBE_DMA_CIE = 0;
257 *DANUBE_DMA_CCTRL=0x30000;
258
259 *DANUBE_DMA_CS=TX_CHAN_NO;
260 *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
261 *DANUBE_DMA_CPOLL= 0x80000040;
262 *DANUBE_DMA_CDBA=(u32)tx_des_ring;
263 *DANUBE_DMA_CDLEN=NUM_TX_DESC;
264 *DANUBE_DMA_CIE = 0;
265 *DANUBE_DMA_CCTRL=0x30100;
266
267 for(i=0;i < NUM_RX_DESC; i++)
268 {
269 danube_rx_descriptor_t * rx_desc = KSEG1ADDR(&rx_des_ring[i]);
270 rx_desc->status.word=0;
271 rx_desc->status.field.OWN=1;
272 rx_desc->status.field.DataLen=PKTSIZE_ALIGN; /* 1536 */
273 rx_desc->DataPtr=(u32)KSEG1ADDR(NetRxPackets[i]);
274 }
275
276 for(i=0;i < NUM_TX_DESC; i++)
277 {
278 danube_tx_descriptor_t * tx_desc = KSEG1ADDR(&tx_des_ring[i]);
279 memset(tx_desc, 0, sizeof(tx_des_ring[0]));
280 }
281 /* turn on DMA rx & tx channel
282 */
283 *DANUBE_DMA_CS=RX_CHAN_NO;
284 *DANUBE_DMA_CCTRL|=1;/*reset and turn on the channel*/
285
286 return 0;
287 }
288
289 void danube_switch_halt(struct eth_device *dev)
290 {
291 int i;
292 for(i=0;i<8;i++)
293 {
294 *DANUBE_DMA_CS=i;
295 *DANUBE_DMA_CCTRL&=~1;/*stop the dma channel*/
296 }
297 // udelay(1000000);
298 }
299
300 int danube_switch_send(struct eth_device *dev, volatile void *packet,int length)
301 {
302
303 int i;
304 int res = -1;
305
306 danube_tx_descriptor_t * tx_desc= KSEG1ADDR(&tx_des_ring[tx_num]);
307
308 if (length <= 0)
309 {
310 printf ("%s: bad packet size: %d\n", dev->name, length);
311 goto Done;
312 }
313
314 for(i=0; tx_desc->status.field.OWN==1; i++)
315 {
316 if(i>=TOUT_LOOP)
317 {
318 printf("NO Tx Descriptor...");
319 goto Done;
320 }
321 }
322
323 //serial_putc('s');
324
325 tx_desc->status.field.Sop=1;
326 tx_desc->status.field.Eop=1;
327 tx_desc->status.field.C=0;
328 tx_desc->DataPtr = (u32)KSEG1ADDR(packet);
329 if(length<60)
330 tx_desc->status.field.DataLen = 60;
331 else
332 tx_desc->status.field.DataLen = (u32)length;
333
334 asm("SYNC");
335 tx_desc->status.field.OWN=1;
336
337 res=length;
338 tx_num++;
339 if(tx_num==NUM_TX_DESC) tx_num=0;
340 *DANUBE_DMA_CS=TX_CHAN_NO;
341
342 if(!(*DANUBE_DMA_CCTRL & 1))
343 *DANUBE_DMA_CCTRL|=1;
344
345 Done:
346 return res;
347 }
348
349 int danube_switch_recv(struct eth_device *dev)
350 {
351 int length = 0;
352 danube_rx_descriptor_t * rx_desc;
353
354 for (;;)
355 {
356 rx_desc = KSEG1ADDR(&rx_des_ring[rx_num]);
357
358 if ((rx_desc->status.field.C == 0) || (rx_desc->status.field.OWN == 1))
359 {
360 break;
361 }
362
363 length = rx_desc->status.field.DataLen;
364 if (length)
365 {
366 NetReceive((void*)KSEG1ADDR(NetRxPackets[rx_num]), length - 4);
367 // serial_putc('*');
368 }
369 else
370 {
371 printf("Zero length!!!\n");
372 }
373
374 rx_desc->status.field.Sop=0;
375 rx_desc->status.field.Eop=0;
376 rx_desc->status.field.C=0;
377 rx_desc->status.field.DataLen=PKTSIZE_ALIGN;
378 rx_desc->status.field.OWN=1;
379 rx_num++;
380 if(rx_num==NUM_RX_DESC) rx_num=0;
381
382 }
383
384 return length;
385 }
386
387
388 static void danube_init_switch_chip(int mode)
389 {
390 /*get and set mac address for MAC*/
391 char *tmp;
392 tmp = getenv ("ethaddr");
393 if (NULL == tmp) {
394 printf("Can't get environment ethaddr!!!\n");
395 // return NULL;
396 } else {
397 printf("ethaddr=%s\n", tmp);
398 }
399 *DANUBE_PMU_PWDCR = *DANUBE_PMU_PWDCR & 0xFFFFEFDF;
400 *DANUBE_PPE32_ETOP_MDIO_CFG &= ~0x6;
401 *DANUBE_PPE32_ENET_MAC_CFG = 0x187;
402
403 // turn on port0, set to rmii and turn off port1.
404 if (mode==REV_MII_MODE)
405 {
406 *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x0000000a;
407 }
408 else if (mode == MII_MODE)
409 {
410 *DANUBE_PPE32_ETOP_CFG = (*DANUBE_PPE32_ETOP_CFG & 0xfffffffc) | 0x00000008;
411 }
412
413 *DANUBE_PPE32_ETOP_IG_PLEN_CTRL = 0x4005ee; // set packetlen.
414 *ENET_MAC_CFG |= 1<<11; /*enable the crc*/
415 return;
416 }
417
418
419 static void danube_dma_init(void)
420 {
421 // serial_puts("d \n\0");
422
423 *DANUBE_PMU_PWDCR &=~(1<<DANUBE_PMU_DMA_SHIFT);/*enable DMA from PMU*/
424 /* Reset DMA */
425 *DANUBE_DMA_CTRL|=1;
426 *DANUBE_DMA_IRNEN=0;/*disable all the interrupts first*/
427
428 /* Clear Interrupt Status Register */
429 *DANUBE_DMA_IRNCR=0xfffff;
430 /*disable all the dma interrupts*/
431 *DANUBE_DMA_IRNEN=0;
432 /*disable channel 0 and channel 1 interrupts*/
433
434 *DANUBE_DMA_CS=RX_CHAN_NO;
435 *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
436 *DANUBE_DMA_CPOLL= 0x80000040;
437 /*set descriptor base*/
438 *DANUBE_DMA_CDBA=(u32)rx_des_ring;
439 *DANUBE_DMA_CDLEN=NUM_RX_DESC;
440 *DANUBE_DMA_CIE = 0;
441 *DANUBE_DMA_CCTRL=0x30000;
442
443 *DANUBE_DMA_CS=TX_CHAN_NO;
444 *DANUBE_DMA_CCTRL=0x2;/*fix me, need to reset this channel first?*/
445 *DANUBE_DMA_CPOLL= 0x80000040;
446 *DANUBE_DMA_CDBA=(u32)tx_des_ring;
447 *DANUBE_DMA_CDLEN=NUM_TX_DESC;
448 *DANUBE_DMA_CIE = 0;
449 *DANUBE_DMA_CCTRL=0x30100;
450 /*enable the poll function and set the poll counter*/
451 //*DANUBE_DMA_CPOLL=DANUBE_DMA_POLL_EN | (DANUBE_DMA_POLL_COUNT<<4);
452 /*set port properties, enable endian conversion for switch*/
453 *DANUBE_DMA_PS=0;
454 *DANUBE_DMA_PCTRL|=0xf<<8;/*enable 32 bit endian conversion*/
455
456 return;
457 }
458
459 #endif