1fd464d68af798c5fcdd02c537c7804bcbd05a5f
[openwrt/staging/yousong.git] / target / linux / generic / files / fs / yaffs2 / yaffs_guts.c
1 /*
2 * YAFFS: Yet Another Flash File System. A NAND-flash specific file system.
3 *
4 * Copyright (C) 2002-2011 Aleph One Ltd.
5 * for Toby Churchill Ltd and Brightstar Engineering
6 *
7 * Created by Charles Manning <charles@aleph1.co.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include "yportenv.h"
15 #include "yaffs_trace.h"
16
17 #include "yaffs_guts.h"
18 #include "yaffs_getblockinfo.h"
19 #include "yaffs_tagscompat.h"
20 #include "yaffs_tagsmarshall.h"
21 #include "yaffs_nand.h"
22 #include "yaffs_yaffs1.h"
23 #include "yaffs_yaffs2.h"
24 #include "yaffs_bitmap.h"
25 #include "yaffs_verify.h"
26 #include "yaffs_nand.h"
27 #include "yaffs_packedtags2.h"
28 #include "yaffs_nameval.h"
29 #include "yaffs_allocator.h"
30 #include "yaffs_attribs.h"
31 #include "yaffs_summary.h"
32
33 /* Note YAFFS_GC_GOOD_ENOUGH must be <= YAFFS_GC_PASSIVE_THRESHOLD */
34 #define YAFFS_GC_GOOD_ENOUGH 2
35 #define YAFFS_GC_PASSIVE_THRESHOLD 4
36
37 #include "yaffs_ecc.h"
38
39 /* Forward declarations */
40
41 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
42 const u8 *buffer, int n_bytes, int use_reserve);
43
44 static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name,
45 int buffer_size);
46
47 /* Function to calculate chunk and offset */
48
49 void yaffs_addr_to_chunk(struct yaffs_dev *dev, loff_t addr,
50 int *chunk_out, u32 *offset_out)
51 {
52 int chunk;
53 u32 offset;
54
55 chunk = (u32) (addr >> dev->chunk_shift);
56
57 if (dev->chunk_div == 1) {
58 /* easy power of 2 case */
59 offset = (u32) (addr & dev->chunk_mask);
60 } else {
61 /* Non power-of-2 case */
62
63 loff_t chunk_base;
64
65 chunk /= dev->chunk_div;
66
67 chunk_base = ((loff_t) chunk) * dev->data_bytes_per_chunk;
68 offset = (u32) (addr - chunk_base);
69 }
70
71 *chunk_out = chunk;
72 *offset_out = offset;
73 }
74
75 /* Function to return the number of shifts for a power of 2 greater than or
76 * equal to the given number
77 * Note we don't try to cater for all possible numbers and this does not have to
78 * be hellishly efficient.
79 */
80
81 static inline u32 calc_shifts_ceiling(u32 x)
82 {
83 int extra_bits;
84 int shifts;
85
86 shifts = extra_bits = 0;
87
88 while (x > 1) {
89 if (x & 1)
90 extra_bits++;
91 x >>= 1;
92 shifts++;
93 }
94
95 if (extra_bits)
96 shifts++;
97
98 return shifts;
99 }
100
101 /* Function to return the number of shifts to get a 1 in bit 0
102 */
103
104 static inline u32 calc_shifts(u32 x)
105 {
106 u32 shifts;
107
108 shifts = 0;
109
110 if (!x)
111 return 0;
112
113 while (!(x & 1)) {
114 x >>= 1;
115 shifts++;
116 }
117
118 return shifts;
119 }
120
121 /*
122 * Temporary buffer manipulations.
123 */
124
125 static int yaffs_init_tmp_buffers(struct yaffs_dev *dev)
126 {
127 int i;
128 u8 *buf = (u8 *) 1;
129
130 memset(dev->temp_buffer, 0, sizeof(dev->temp_buffer));
131
132 for (i = 0; buf && i < YAFFS_N_TEMP_BUFFERS; i++) {
133 dev->temp_buffer[i].in_use = 0;
134 buf = kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
135 dev->temp_buffer[i].buffer = buf;
136 }
137
138 return buf ? YAFFS_OK : YAFFS_FAIL;
139 }
140
141 u8 *yaffs_get_temp_buffer(struct yaffs_dev * dev)
142 {
143 int i;
144
145 dev->temp_in_use++;
146 if (dev->temp_in_use > dev->max_temp)
147 dev->max_temp = dev->temp_in_use;
148
149 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
150 if (dev->temp_buffer[i].in_use == 0) {
151 dev->temp_buffer[i].in_use = 1;
152 return dev->temp_buffer[i].buffer;
153 }
154 }
155
156 yaffs_trace(YAFFS_TRACE_BUFFERS, "Out of temp buffers");
157 /*
158 * If we got here then we have to allocate an unmanaged one
159 * This is not good.
160 */
161
162 dev->unmanaged_buffer_allocs++;
163 return kmalloc(dev->data_bytes_per_chunk, GFP_NOFS);
164
165 }
166
167 void yaffs_release_temp_buffer(struct yaffs_dev *dev, u8 *buffer)
168 {
169 int i;
170
171 dev->temp_in_use--;
172
173 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++) {
174 if (dev->temp_buffer[i].buffer == buffer) {
175 dev->temp_buffer[i].in_use = 0;
176 return;
177 }
178 }
179
180 if (buffer) {
181 /* assume it is an unmanaged one. */
182 yaffs_trace(YAFFS_TRACE_BUFFERS,
183 "Releasing unmanaged temp buffer");
184 kfree(buffer);
185 dev->unmanaged_buffer_deallocs++;
186 }
187
188 }
189
190 /*
191 * Functions for robustisizing TODO
192 *
193 */
194
195 static void yaffs_handle_chunk_wr_ok(struct yaffs_dev *dev, int nand_chunk,
196 const u8 *data,
197 const struct yaffs_ext_tags *tags)
198 {
199 (void) dev;
200 (void) nand_chunk;
201 (void) data;
202 (void) tags;
203 }
204
205 static void yaffs_handle_chunk_update(struct yaffs_dev *dev, int nand_chunk,
206 const struct yaffs_ext_tags *tags)
207 {
208 (void) dev;
209 (void) nand_chunk;
210 (void) tags;
211 }
212
213 void yaffs_handle_chunk_error(struct yaffs_dev *dev,
214 struct yaffs_block_info *bi)
215 {
216 if (!bi->gc_prioritise) {
217 bi->gc_prioritise = 1;
218 dev->has_pending_prioritised_gc = 1;
219 bi->chunk_error_strikes++;
220
221 if (bi->chunk_error_strikes > 3) {
222 bi->needs_retiring = 1; /* Too many stikes, so retire */
223 yaffs_trace(YAFFS_TRACE_ALWAYS,
224 "yaffs: Block struck out");
225
226 }
227 }
228 }
229
230 static void yaffs_handle_chunk_wr_error(struct yaffs_dev *dev, int nand_chunk,
231 int erased_ok)
232 {
233 int flash_block = nand_chunk / dev->param.chunks_per_block;
234 struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
235
236 yaffs_handle_chunk_error(dev, bi);
237
238 if (erased_ok) {
239 /* Was an actual write failure,
240 * so mark the block for retirement.*/
241 bi->needs_retiring = 1;
242 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
243 "**>> Block %d needs retiring", flash_block);
244 }
245
246 /* Delete the chunk */
247 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
248 yaffs_skip_rest_of_block(dev);
249 }
250
251 /*
252 * Verification code
253 */
254
255 /*
256 * Simple hash function. Needs to have a reasonable spread
257 */
258
259 static inline int yaffs_hash_fn(int n)
260 {
261 if (n < 0)
262 n = -n;
263 return n % YAFFS_NOBJECT_BUCKETS;
264 }
265
266 /*
267 * Access functions to useful fake objects.
268 * Note that root might have a presence in NAND if permissions are set.
269 */
270
271 struct yaffs_obj *yaffs_root(struct yaffs_dev *dev)
272 {
273 return dev->root_dir;
274 }
275
276 struct yaffs_obj *yaffs_lost_n_found(struct yaffs_dev *dev)
277 {
278 return dev->lost_n_found;
279 }
280
281 /*
282 * Erased NAND checking functions
283 */
284
285 int yaffs_check_ff(u8 *buffer, int n_bytes)
286 {
287 /* Horrible, slow implementation */
288 while (n_bytes--) {
289 if (*buffer != 0xff)
290 return 0;
291 buffer++;
292 }
293 return 1;
294 }
295
296 static int yaffs_check_chunk_erased(struct yaffs_dev *dev, int nand_chunk)
297 {
298 int retval = YAFFS_OK;
299 u8 *data = yaffs_get_temp_buffer(dev);
300 struct yaffs_ext_tags tags;
301 int result;
302
303 result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, data, &tags);
304
305 if (tags.ecc_result > YAFFS_ECC_RESULT_NO_ERROR)
306 retval = YAFFS_FAIL;
307
308 if (!yaffs_check_ff(data, dev->data_bytes_per_chunk) ||
309 tags.chunk_used) {
310 yaffs_trace(YAFFS_TRACE_NANDACCESS,
311 "Chunk %d not erased", nand_chunk);
312 retval = YAFFS_FAIL;
313 }
314
315 yaffs_release_temp_buffer(dev, data);
316
317 return retval;
318
319 }
320
321 static int yaffs_verify_chunk_written(struct yaffs_dev *dev,
322 int nand_chunk,
323 const u8 *data,
324 struct yaffs_ext_tags *tags)
325 {
326 int retval = YAFFS_OK;
327 struct yaffs_ext_tags temp_tags;
328 u8 *buffer = yaffs_get_temp_buffer(dev);
329 int result;
330
331 result = yaffs_rd_chunk_tags_nand(dev, nand_chunk, buffer, &temp_tags);
332 if (memcmp(buffer, data, dev->data_bytes_per_chunk) ||
333 temp_tags.obj_id != tags->obj_id ||
334 temp_tags.chunk_id != tags->chunk_id ||
335 temp_tags.n_bytes != tags->n_bytes)
336 retval = YAFFS_FAIL;
337
338 yaffs_release_temp_buffer(dev, buffer);
339
340 return retval;
341 }
342
343
344 int yaffs_check_alloc_available(struct yaffs_dev *dev, int n_chunks)
345 {
346 int reserved_chunks;
347 int reserved_blocks = dev->param.n_reserved_blocks;
348 int checkpt_blocks;
349
350 checkpt_blocks = yaffs_calc_checkpt_blocks_required(dev);
351
352 reserved_chunks =
353 (reserved_blocks + checkpt_blocks) * dev->param.chunks_per_block;
354
355 return (dev->n_free_chunks > (reserved_chunks + n_chunks));
356 }
357
358 static int yaffs_find_alloc_block(struct yaffs_dev *dev)
359 {
360 int i;
361 struct yaffs_block_info *bi;
362
363 if (dev->n_erased_blocks < 1) {
364 /* Hoosterman we've got a problem.
365 * Can't get space to gc
366 */
367 yaffs_trace(YAFFS_TRACE_ERROR,
368 "yaffs tragedy: no more erased blocks");
369
370 return -1;
371 }
372
373 /* Find an empty block. */
374
375 for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) {
376 dev->alloc_block_finder++;
377 if (dev->alloc_block_finder < dev->internal_start_block
378 || dev->alloc_block_finder > dev->internal_end_block) {
379 dev->alloc_block_finder = dev->internal_start_block;
380 }
381
382 bi = yaffs_get_block_info(dev, dev->alloc_block_finder);
383
384 if (bi->block_state == YAFFS_BLOCK_STATE_EMPTY) {
385 bi->block_state = YAFFS_BLOCK_STATE_ALLOCATING;
386 dev->seq_number++;
387 bi->seq_number = dev->seq_number;
388 dev->n_erased_blocks--;
389 yaffs_trace(YAFFS_TRACE_ALLOCATE,
390 "Allocated block %d, seq %d, %d left" ,
391 dev->alloc_block_finder, dev->seq_number,
392 dev->n_erased_blocks);
393 return dev->alloc_block_finder;
394 }
395 }
396
397 yaffs_trace(YAFFS_TRACE_ALWAYS,
398 "yaffs tragedy: no more erased blocks, but there should have been %d",
399 dev->n_erased_blocks);
400
401 return -1;
402 }
403
404 static int yaffs_alloc_chunk(struct yaffs_dev *dev, int use_reserver,
405 struct yaffs_block_info **block_ptr)
406 {
407 int ret_val;
408 struct yaffs_block_info *bi;
409
410 if (dev->alloc_block < 0) {
411 /* Get next block to allocate off */
412 dev->alloc_block = yaffs_find_alloc_block(dev);
413 dev->alloc_page = 0;
414 }
415
416 if (!use_reserver && !yaffs_check_alloc_available(dev, 1)) {
417 /* No space unless we're allowed to use the reserve. */
418 return -1;
419 }
420
421 if (dev->n_erased_blocks < dev->param.n_reserved_blocks
422 && dev->alloc_page == 0)
423 yaffs_trace(YAFFS_TRACE_ALLOCATE, "Allocating reserve");
424
425 /* Next page please.... */
426 if (dev->alloc_block >= 0) {
427 bi = yaffs_get_block_info(dev, dev->alloc_block);
428
429 ret_val = (dev->alloc_block * dev->param.chunks_per_block) +
430 dev->alloc_page;
431 bi->pages_in_use++;
432 yaffs_set_chunk_bit(dev, dev->alloc_block, dev->alloc_page);
433
434 dev->alloc_page++;
435
436 dev->n_free_chunks--;
437
438 /* If the block is full set the state to full */
439 if (dev->alloc_page >= dev->param.chunks_per_block) {
440 bi->block_state = YAFFS_BLOCK_STATE_FULL;
441 dev->alloc_block = -1;
442 }
443
444 if (block_ptr)
445 *block_ptr = bi;
446
447 return ret_val;
448 }
449
450 yaffs_trace(YAFFS_TRACE_ERROR,
451 "!!!!!!!!! Allocator out !!!!!!!!!!!!!!!!!");
452
453 return -1;
454 }
455
456 static int yaffs_get_erased_chunks(struct yaffs_dev *dev)
457 {
458 int n;
459
460 n = dev->n_erased_blocks * dev->param.chunks_per_block;
461
462 if (dev->alloc_block > 0)
463 n += (dev->param.chunks_per_block - dev->alloc_page);
464
465 return n;
466
467 }
468
469 /*
470 * yaffs_skip_rest_of_block() skips over the rest of the allocation block
471 * if we don't want to write to it.
472 */
473 void yaffs_skip_rest_of_block(struct yaffs_dev *dev)
474 {
475 struct yaffs_block_info *bi;
476
477 if (dev->alloc_block > 0) {
478 bi = yaffs_get_block_info(dev, dev->alloc_block);
479 if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING) {
480 bi->block_state = YAFFS_BLOCK_STATE_FULL;
481 dev->alloc_block = -1;
482 }
483 }
484 }
485
486 static int yaffs_write_new_chunk(struct yaffs_dev *dev,
487 const u8 *data,
488 struct yaffs_ext_tags *tags, int use_reserver)
489 {
490 int attempts = 0;
491 int write_ok = 0;
492 int chunk;
493
494 yaffs2_checkpt_invalidate(dev);
495
496 do {
497 struct yaffs_block_info *bi = 0;
498 int erased_ok = 0;
499
500 chunk = yaffs_alloc_chunk(dev, use_reserver, &bi);
501 if (chunk < 0) {
502 /* no space */
503 break;
504 }
505
506 /* First check this chunk is erased, if it needs
507 * checking. The checking policy (unless forced
508 * always on) is as follows:
509 *
510 * Check the first page we try to write in a block.
511 * If the check passes then we don't need to check any
512 * more. If the check fails, we check again...
513 * If the block has been erased, we don't need to check.
514 *
515 * However, if the block has been prioritised for gc,
516 * then we think there might be something odd about
517 * this block and stop using it.
518 *
519 * Rationale: We should only ever see chunks that have
520 * not been erased if there was a partially written
521 * chunk due to power loss. This checking policy should
522 * catch that case with very few checks and thus save a
523 * lot of checks that are most likely not needed.
524 *
525 * Mods to the above
526 * If an erase check fails or the write fails we skip the
527 * rest of the block.
528 */
529
530 /* let's give it a try */
531 attempts++;
532
533 if (dev->param.always_check_erased)
534 bi->skip_erased_check = 0;
535
536 if (!bi->skip_erased_check) {
537 erased_ok = yaffs_check_chunk_erased(dev, chunk);
538 if (erased_ok != YAFFS_OK) {
539 yaffs_trace(YAFFS_TRACE_ERROR,
540 "**>> yaffs chunk %d was not erased",
541 chunk);
542
543 /* If not erased, delete this one,
544 * skip rest of block and
545 * try another chunk */
546 yaffs_chunk_del(dev, chunk, 1, __LINE__);
547 yaffs_skip_rest_of_block(dev);
548 continue;
549 }
550 }
551
552 write_ok = yaffs_wr_chunk_tags_nand(dev, chunk, data, tags);
553
554 if (!bi->skip_erased_check)
555 write_ok =
556 yaffs_verify_chunk_written(dev, chunk, data, tags);
557
558 if (write_ok != YAFFS_OK) {
559 /* Clean up aborted write, skip to next block and
560 * try another chunk */
561 yaffs_handle_chunk_wr_error(dev, chunk, erased_ok);
562 continue;
563 }
564
565 bi->skip_erased_check = 1;
566
567 /* Copy the data into the robustification buffer */
568 yaffs_handle_chunk_wr_ok(dev, chunk, data, tags);
569
570 } while (write_ok != YAFFS_OK &&
571 (yaffs_wr_attempts <= 0 || attempts <= yaffs_wr_attempts));
572
573 if (!write_ok)
574 chunk = -1;
575
576 if (attempts > 1) {
577 yaffs_trace(YAFFS_TRACE_ERROR,
578 "**>> yaffs write required %d attempts",
579 attempts);
580 dev->n_retried_writes += (attempts - 1);
581 }
582
583 return chunk;
584 }
585
586 /*
587 * Block retiring for handling a broken block.
588 */
589
590 static void yaffs_retire_block(struct yaffs_dev *dev, int flash_block)
591 {
592 struct yaffs_block_info *bi = yaffs_get_block_info(dev, flash_block);
593
594 yaffs2_checkpt_invalidate(dev);
595
596 yaffs2_clear_oldest_dirty_seq(dev, bi);
597
598 if (yaffs_mark_bad(dev, flash_block) != YAFFS_OK) {
599 if (yaffs_erase_block(dev, flash_block) != YAFFS_OK) {
600 yaffs_trace(YAFFS_TRACE_ALWAYS,
601 "yaffs: Failed to mark bad and erase block %d",
602 flash_block);
603 } else {
604 struct yaffs_ext_tags tags;
605 int chunk_id =
606 flash_block * dev->param.chunks_per_block;
607
608 u8 *buffer = yaffs_get_temp_buffer(dev);
609
610 memset(buffer, 0xff, dev->data_bytes_per_chunk);
611 memset(&tags, 0, sizeof(tags));
612 tags.seq_number = YAFFS_SEQUENCE_BAD_BLOCK;
613 if (dev->tagger.write_chunk_tags_fn(dev, chunk_id -
614 dev->chunk_offset,
615 buffer,
616 &tags) != YAFFS_OK)
617 yaffs_trace(YAFFS_TRACE_ALWAYS,
618 "yaffs: Failed to write bad block marker to block %d",
619 flash_block);
620
621 yaffs_release_temp_buffer(dev, buffer);
622 }
623 }
624
625 bi->block_state = YAFFS_BLOCK_STATE_DEAD;
626 bi->gc_prioritise = 0;
627 bi->needs_retiring = 0;
628
629 dev->n_retired_blocks++;
630 }
631
632 /*---------------- Name handling functions ------------*/
633
634 static u16 yaffs_calc_name_sum(const YCHAR *name)
635 {
636 u16 sum = 0;
637 u16 i = 1;
638
639 if (!name)
640 return 0;
641
642 while ((*name) && i < (YAFFS_MAX_NAME_LENGTH / 2)) {
643
644 /* 0x1f mask is case insensitive */
645 sum += ((*name) & 0x1f) * i;
646 i++;
647 name++;
648 }
649 return sum;
650 }
651
652
653 void yaffs_set_obj_name(struct yaffs_obj *obj, const YCHAR * name)
654 {
655 memset(obj->short_name, 0, sizeof(obj->short_name));
656
657 if (name && !name[0]) {
658 yaffs_fix_null_name(obj, obj->short_name,
659 YAFFS_SHORT_NAME_LENGTH);
660 name = obj->short_name;
661 } else if (name &&
662 strnlen(name, YAFFS_SHORT_NAME_LENGTH + 1) <=
663 YAFFS_SHORT_NAME_LENGTH) {
664 strcpy(obj->short_name, name);
665 }
666
667 obj->sum = yaffs_calc_name_sum(name);
668 }
669
670 void yaffs_set_obj_name_from_oh(struct yaffs_obj *obj,
671 const struct yaffs_obj_hdr *oh)
672 {
673 #ifdef CONFIG_YAFFS_AUTO_UNICODE
674 YCHAR tmp_name[YAFFS_MAX_NAME_LENGTH + 1];
675 memset(tmp_name, 0, sizeof(tmp_name));
676 yaffs_load_name_from_oh(obj->my_dev, tmp_name, oh->name,
677 YAFFS_MAX_NAME_LENGTH + 1);
678 yaffs_set_obj_name(obj, tmp_name);
679 #else
680 yaffs_set_obj_name(obj, oh->name);
681 #endif
682 }
683
684 loff_t yaffs_max_file_size(struct yaffs_dev *dev)
685 {
686 if(sizeof(loff_t) < 8)
687 return YAFFS_MAX_FILE_SIZE_32;
688 else
689 return ((loff_t) YAFFS_MAX_CHUNK_ID) * dev->data_bytes_per_chunk;
690 }
691
692 /*-------------------- TNODES -------------------
693
694 * List of spare tnodes
695 * The list is hooked together using the first pointer
696 * in the tnode.
697 */
698
699 struct yaffs_tnode *yaffs_get_tnode(struct yaffs_dev *dev)
700 {
701 struct yaffs_tnode *tn = yaffs_alloc_raw_tnode(dev);
702
703 if (tn) {
704 memset(tn, 0, dev->tnode_size);
705 dev->n_tnodes++;
706 }
707
708 dev->checkpoint_blocks_required = 0; /* force recalculation */
709
710 return tn;
711 }
712
713 /* FreeTnode frees up a tnode and puts it back on the free list */
714 static void yaffs_free_tnode(struct yaffs_dev *dev, struct yaffs_tnode *tn)
715 {
716 yaffs_free_raw_tnode(dev, tn);
717 dev->n_tnodes--;
718 dev->checkpoint_blocks_required = 0; /* force recalculation */
719 }
720
721 static void yaffs_deinit_tnodes_and_objs(struct yaffs_dev *dev)
722 {
723 yaffs_deinit_raw_tnodes_and_objs(dev);
724 dev->n_obj = 0;
725 dev->n_tnodes = 0;
726 }
727
728 static void yaffs_load_tnode_0(struct yaffs_dev *dev, struct yaffs_tnode *tn,
729 unsigned pos, unsigned val)
730 {
731 u32 *map = (u32 *) tn;
732 u32 bit_in_map;
733 u32 bit_in_word;
734 u32 word_in_map;
735 u32 mask;
736
737 pos &= YAFFS_TNODES_LEVEL0_MASK;
738 val >>= dev->chunk_grp_bits;
739
740 bit_in_map = pos * dev->tnode_width;
741 word_in_map = bit_in_map / 32;
742 bit_in_word = bit_in_map & (32 - 1);
743
744 mask = dev->tnode_mask << bit_in_word;
745
746 map[word_in_map] &= ~mask;
747 map[word_in_map] |= (mask & (val << bit_in_word));
748
749 if (dev->tnode_width > (32 - bit_in_word)) {
750 bit_in_word = (32 - bit_in_word);
751 word_in_map++;
752 mask =
753 dev->tnode_mask >> bit_in_word;
754 map[word_in_map] &= ~mask;
755 map[word_in_map] |= (mask & (val >> bit_in_word));
756 }
757 }
758
759 u32 yaffs_get_group_base(struct yaffs_dev *dev, struct yaffs_tnode *tn,
760 unsigned pos)
761 {
762 u32 *map = (u32 *) tn;
763 u32 bit_in_map;
764 u32 bit_in_word;
765 u32 word_in_map;
766 u32 val;
767
768 pos &= YAFFS_TNODES_LEVEL0_MASK;
769
770 bit_in_map = pos * dev->tnode_width;
771 word_in_map = bit_in_map / 32;
772 bit_in_word = bit_in_map & (32 - 1);
773
774 val = map[word_in_map] >> bit_in_word;
775
776 if (dev->tnode_width > (32 - bit_in_word)) {
777 bit_in_word = (32 - bit_in_word);
778 word_in_map++;
779 val |= (map[word_in_map] << bit_in_word);
780 }
781
782 val &= dev->tnode_mask;
783 val <<= dev->chunk_grp_bits;
784
785 return val;
786 }
787
788 /* ------------------- End of individual tnode manipulation -----------------*/
789
790 /* ---------Functions to manipulate the look-up tree (made up of tnodes) ------
791 * The look up tree is represented by the top tnode and the number of top_level
792 * in the tree. 0 means only the level 0 tnode is in the tree.
793 */
794
795 /* FindLevel0Tnode finds the level 0 tnode, if one exists. */
796 struct yaffs_tnode *yaffs_find_tnode_0(struct yaffs_dev *dev,
797 struct yaffs_file_var *file_struct,
798 u32 chunk_id)
799 {
800 struct yaffs_tnode *tn = file_struct->top;
801 u32 i;
802 int required_depth;
803 int level = file_struct->top_level;
804
805 (void) dev;
806
807 /* Check sane level and chunk Id */
808 if (level < 0 || level > YAFFS_TNODES_MAX_LEVEL)
809 return NULL;
810
811 if (chunk_id > YAFFS_MAX_CHUNK_ID)
812 return NULL;
813
814 /* First check we're tall enough (ie enough top_level) */
815
816 i = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
817 required_depth = 0;
818 while (i) {
819 i >>= YAFFS_TNODES_INTERNAL_BITS;
820 required_depth++;
821 }
822
823 if (required_depth > file_struct->top_level)
824 return NULL; /* Not tall enough, so we can't find it */
825
826 /* Traverse down to level 0 */
827 while (level > 0 && tn) {
828 tn = tn->internal[(chunk_id >>
829 (YAFFS_TNODES_LEVEL0_BITS +
830 (level - 1) *
831 YAFFS_TNODES_INTERNAL_BITS)) &
832 YAFFS_TNODES_INTERNAL_MASK];
833 level--;
834 }
835
836 return tn;
837 }
838
839 /* add_find_tnode_0 finds the level 0 tnode if it exists,
840 * otherwise first expands the tree.
841 * This happens in two steps:
842 * 1. If the tree isn't tall enough, then make it taller.
843 * 2. Scan down the tree towards the level 0 tnode adding tnodes if required.
844 *
845 * Used when modifying the tree.
846 *
847 * If the tn argument is NULL, then a fresh tnode will be added otherwise the
848 * specified tn will be plugged into the ttree.
849 */
850
851 struct yaffs_tnode *yaffs_add_find_tnode_0(struct yaffs_dev *dev,
852 struct yaffs_file_var *file_struct,
853 u32 chunk_id,
854 struct yaffs_tnode *passed_tn)
855 {
856 int required_depth;
857 int i;
858 int l;
859 struct yaffs_tnode *tn;
860 u32 x;
861
862 /* Check sane level and page Id */
863 if (file_struct->top_level < 0 ||
864 file_struct->top_level > YAFFS_TNODES_MAX_LEVEL)
865 return NULL;
866
867 if (chunk_id > YAFFS_MAX_CHUNK_ID)
868 return NULL;
869
870 /* First check we're tall enough (ie enough top_level) */
871
872 x = chunk_id >> YAFFS_TNODES_LEVEL0_BITS;
873 required_depth = 0;
874 while (x) {
875 x >>= YAFFS_TNODES_INTERNAL_BITS;
876 required_depth++;
877 }
878
879 if (required_depth > file_struct->top_level) {
880 /* Not tall enough, gotta make the tree taller */
881 for (i = file_struct->top_level; i < required_depth; i++) {
882
883 tn = yaffs_get_tnode(dev);
884
885 if (tn) {
886 tn->internal[0] = file_struct->top;
887 file_struct->top = tn;
888 file_struct->top_level++;
889 } else {
890 yaffs_trace(YAFFS_TRACE_ERROR,
891 "yaffs: no more tnodes");
892 return NULL;
893 }
894 }
895 }
896
897 /* Traverse down to level 0, adding anything we need */
898
899 l = file_struct->top_level;
900 tn = file_struct->top;
901
902 if (l > 0) {
903 while (l > 0 && tn) {
904 x = (chunk_id >>
905 (YAFFS_TNODES_LEVEL0_BITS +
906 (l - 1) * YAFFS_TNODES_INTERNAL_BITS)) &
907 YAFFS_TNODES_INTERNAL_MASK;
908
909 if ((l > 1) && !tn->internal[x]) {
910 /* Add missing non-level-zero tnode */
911 tn->internal[x] = yaffs_get_tnode(dev);
912 if (!tn->internal[x])
913 return NULL;
914 } else if (l == 1) {
915 /* Looking from level 1 at level 0 */
916 if (passed_tn) {
917 /* If we already have one, release it */
918 if (tn->internal[x])
919 yaffs_free_tnode(dev,
920 tn->internal[x]);
921 tn->internal[x] = passed_tn;
922
923 } else if (!tn->internal[x]) {
924 /* Don't have one, none passed in */
925 tn->internal[x] = yaffs_get_tnode(dev);
926 if (!tn->internal[x])
927 return NULL;
928 }
929 }
930
931 tn = tn->internal[x];
932 l--;
933 }
934 } else {
935 /* top is level 0 */
936 if (passed_tn) {
937 memcpy(tn, passed_tn,
938 (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8);
939 yaffs_free_tnode(dev, passed_tn);
940 }
941 }
942
943 return tn;
944 }
945
946 static int yaffs_tags_match(const struct yaffs_ext_tags *tags, int obj_id,
947 int chunk_obj)
948 {
949 return (tags->chunk_id == chunk_obj &&
950 tags->obj_id == obj_id &&
951 !tags->is_deleted) ? 1 : 0;
952
953 }
954
955 static int yaffs_find_chunk_in_group(struct yaffs_dev *dev, int the_chunk,
956 struct yaffs_ext_tags *tags, int obj_id,
957 int inode_chunk)
958 {
959 int j;
960
961 for (j = 0; the_chunk && j < dev->chunk_grp_size; j++) {
962 if (yaffs_check_chunk_bit
963 (dev, the_chunk / dev->param.chunks_per_block,
964 the_chunk % dev->param.chunks_per_block)) {
965
966 if (dev->chunk_grp_size == 1)
967 return the_chunk;
968 else {
969 yaffs_rd_chunk_tags_nand(dev, the_chunk, NULL,
970 tags);
971 if (yaffs_tags_match(tags,
972 obj_id, inode_chunk)) {
973 /* found it; */
974 return the_chunk;
975 }
976 }
977 }
978 the_chunk++;
979 }
980 return -1;
981 }
982
983 int yaffs_find_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
984 struct yaffs_ext_tags *tags)
985 {
986 /*Get the Tnode, then get the level 0 offset chunk offset */
987 struct yaffs_tnode *tn;
988 int the_chunk = -1;
989 struct yaffs_ext_tags local_tags;
990 int ret_val = -1;
991 struct yaffs_dev *dev = in->my_dev;
992
993 if (!tags) {
994 /* Passed a NULL, so use our own tags space */
995 tags = &local_tags;
996 }
997
998 tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
999
1000 if (!tn)
1001 return ret_val;
1002
1003 the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1004
1005 ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1006 inode_chunk);
1007 return ret_val;
1008 }
1009
1010 static int yaffs_find_del_file_chunk(struct yaffs_obj *in, int inode_chunk,
1011 struct yaffs_ext_tags *tags)
1012 {
1013 /* Get the Tnode, then get the level 0 offset chunk offset */
1014 struct yaffs_tnode *tn;
1015 int the_chunk = -1;
1016 struct yaffs_ext_tags local_tags;
1017 struct yaffs_dev *dev = in->my_dev;
1018 int ret_val = -1;
1019
1020 if (!tags) {
1021 /* Passed a NULL, so use our own tags space */
1022 tags = &local_tags;
1023 }
1024
1025 tn = yaffs_find_tnode_0(dev, &in->variant.file_variant, inode_chunk);
1026
1027 if (!tn)
1028 return ret_val;
1029
1030 the_chunk = yaffs_get_group_base(dev, tn, inode_chunk);
1031
1032 ret_val = yaffs_find_chunk_in_group(dev, the_chunk, tags, in->obj_id,
1033 inode_chunk);
1034
1035 /* Delete the entry in the filestructure (if found) */
1036 if (ret_val != -1)
1037 yaffs_load_tnode_0(dev, tn, inode_chunk, 0);
1038
1039 return ret_val;
1040 }
1041
1042 int yaffs_put_chunk_in_file(struct yaffs_obj *in, int inode_chunk,
1043 int nand_chunk, int in_scan)
1044 {
1045 /* NB in_scan is zero unless scanning.
1046 * For forward scanning, in_scan is > 0;
1047 * for backward scanning in_scan is < 0
1048 *
1049 * nand_chunk = 0 is a dummy insert to make sure the tnodes are there.
1050 */
1051
1052 struct yaffs_tnode *tn;
1053 struct yaffs_dev *dev = in->my_dev;
1054 int existing_cunk;
1055 struct yaffs_ext_tags existing_tags;
1056 struct yaffs_ext_tags new_tags;
1057 unsigned existing_serial, new_serial;
1058
1059 if (in->variant_type != YAFFS_OBJECT_TYPE_FILE) {
1060 /* Just ignore an attempt at putting a chunk into a non-file
1061 * during scanning.
1062 * If it is not during Scanning then something went wrong!
1063 */
1064 if (!in_scan) {
1065 yaffs_trace(YAFFS_TRACE_ERROR,
1066 "yaffs tragedy:attempt to put data chunk into a non-file"
1067 );
1068 BUG();
1069 }
1070
1071 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1072 return YAFFS_OK;
1073 }
1074
1075 tn = yaffs_add_find_tnode_0(dev,
1076 &in->variant.file_variant,
1077 inode_chunk, NULL);
1078 if (!tn)
1079 return YAFFS_FAIL;
1080
1081 if (!nand_chunk)
1082 /* Dummy insert, bail now */
1083 return YAFFS_OK;
1084
1085 existing_cunk = yaffs_get_group_base(dev, tn, inode_chunk);
1086
1087 if (in_scan != 0) {
1088 /* If we're scanning then we need to test for duplicates
1089 * NB This does not need to be efficient since it should only
1090 * happen when the power fails during a write, then only one
1091 * chunk should ever be affected.
1092 *
1093 * Correction for YAFFS2: This could happen quite a lot and we
1094 * need to think about efficiency! TODO
1095 * Update: For backward scanning we don't need to re-read tags
1096 * so this is quite cheap.
1097 */
1098
1099 if (existing_cunk > 0) {
1100 /* NB Right now existing chunk will not be real
1101 * chunk_id if the chunk group size > 1
1102 * thus we have to do a FindChunkInFile to get the
1103 * real chunk id.
1104 *
1105 * We have a duplicate now we need to decide which
1106 * one to use:
1107 *
1108 * Backwards scanning YAFFS2: The old one is what
1109 * we use, dump the new one.
1110 * YAFFS1: Get both sets of tags and compare serial
1111 * numbers.
1112 */
1113
1114 if (in_scan > 0) {
1115 /* Only do this for forward scanning */
1116 yaffs_rd_chunk_tags_nand(dev,
1117 nand_chunk,
1118 NULL, &new_tags);
1119
1120 /* Do a proper find */
1121 existing_cunk =
1122 yaffs_find_chunk_in_file(in, inode_chunk,
1123 &existing_tags);
1124 }
1125
1126 if (existing_cunk <= 0) {
1127 /*Hoosterman - how did this happen? */
1128
1129 yaffs_trace(YAFFS_TRACE_ERROR,
1130 "yaffs tragedy: existing chunk < 0 in scan"
1131 );
1132
1133 }
1134
1135 /* NB The deleted flags should be false, otherwise
1136 * the chunks will not be loaded during a scan
1137 */
1138
1139 if (in_scan > 0) {
1140 new_serial = new_tags.serial_number;
1141 existing_serial = existing_tags.serial_number;
1142 }
1143
1144 if ((in_scan > 0) &&
1145 (existing_cunk <= 0 ||
1146 ((existing_serial + 1) & 3) == new_serial)) {
1147 /* Forward scanning.
1148 * Use new
1149 * Delete the old one and drop through to
1150 * update the tnode
1151 */
1152 yaffs_chunk_del(dev, existing_cunk, 1,
1153 __LINE__);
1154 } else {
1155 /* Backward scanning or we want to use the
1156 * existing one
1157 * Delete the new one and return early so that
1158 * the tnode isn't changed
1159 */
1160 yaffs_chunk_del(dev, nand_chunk, 1, __LINE__);
1161 return YAFFS_OK;
1162 }
1163 }
1164
1165 }
1166
1167 if (existing_cunk == 0)
1168 in->n_data_chunks++;
1169
1170 yaffs_load_tnode_0(dev, tn, inode_chunk, nand_chunk);
1171
1172 return YAFFS_OK;
1173 }
1174
1175 static void yaffs_soft_del_chunk(struct yaffs_dev *dev, int chunk)
1176 {
1177 struct yaffs_block_info *the_block;
1178 unsigned block_no;
1179
1180 yaffs_trace(YAFFS_TRACE_DELETION, "soft delete chunk %d", chunk);
1181
1182 block_no = chunk / dev->param.chunks_per_block;
1183 the_block = yaffs_get_block_info(dev, block_no);
1184 if (the_block) {
1185 the_block->soft_del_pages++;
1186 dev->n_free_chunks++;
1187 yaffs2_update_oldest_dirty_seq(dev, block_no, the_block);
1188 }
1189 }
1190
1191 /* SoftDeleteWorker scans backwards through the tnode tree and soft deletes all
1192 * the chunks in the file.
1193 * All soft deleting does is increment the block's softdelete count and pulls
1194 * the chunk out of the tnode.
1195 * Thus, essentially this is the same as DeleteWorker except that the chunks
1196 * are soft deleted.
1197 */
1198
1199 static int yaffs_soft_del_worker(struct yaffs_obj *in, struct yaffs_tnode *tn,
1200 u32 level, int chunk_offset)
1201 {
1202 int i;
1203 int the_chunk;
1204 int all_done = 1;
1205 struct yaffs_dev *dev = in->my_dev;
1206
1207 if (!tn)
1208 return 1;
1209
1210 if (level > 0) {
1211 for (i = YAFFS_NTNODES_INTERNAL - 1;
1212 all_done && i >= 0;
1213 i--) {
1214 if (tn->internal[i]) {
1215 all_done =
1216 yaffs_soft_del_worker(in,
1217 tn->internal[i],
1218 level - 1,
1219 (chunk_offset <<
1220 YAFFS_TNODES_INTERNAL_BITS)
1221 + i);
1222 if (all_done) {
1223 yaffs_free_tnode(dev,
1224 tn->internal[i]);
1225 tn->internal[i] = NULL;
1226 } else {
1227 /* Can this happen? */
1228 }
1229 }
1230 }
1231 return (all_done) ? 1 : 0;
1232 }
1233
1234 /* level 0 */
1235 for (i = YAFFS_NTNODES_LEVEL0 - 1; i >= 0; i--) {
1236 the_chunk = yaffs_get_group_base(dev, tn, i);
1237 if (the_chunk) {
1238 yaffs_soft_del_chunk(dev, the_chunk);
1239 yaffs_load_tnode_0(dev, tn, i, 0);
1240 }
1241 }
1242 return 1;
1243 }
1244
1245 static void yaffs_remove_obj_from_dir(struct yaffs_obj *obj)
1246 {
1247 struct yaffs_dev *dev = obj->my_dev;
1248 struct yaffs_obj *parent;
1249
1250 yaffs_verify_obj_in_dir(obj);
1251 parent = obj->parent;
1252
1253 yaffs_verify_dir(parent);
1254
1255 if (dev && dev->param.remove_obj_fn)
1256 dev->param.remove_obj_fn(obj);
1257
1258 list_del_init(&obj->siblings);
1259 obj->parent = NULL;
1260
1261 yaffs_verify_dir(parent);
1262 }
1263
1264 void yaffs_add_obj_to_dir(struct yaffs_obj *directory, struct yaffs_obj *obj)
1265 {
1266 if (!directory) {
1267 yaffs_trace(YAFFS_TRACE_ALWAYS,
1268 "tragedy: Trying to add an object to a null pointer directory"
1269 );
1270 BUG();
1271 return;
1272 }
1273 if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1274 yaffs_trace(YAFFS_TRACE_ALWAYS,
1275 "tragedy: Trying to add an object to a non-directory"
1276 );
1277 BUG();
1278 }
1279
1280 if (obj->siblings.prev == NULL) {
1281 /* Not initialised */
1282 BUG();
1283 }
1284
1285 yaffs_verify_dir(directory);
1286
1287 yaffs_remove_obj_from_dir(obj);
1288
1289 /* Now add it */
1290 list_add(&obj->siblings, &directory->variant.dir_variant.children);
1291 obj->parent = directory;
1292
1293 if (directory == obj->my_dev->unlinked_dir
1294 || directory == obj->my_dev->del_dir) {
1295 obj->unlinked = 1;
1296 obj->my_dev->n_unlinked_files++;
1297 obj->rename_allowed = 0;
1298 }
1299
1300 yaffs_verify_dir(directory);
1301 yaffs_verify_obj_in_dir(obj);
1302 }
1303
1304 static int yaffs_change_obj_name(struct yaffs_obj *obj,
1305 struct yaffs_obj *new_dir,
1306 const YCHAR *new_name, int force, int shadows)
1307 {
1308 int unlink_op;
1309 int del_op;
1310 struct yaffs_obj *existing_target;
1311
1312 if (new_dir == NULL)
1313 new_dir = obj->parent; /* use the old directory */
1314
1315 if (new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
1316 yaffs_trace(YAFFS_TRACE_ALWAYS,
1317 "tragedy: yaffs_change_obj_name: new_dir is not a directory"
1318 );
1319 BUG();
1320 }
1321
1322 unlink_op = (new_dir == obj->my_dev->unlinked_dir);
1323 del_op = (new_dir == obj->my_dev->del_dir);
1324
1325 existing_target = yaffs_find_by_name(new_dir, new_name);
1326
1327 /* If the object is a file going into the unlinked directory,
1328 * then it is OK to just stuff it in since duplicate names are OK.
1329 * else only proceed if the new name does not exist and we're putting
1330 * it into a directory.
1331 */
1332 if (!(unlink_op || del_op || force ||
1333 shadows > 0 || !existing_target) ||
1334 new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
1335 return YAFFS_FAIL;
1336
1337 yaffs_set_obj_name(obj, new_name);
1338 obj->dirty = 1;
1339 yaffs_add_obj_to_dir(new_dir, obj);
1340
1341 if (unlink_op)
1342 obj->unlinked = 1;
1343
1344 /* If it is a deletion then we mark it as a shrink for gc */
1345 if (yaffs_update_oh(obj, new_name, 0, del_op, shadows, NULL) >= 0)
1346 return YAFFS_OK;
1347
1348 return YAFFS_FAIL;
1349 }
1350
1351 /*------------------------ Short Operations Cache ------------------------------
1352 * In many situations where there is no high level buffering a lot of
1353 * reads might be short sequential reads, and a lot of writes may be short
1354 * sequential writes. eg. scanning/writing a jpeg file.
1355 * In these cases, a short read/write cache can provide a huge perfomance
1356 * benefit with dumb-as-a-rock code.
1357 * In Linux, the page cache provides read buffering and the short op cache
1358 * provides write buffering.
1359 *
1360 * There are a small number (~10) of cache chunks per device so that we don't
1361 * need a very intelligent search.
1362 */
1363
1364 static int yaffs_obj_cache_dirty(struct yaffs_obj *obj)
1365 {
1366 struct yaffs_dev *dev = obj->my_dev;
1367 int i;
1368 struct yaffs_cache *cache;
1369 int n_caches = obj->my_dev->param.n_caches;
1370
1371 for (i = 0; i < n_caches; i++) {
1372 cache = &dev->cache[i];
1373 if (cache->object == obj && cache->dirty)
1374 return 1;
1375 }
1376
1377 return 0;
1378 }
1379
1380 static void yaffs_flush_file_cache(struct yaffs_obj *obj)
1381 {
1382 struct yaffs_dev *dev = obj->my_dev;
1383 int lowest = -99; /* Stop compiler whining. */
1384 int i;
1385 struct yaffs_cache *cache;
1386 int chunk_written = 0;
1387 int n_caches = obj->my_dev->param.n_caches;
1388
1389 if (n_caches < 1)
1390 return;
1391 do {
1392 cache = NULL;
1393
1394 /* Find the lowest dirty chunk for this object */
1395 for (i = 0; i < n_caches; i++) {
1396 if (dev->cache[i].object == obj &&
1397 dev->cache[i].dirty) {
1398 if (!cache ||
1399 dev->cache[i].chunk_id < lowest) {
1400 cache = &dev->cache[i];
1401 lowest = cache->chunk_id;
1402 }
1403 }
1404 }
1405
1406 if (cache && !cache->locked) {
1407 /* Write it out and free it up */
1408 chunk_written =
1409 yaffs_wr_data_obj(cache->object,
1410 cache->chunk_id,
1411 cache->data,
1412 cache->n_bytes, 1);
1413 cache->dirty = 0;
1414 cache->object = NULL;
1415 }
1416 } while (cache && chunk_written > 0);
1417
1418 if (cache)
1419 /* Hoosterman, disk full while writing cache out. */
1420 yaffs_trace(YAFFS_TRACE_ERROR,
1421 "yaffs tragedy: no space during cache write");
1422 }
1423
1424 /*yaffs_flush_whole_cache(dev)
1425 *
1426 *
1427 */
1428
1429 void yaffs_flush_whole_cache(struct yaffs_dev *dev)
1430 {
1431 struct yaffs_obj *obj;
1432 int n_caches = dev->param.n_caches;
1433 int i;
1434
1435 /* Find a dirty object in the cache and flush it...
1436 * until there are no further dirty objects.
1437 */
1438 do {
1439 obj = NULL;
1440 for (i = 0; i < n_caches && !obj; i++) {
1441 if (dev->cache[i].object && dev->cache[i].dirty)
1442 obj = dev->cache[i].object;
1443 }
1444 if (obj)
1445 yaffs_flush_file_cache(obj);
1446 } while (obj);
1447
1448 }
1449
1450 /* Grab us a cache chunk for use.
1451 * First look for an empty one.
1452 * Then look for the least recently used non-dirty one.
1453 * Then look for the least recently used dirty one...., flush and look again.
1454 */
1455 static struct yaffs_cache *yaffs_grab_chunk_worker(struct yaffs_dev *dev)
1456 {
1457 int i;
1458
1459 if (dev->param.n_caches > 0) {
1460 for (i = 0; i < dev->param.n_caches; i++) {
1461 if (!dev->cache[i].object)
1462 return &dev->cache[i];
1463 }
1464 }
1465 return NULL;
1466 }
1467
1468 static struct yaffs_cache *yaffs_grab_chunk_cache(struct yaffs_dev *dev)
1469 {
1470 struct yaffs_cache *cache;
1471 struct yaffs_obj *the_obj;
1472 int usage;
1473 int i;
1474 int pushout;
1475
1476 if (dev->param.n_caches < 1)
1477 return NULL;
1478
1479 /* Try find a non-dirty one... */
1480
1481 cache = yaffs_grab_chunk_worker(dev);
1482
1483 if (!cache) {
1484 /* They were all dirty, find the LRU object and flush
1485 * its cache, then find again.
1486 * NB what's here is not very accurate,
1487 * we actually flush the object with the LRU chunk.
1488 */
1489
1490 /* With locking we can't assume we can use entry zero,
1491 * Set the_obj to a valid pointer for Coverity. */
1492 the_obj = dev->cache[0].object;
1493 usage = -1;
1494 cache = NULL;
1495 pushout = -1;
1496
1497 for (i = 0; i < dev->param.n_caches; i++) {
1498 if (dev->cache[i].object &&
1499 !dev->cache[i].locked &&
1500 (dev->cache[i].last_use < usage ||
1501 !cache)) {
1502 usage = dev->cache[i].last_use;
1503 the_obj = dev->cache[i].object;
1504 cache = &dev->cache[i];
1505 pushout = i;
1506 }
1507 }
1508
1509 if (!cache || cache->dirty) {
1510 /* Flush and try again */
1511 yaffs_flush_file_cache(the_obj);
1512 cache = yaffs_grab_chunk_worker(dev);
1513 }
1514 }
1515 return cache;
1516 }
1517
1518 /* Find a cached chunk */
1519 static struct yaffs_cache *yaffs_find_chunk_cache(const struct yaffs_obj *obj,
1520 int chunk_id)
1521 {
1522 struct yaffs_dev *dev = obj->my_dev;
1523 int i;
1524
1525 if (dev->param.n_caches < 1)
1526 return NULL;
1527
1528 for (i = 0; i < dev->param.n_caches; i++) {
1529 if (dev->cache[i].object == obj &&
1530 dev->cache[i].chunk_id == chunk_id) {
1531 dev->cache_hits++;
1532
1533 return &dev->cache[i];
1534 }
1535 }
1536 return NULL;
1537 }
1538
1539 /* Mark the chunk for the least recently used algorithym */
1540 static void yaffs_use_cache(struct yaffs_dev *dev, struct yaffs_cache *cache,
1541 int is_write)
1542 {
1543 int i;
1544
1545 if (dev->param.n_caches < 1)
1546 return;
1547
1548 if (dev->cache_last_use < 0 ||
1549 dev->cache_last_use > 100000000) {
1550 /* Reset the cache usages */
1551 for (i = 1; i < dev->param.n_caches; i++)
1552 dev->cache[i].last_use = 0;
1553
1554 dev->cache_last_use = 0;
1555 }
1556 dev->cache_last_use++;
1557 cache->last_use = dev->cache_last_use;
1558
1559 if (is_write)
1560 cache->dirty = 1;
1561 }
1562
1563 /* Invalidate a single cache page.
1564 * Do this when a whole page gets written,
1565 * ie the short cache for this page is no longer valid.
1566 */
1567 static void yaffs_invalidate_chunk_cache(struct yaffs_obj *object, int chunk_id)
1568 {
1569 struct yaffs_cache *cache;
1570
1571 if (object->my_dev->param.n_caches > 0) {
1572 cache = yaffs_find_chunk_cache(object, chunk_id);
1573
1574 if (cache)
1575 cache->object = NULL;
1576 }
1577 }
1578
1579 /* Invalidate all the cache pages associated with this object
1580 * Do this whenever ther file is deleted or resized.
1581 */
1582 static void yaffs_invalidate_whole_cache(struct yaffs_obj *in)
1583 {
1584 int i;
1585 struct yaffs_dev *dev = in->my_dev;
1586
1587 if (dev->param.n_caches > 0) {
1588 /* Invalidate it. */
1589 for (i = 0; i < dev->param.n_caches; i++) {
1590 if (dev->cache[i].object == in)
1591 dev->cache[i].object = NULL;
1592 }
1593 }
1594 }
1595
1596 static void yaffs_unhash_obj(struct yaffs_obj *obj)
1597 {
1598 int bucket;
1599 struct yaffs_dev *dev = obj->my_dev;
1600
1601 /* If it is still linked into the bucket list, free from the list */
1602 if (!list_empty(&obj->hash_link)) {
1603 list_del_init(&obj->hash_link);
1604 bucket = yaffs_hash_fn(obj->obj_id);
1605 dev->obj_bucket[bucket].count--;
1606 }
1607 }
1608
1609 /* FreeObject frees up a Object and puts it back on the free list */
1610 static void yaffs_free_obj(struct yaffs_obj *obj)
1611 {
1612 struct yaffs_dev *dev;
1613
1614 if (!obj) {
1615 BUG();
1616 return;
1617 }
1618 dev = obj->my_dev;
1619 yaffs_trace(YAFFS_TRACE_OS, "FreeObject %p inode %p",
1620 obj, obj->my_inode);
1621 if (obj->parent)
1622 BUG();
1623 if (!list_empty(&obj->siblings))
1624 BUG();
1625
1626 if (obj->my_inode) {
1627 /* We're still hooked up to a cached inode.
1628 * Don't delete now, but mark for later deletion
1629 */
1630 obj->defered_free = 1;
1631 return;
1632 }
1633
1634 yaffs_unhash_obj(obj);
1635
1636 yaffs_free_raw_obj(dev, obj);
1637 dev->n_obj--;
1638 dev->checkpoint_blocks_required = 0; /* force recalculation */
1639 }
1640
1641 void yaffs_handle_defered_free(struct yaffs_obj *obj)
1642 {
1643 if (obj->defered_free)
1644 yaffs_free_obj(obj);
1645 }
1646
1647 static int yaffs_generic_obj_del(struct yaffs_obj *in)
1648 {
1649 /* Iinvalidate the file's data in the cache, without flushing. */
1650 yaffs_invalidate_whole_cache(in);
1651
1652 if (in->my_dev->param.is_yaffs2 && in->parent != in->my_dev->del_dir) {
1653 /* Move to unlinked directory so we have a deletion record */
1654 yaffs_change_obj_name(in, in->my_dev->del_dir, _Y("deleted"), 0,
1655 0);
1656 }
1657
1658 yaffs_remove_obj_from_dir(in);
1659 yaffs_chunk_del(in->my_dev, in->hdr_chunk, 1, __LINE__);
1660 in->hdr_chunk = 0;
1661
1662 yaffs_free_obj(in);
1663 return YAFFS_OK;
1664
1665 }
1666
1667 static void yaffs_soft_del_file(struct yaffs_obj *obj)
1668 {
1669 if (!obj->deleted ||
1670 obj->variant_type != YAFFS_OBJECT_TYPE_FILE ||
1671 obj->soft_del)
1672 return;
1673
1674 if (obj->n_data_chunks <= 0) {
1675 /* Empty file with no duplicate object headers,
1676 * just delete it immediately */
1677 yaffs_free_tnode(obj->my_dev, obj->variant.file_variant.top);
1678 obj->variant.file_variant.top = NULL;
1679 yaffs_trace(YAFFS_TRACE_TRACING,
1680 "yaffs: Deleting empty file %d",
1681 obj->obj_id);
1682 yaffs_generic_obj_del(obj);
1683 } else {
1684 yaffs_soft_del_worker(obj,
1685 obj->variant.file_variant.top,
1686 obj->variant.
1687 file_variant.top_level, 0);
1688 obj->soft_del = 1;
1689 }
1690 }
1691
1692 /* Pruning removes any part of the file structure tree that is beyond the
1693 * bounds of the file (ie that does not point to chunks).
1694 *
1695 * A file should only get pruned when its size is reduced.
1696 *
1697 * Before pruning, the chunks must be pulled from the tree and the
1698 * level 0 tnode entries must be zeroed out.
1699 * Could also use this for file deletion, but that's probably better handled
1700 * by a special case.
1701 *
1702 * This function is recursive. For levels > 0 the function is called again on
1703 * any sub-tree. For level == 0 we just check if the sub-tree has data.
1704 * If there is no data in a subtree then it is pruned.
1705 */
1706
1707 static struct yaffs_tnode *yaffs_prune_worker(struct yaffs_dev *dev,
1708 struct yaffs_tnode *tn, u32 level,
1709 int del0)
1710 {
1711 int i;
1712 int has_data;
1713
1714 if (!tn)
1715 return tn;
1716
1717 has_data = 0;
1718
1719 if (level > 0) {
1720 for (i = 0; i < YAFFS_NTNODES_INTERNAL; i++) {
1721 if (tn->internal[i]) {
1722 tn->internal[i] =
1723 yaffs_prune_worker(dev,
1724 tn->internal[i],
1725 level - 1,
1726 (i == 0) ? del0 : 1);
1727 }
1728
1729 if (tn->internal[i])
1730 has_data++;
1731 }
1732 } else {
1733 int tnode_size_u32 = dev->tnode_size / sizeof(u32);
1734 u32 *map = (u32 *) tn;
1735
1736 for (i = 0; !has_data && i < tnode_size_u32; i++) {
1737 if (map[i])
1738 has_data++;
1739 }
1740 }
1741
1742 if (has_data == 0 && del0) {
1743 /* Free and return NULL */
1744 yaffs_free_tnode(dev, tn);
1745 tn = NULL;
1746 }
1747 return tn;
1748 }
1749
1750 static int yaffs_prune_tree(struct yaffs_dev *dev,
1751 struct yaffs_file_var *file_struct)
1752 {
1753 int i;
1754 int has_data;
1755 int done = 0;
1756 struct yaffs_tnode *tn;
1757
1758 if (file_struct->top_level < 1)
1759 return YAFFS_OK;
1760
1761 file_struct->top =
1762 yaffs_prune_worker(dev, file_struct->top, file_struct->top_level, 0);
1763
1764 /* Now we have a tree with all the non-zero branches NULL but
1765 * the height is the same as it was.
1766 * Let's see if we can trim internal tnodes to shorten the tree.
1767 * We can do this if only the 0th element in the tnode is in use
1768 * (ie all the non-zero are NULL)
1769 */
1770
1771 while (file_struct->top_level && !done) {
1772 tn = file_struct->top;
1773
1774 has_data = 0;
1775 for (i = 1; i < YAFFS_NTNODES_INTERNAL; i++) {
1776 if (tn->internal[i])
1777 has_data++;
1778 }
1779
1780 if (!has_data) {
1781 file_struct->top = tn->internal[0];
1782 file_struct->top_level--;
1783 yaffs_free_tnode(dev, tn);
1784 } else {
1785 done = 1;
1786 }
1787 }
1788
1789 return YAFFS_OK;
1790 }
1791
1792 /*-------------------- End of File Structure functions.-------------------*/
1793
1794 /* alloc_empty_obj gets us a clean Object.*/
1795 static struct yaffs_obj *yaffs_alloc_empty_obj(struct yaffs_dev *dev)
1796 {
1797 struct yaffs_obj *obj = yaffs_alloc_raw_obj(dev);
1798
1799 if (!obj)
1800 return obj;
1801
1802 dev->n_obj++;
1803
1804 /* Now sweeten it up... */
1805
1806 memset(obj, 0, sizeof(struct yaffs_obj));
1807 obj->being_created = 1;
1808
1809 obj->my_dev = dev;
1810 obj->hdr_chunk = 0;
1811 obj->variant_type = YAFFS_OBJECT_TYPE_UNKNOWN;
1812 INIT_LIST_HEAD(&(obj->hard_links));
1813 INIT_LIST_HEAD(&(obj->hash_link));
1814 INIT_LIST_HEAD(&obj->siblings);
1815
1816 /* Now make the directory sane */
1817 if (dev->root_dir) {
1818 obj->parent = dev->root_dir;
1819 list_add(&(obj->siblings),
1820 &dev->root_dir->variant.dir_variant.children);
1821 }
1822
1823 /* Add it to the lost and found directory.
1824 * NB Can't put root or lost-n-found in lost-n-found so
1825 * check if lost-n-found exists first
1826 */
1827 if (dev->lost_n_found)
1828 yaffs_add_obj_to_dir(dev->lost_n_found, obj);
1829
1830 obj->being_created = 0;
1831
1832 dev->checkpoint_blocks_required = 0; /* force recalculation */
1833
1834 return obj;
1835 }
1836
1837 static int yaffs_find_nice_bucket(struct yaffs_dev *dev)
1838 {
1839 int i;
1840 int l = 999;
1841 int lowest = 999999;
1842
1843 /* Search for the shortest list or one that
1844 * isn't too long.
1845 */
1846
1847 for (i = 0; i < 10 && lowest > 4; i++) {
1848 dev->bucket_finder++;
1849 dev->bucket_finder %= YAFFS_NOBJECT_BUCKETS;
1850 if (dev->obj_bucket[dev->bucket_finder].count < lowest) {
1851 lowest = dev->obj_bucket[dev->bucket_finder].count;
1852 l = dev->bucket_finder;
1853 }
1854 }
1855
1856 return l;
1857 }
1858
1859 static int yaffs_new_obj_id(struct yaffs_dev *dev)
1860 {
1861 int bucket = yaffs_find_nice_bucket(dev);
1862 int found = 0;
1863 struct list_head *i;
1864 u32 n = (u32) bucket;
1865
1866 /* Now find an object value that has not already been taken
1867 * by scanning the list.
1868 */
1869
1870 while (!found) {
1871 found = 1;
1872 n += YAFFS_NOBJECT_BUCKETS;
1873 if (1 || dev->obj_bucket[bucket].count > 0) {
1874 list_for_each(i, &dev->obj_bucket[bucket].list) {
1875 /* If there is already one in the list */
1876 if (i && list_entry(i, struct yaffs_obj,
1877 hash_link)->obj_id == n) {
1878 found = 0;
1879 }
1880 }
1881 }
1882 }
1883 return n;
1884 }
1885
1886 static void yaffs_hash_obj(struct yaffs_obj *in)
1887 {
1888 int bucket = yaffs_hash_fn(in->obj_id);
1889 struct yaffs_dev *dev = in->my_dev;
1890
1891 list_add(&in->hash_link, &dev->obj_bucket[bucket].list);
1892 dev->obj_bucket[bucket].count++;
1893 }
1894
1895 struct yaffs_obj *yaffs_find_by_number(struct yaffs_dev *dev, u32 number)
1896 {
1897 int bucket = yaffs_hash_fn(number);
1898 struct list_head *i;
1899 struct yaffs_obj *in;
1900
1901 list_for_each(i, &dev->obj_bucket[bucket].list) {
1902 /* Look if it is in the list */
1903 in = list_entry(i, struct yaffs_obj, hash_link);
1904 if (in->obj_id == number) {
1905 /* Don't show if it is defered free */
1906 if (in->defered_free)
1907 return NULL;
1908 return in;
1909 }
1910 }
1911
1912 return NULL;
1913 }
1914
1915 static struct yaffs_obj *yaffs_new_obj(struct yaffs_dev *dev, int number,
1916 enum yaffs_obj_type type)
1917 {
1918 struct yaffs_obj *the_obj = NULL;
1919 struct yaffs_tnode *tn = NULL;
1920
1921 if (number < 0)
1922 number = yaffs_new_obj_id(dev);
1923
1924 if (type == YAFFS_OBJECT_TYPE_FILE) {
1925 tn = yaffs_get_tnode(dev);
1926 if (!tn)
1927 return NULL;
1928 }
1929
1930 the_obj = yaffs_alloc_empty_obj(dev);
1931 if (!the_obj) {
1932 if (tn)
1933 yaffs_free_tnode(dev, tn);
1934 return NULL;
1935 }
1936
1937 the_obj->fake = 0;
1938 the_obj->rename_allowed = 1;
1939 the_obj->unlink_allowed = 1;
1940 the_obj->obj_id = number;
1941 yaffs_hash_obj(the_obj);
1942 the_obj->variant_type = type;
1943 yaffs_load_current_time(the_obj, 1, 1);
1944
1945 switch (type) {
1946 case YAFFS_OBJECT_TYPE_FILE:
1947 the_obj->variant.file_variant.file_size = 0;
1948 the_obj->variant.file_variant.scanned_size = 0;
1949 the_obj->variant.file_variant.shrink_size =
1950 yaffs_max_file_size(dev);
1951 the_obj->variant.file_variant.top_level = 0;
1952 the_obj->variant.file_variant.top = tn;
1953 break;
1954 case YAFFS_OBJECT_TYPE_DIRECTORY:
1955 INIT_LIST_HEAD(&the_obj->variant.dir_variant.children);
1956 INIT_LIST_HEAD(&the_obj->variant.dir_variant.dirty);
1957 break;
1958 case YAFFS_OBJECT_TYPE_SYMLINK:
1959 case YAFFS_OBJECT_TYPE_HARDLINK:
1960 case YAFFS_OBJECT_TYPE_SPECIAL:
1961 /* No action required */
1962 break;
1963 case YAFFS_OBJECT_TYPE_UNKNOWN:
1964 /* todo this should not happen */
1965 break;
1966 }
1967 return the_obj;
1968 }
1969
1970 static struct yaffs_obj *yaffs_create_fake_dir(struct yaffs_dev *dev,
1971 int number, u32 mode)
1972 {
1973
1974 struct yaffs_obj *obj =
1975 yaffs_new_obj(dev, number, YAFFS_OBJECT_TYPE_DIRECTORY);
1976
1977 if (!obj)
1978 return NULL;
1979
1980 obj->fake = 1; /* it is fake so it might not use NAND */
1981 obj->rename_allowed = 0;
1982 obj->unlink_allowed = 0;
1983 obj->deleted = 0;
1984 obj->unlinked = 0;
1985 obj->yst_mode = mode;
1986 obj->my_dev = dev;
1987 obj->hdr_chunk = 0; /* Not a valid chunk. */
1988 return obj;
1989
1990 }
1991
1992
1993 static void yaffs_init_tnodes_and_objs(struct yaffs_dev *dev)
1994 {
1995 int i;
1996
1997 dev->n_obj = 0;
1998 dev->n_tnodes = 0;
1999 yaffs_init_raw_tnodes_and_objs(dev);
2000
2001 for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
2002 INIT_LIST_HEAD(&dev->obj_bucket[i].list);
2003 dev->obj_bucket[i].count = 0;
2004 }
2005 }
2006
2007 struct yaffs_obj *yaffs_find_or_create_by_number(struct yaffs_dev *dev,
2008 int number,
2009 enum yaffs_obj_type type)
2010 {
2011 struct yaffs_obj *the_obj = NULL;
2012
2013 if (number > 0)
2014 the_obj = yaffs_find_by_number(dev, number);
2015
2016 if (!the_obj)
2017 the_obj = yaffs_new_obj(dev, number, type);
2018
2019 return the_obj;
2020
2021 }
2022
2023 YCHAR *yaffs_clone_str(const YCHAR *str)
2024 {
2025 YCHAR *new_str = NULL;
2026 int len;
2027
2028 if (!str)
2029 str = _Y("");
2030
2031 len = strnlen(str, YAFFS_MAX_ALIAS_LENGTH);
2032 new_str = kmalloc((len + 1) * sizeof(YCHAR), GFP_NOFS);
2033 if (new_str) {
2034 strncpy(new_str, str, len);
2035 new_str[len] = 0;
2036 }
2037 return new_str;
2038
2039 }
2040 /*
2041 *yaffs_update_parent() handles fixing a directories mtime and ctime when a new
2042 * link (ie. name) is created or deleted in the directory.
2043 *
2044 * ie.
2045 * create dir/a : update dir's mtime/ctime
2046 * rm dir/a: update dir's mtime/ctime
2047 * modify dir/a: don't update dir's mtimme/ctime
2048 *
2049 * This can be handled immediately or defered. Defering helps reduce the number
2050 * of updates when many files in a directory are changed within a brief period.
2051 *
2052 * If the directory updating is defered then yaffs_update_dirty_dirs must be
2053 * called periodically.
2054 */
2055
2056 static void yaffs_update_parent(struct yaffs_obj *obj)
2057 {
2058 struct yaffs_dev *dev;
2059
2060 if (!obj)
2061 return;
2062 dev = obj->my_dev;
2063 obj->dirty = 1;
2064 yaffs_load_current_time(obj, 0, 1);
2065 if (dev->param.defered_dir_update) {
2066 struct list_head *link = &obj->variant.dir_variant.dirty;
2067
2068 if (list_empty(link)) {
2069 list_add(link, &dev->dirty_dirs);
2070 yaffs_trace(YAFFS_TRACE_BACKGROUND,
2071 "Added object %d to dirty directories",
2072 obj->obj_id);
2073 }
2074
2075 } else {
2076 yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2077 }
2078 }
2079
2080 void yaffs_update_dirty_dirs(struct yaffs_dev *dev)
2081 {
2082 struct list_head *link;
2083 struct yaffs_obj *obj;
2084 struct yaffs_dir_var *d_s;
2085 union yaffs_obj_var *o_v;
2086
2087 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update dirty directories");
2088
2089 while (!list_empty(&dev->dirty_dirs)) {
2090 link = dev->dirty_dirs.next;
2091 list_del_init(link);
2092
2093 d_s = list_entry(link, struct yaffs_dir_var, dirty);
2094 o_v = list_entry(d_s, union yaffs_obj_var, dir_variant);
2095 obj = list_entry(o_v, struct yaffs_obj, variant);
2096
2097 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Update directory %d",
2098 obj->obj_id);
2099
2100 if (obj->dirty)
2101 yaffs_update_oh(obj, NULL, 0, 0, 0, NULL);
2102 }
2103 }
2104
2105 /*
2106 * Mknod (create) a new object.
2107 * equiv_obj only has meaning for a hard link;
2108 * alias_str only has meaning for a symlink.
2109 * rdev only has meaning for devices (a subset of special objects)
2110 */
2111
2112 static struct yaffs_obj *yaffs_create_obj(enum yaffs_obj_type type,
2113 struct yaffs_obj *parent,
2114 const YCHAR *name,
2115 u32 mode,
2116 u32 uid,
2117 u32 gid,
2118 struct yaffs_obj *equiv_obj,
2119 const YCHAR *alias_str, u32 rdev)
2120 {
2121 struct yaffs_obj *in;
2122 YCHAR *str = NULL;
2123 struct yaffs_dev *dev = parent->my_dev;
2124
2125 /* Check if the entry exists.
2126 * If it does then fail the call since we don't want a dup. */
2127 if (yaffs_find_by_name(parent, name))
2128 return NULL;
2129
2130 if (type == YAFFS_OBJECT_TYPE_SYMLINK) {
2131 str = yaffs_clone_str(alias_str);
2132 if (!str)
2133 return NULL;
2134 }
2135
2136 in = yaffs_new_obj(dev, -1, type);
2137
2138 if (!in) {
2139 kfree(str);
2140 return NULL;
2141 }
2142
2143 in->hdr_chunk = 0;
2144 in->valid = 1;
2145 in->variant_type = type;
2146
2147 in->yst_mode = mode;
2148
2149 yaffs_attribs_init(in, gid, uid, rdev);
2150
2151 in->n_data_chunks = 0;
2152
2153 yaffs_set_obj_name(in, name);
2154 in->dirty = 1;
2155
2156 yaffs_add_obj_to_dir(parent, in);
2157
2158 in->my_dev = parent->my_dev;
2159
2160 switch (type) {
2161 case YAFFS_OBJECT_TYPE_SYMLINK:
2162 in->variant.symlink_variant.alias = str;
2163 break;
2164 case YAFFS_OBJECT_TYPE_HARDLINK:
2165 in->variant.hardlink_variant.equiv_obj = equiv_obj;
2166 in->variant.hardlink_variant.equiv_id = equiv_obj->obj_id;
2167 list_add(&in->hard_links, &equiv_obj->hard_links);
2168 break;
2169 case YAFFS_OBJECT_TYPE_FILE:
2170 case YAFFS_OBJECT_TYPE_DIRECTORY:
2171 case YAFFS_OBJECT_TYPE_SPECIAL:
2172 case YAFFS_OBJECT_TYPE_UNKNOWN:
2173 /* do nothing */
2174 break;
2175 }
2176
2177 if (yaffs_update_oh(in, name, 0, 0, 0, NULL) < 0) {
2178 /* Could not create the object header, fail */
2179 yaffs_del_obj(in);
2180 in = NULL;
2181 }
2182
2183 if (in)
2184 yaffs_update_parent(parent);
2185
2186 return in;
2187 }
2188
2189 struct yaffs_obj *yaffs_create_file(struct yaffs_obj *parent,
2190 const YCHAR *name, u32 mode, u32 uid,
2191 u32 gid)
2192 {
2193 return yaffs_create_obj(YAFFS_OBJECT_TYPE_FILE, parent, name, mode,
2194 uid, gid, NULL, NULL, 0);
2195 }
2196
2197 struct yaffs_obj *yaffs_create_dir(struct yaffs_obj *parent, const YCHAR *name,
2198 u32 mode, u32 uid, u32 gid)
2199 {
2200 return yaffs_create_obj(YAFFS_OBJECT_TYPE_DIRECTORY, parent, name,
2201 mode, uid, gid, NULL, NULL, 0);
2202 }
2203
2204 struct yaffs_obj *yaffs_create_special(struct yaffs_obj *parent,
2205 const YCHAR *name, u32 mode, u32 uid,
2206 u32 gid, u32 rdev)
2207 {
2208 return yaffs_create_obj(YAFFS_OBJECT_TYPE_SPECIAL, parent, name, mode,
2209 uid, gid, NULL, NULL, rdev);
2210 }
2211
2212 struct yaffs_obj *yaffs_create_symlink(struct yaffs_obj *parent,
2213 const YCHAR *name, u32 mode, u32 uid,
2214 u32 gid, const YCHAR *alias)
2215 {
2216 return yaffs_create_obj(YAFFS_OBJECT_TYPE_SYMLINK, parent, name, mode,
2217 uid, gid, NULL, alias, 0);
2218 }
2219
2220 /* yaffs_link_obj returns the object id of the equivalent object.*/
2221 struct yaffs_obj *yaffs_link_obj(struct yaffs_obj *parent, const YCHAR * name,
2222 struct yaffs_obj *equiv_obj)
2223 {
2224 /* Get the real object in case we were fed a hard link obj */
2225 equiv_obj = yaffs_get_equivalent_obj(equiv_obj);
2226
2227 if (yaffs_create_obj(YAFFS_OBJECT_TYPE_HARDLINK,
2228 parent, name, 0, 0, 0,
2229 equiv_obj, NULL, 0))
2230 return equiv_obj;
2231
2232 return NULL;
2233
2234 }
2235
2236
2237
2238 /*---------------------- Block Management and Page Allocation -------------*/
2239
2240 static void yaffs_deinit_blocks(struct yaffs_dev *dev)
2241 {
2242 if (dev->block_info_alt && dev->block_info)
2243 vfree(dev->block_info);
2244 else
2245 kfree(dev->block_info);
2246
2247 dev->block_info_alt = 0;
2248
2249 dev->block_info = NULL;
2250
2251 if (dev->chunk_bits_alt && dev->chunk_bits)
2252 vfree(dev->chunk_bits);
2253 else
2254 kfree(dev->chunk_bits);
2255 dev->chunk_bits_alt = 0;
2256 dev->chunk_bits = NULL;
2257 }
2258
2259 static int yaffs_init_blocks(struct yaffs_dev *dev)
2260 {
2261 int n_blocks = dev->internal_end_block - dev->internal_start_block + 1;
2262
2263 dev->block_info = NULL;
2264 dev->chunk_bits = NULL;
2265 dev->alloc_block = -1; /* force it to get a new one */
2266
2267 /* If the first allocation strategy fails, thry the alternate one */
2268 dev->block_info =
2269 kmalloc(n_blocks * sizeof(struct yaffs_block_info), GFP_NOFS);
2270 if (!dev->block_info) {
2271 dev->block_info =
2272 vmalloc(n_blocks * sizeof(struct yaffs_block_info));
2273 dev->block_info_alt = 1;
2274 } else {
2275 dev->block_info_alt = 0;
2276 }
2277
2278 if (!dev->block_info)
2279 goto alloc_error;
2280
2281 /* Set up dynamic blockinfo stuff. Round up bytes. */
2282 dev->chunk_bit_stride = (dev->param.chunks_per_block + 7) / 8;
2283 dev->chunk_bits =
2284 kmalloc(dev->chunk_bit_stride * n_blocks, GFP_NOFS);
2285 if (!dev->chunk_bits) {
2286 dev->chunk_bits =
2287 vmalloc(dev->chunk_bit_stride * n_blocks);
2288 dev->chunk_bits_alt = 1;
2289 } else {
2290 dev->chunk_bits_alt = 0;
2291 }
2292 if (!dev->chunk_bits)
2293 goto alloc_error;
2294
2295
2296 memset(dev->block_info, 0, n_blocks * sizeof(struct yaffs_block_info));
2297 memset(dev->chunk_bits, 0, dev->chunk_bit_stride * n_blocks);
2298 return YAFFS_OK;
2299
2300 alloc_error:
2301 yaffs_deinit_blocks(dev);
2302 return YAFFS_FAIL;
2303 }
2304
2305
2306 void yaffs_block_became_dirty(struct yaffs_dev *dev, int block_no)
2307 {
2308 struct yaffs_block_info *bi = yaffs_get_block_info(dev, block_no);
2309 int erased_ok = 0;
2310 int i;
2311
2312 /* If the block is still healthy erase it and mark as clean.
2313 * If the block has had a data failure, then retire it.
2314 */
2315
2316 yaffs_trace(YAFFS_TRACE_GC | YAFFS_TRACE_ERASE,
2317 "yaffs_block_became_dirty block %d state %d %s",
2318 block_no, bi->block_state,
2319 (bi->needs_retiring) ? "needs retiring" : "");
2320
2321 yaffs2_clear_oldest_dirty_seq(dev, bi);
2322
2323 bi->block_state = YAFFS_BLOCK_STATE_DIRTY;
2324
2325 /* If this is the block being garbage collected then stop gc'ing */
2326 if (block_no == dev->gc_block)
2327 dev->gc_block = 0;
2328
2329 /* If this block is currently the best candidate for gc
2330 * then drop as a candidate */
2331 if (block_no == dev->gc_dirtiest) {
2332 dev->gc_dirtiest = 0;
2333 dev->gc_pages_in_use = 0;
2334 }
2335
2336 if (!bi->needs_retiring) {
2337 yaffs2_checkpt_invalidate(dev);
2338 erased_ok = yaffs_erase_block(dev, block_no);
2339 if (!erased_ok) {
2340 dev->n_erase_failures++;
2341 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2342 "**>> Erasure failed %d", block_no);
2343 }
2344 }
2345
2346 /* Verify erasure if needed */
2347 if (erased_ok &&
2348 ((yaffs_trace_mask & YAFFS_TRACE_ERASE) ||
2349 !yaffs_skip_verification(dev))) {
2350 for (i = 0; i < dev->param.chunks_per_block; i++) {
2351 if (!yaffs_check_chunk_erased(dev,
2352 block_no * dev->param.chunks_per_block + i)) {
2353 yaffs_trace(YAFFS_TRACE_ERROR,
2354 ">>Block %d erasure supposedly OK, but chunk %d not erased",
2355 block_no, i);
2356 }
2357 }
2358 }
2359
2360 if (!erased_ok) {
2361 /* We lost a block of free space */
2362 dev->n_free_chunks -= dev->param.chunks_per_block;
2363 yaffs_retire_block(dev, block_no);
2364 yaffs_trace(YAFFS_TRACE_ERROR | YAFFS_TRACE_BAD_BLOCKS,
2365 "**>> Block %d retired", block_no);
2366 return;
2367 }
2368
2369 /* Clean it up... */
2370 bi->block_state = YAFFS_BLOCK_STATE_EMPTY;
2371 bi->seq_number = 0;
2372 dev->n_erased_blocks++;
2373 bi->pages_in_use = 0;
2374 bi->soft_del_pages = 0;
2375 bi->has_shrink_hdr = 0;
2376 bi->skip_erased_check = 1; /* Clean, so no need to check */
2377 bi->gc_prioritise = 0;
2378 bi->has_summary = 0;
2379
2380 yaffs_clear_chunk_bits(dev, block_no);
2381
2382 yaffs_trace(YAFFS_TRACE_ERASE, "Erased block %d", block_no);
2383 }
2384
2385 static inline int yaffs_gc_process_chunk(struct yaffs_dev *dev,
2386 struct yaffs_block_info *bi,
2387 int old_chunk, u8 *buffer)
2388 {
2389 int new_chunk;
2390 int mark_flash = 1;
2391 struct yaffs_ext_tags tags;
2392 struct yaffs_obj *object;
2393 int matching_chunk;
2394 int ret_val = YAFFS_OK;
2395
2396 memset(&tags, 0, sizeof(tags));
2397 yaffs_rd_chunk_tags_nand(dev, old_chunk,
2398 buffer, &tags);
2399 object = yaffs_find_by_number(dev, tags.obj_id);
2400
2401 yaffs_trace(YAFFS_TRACE_GC_DETAIL,
2402 "Collecting chunk in block %d, %d %d %d ",
2403 dev->gc_chunk, tags.obj_id,
2404 tags.chunk_id, tags.n_bytes);
2405
2406 if (object && !yaffs_skip_verification(dev)) {
2407 if (tags.chunk_id == 0)
2408 matching_chunk =
2409 object->hdr_chunk;
2410 else if (object->soft_del)
2411 /* Defeat the test */
2412 matching_chunk = old_chunk;
2413 else
2414 matching_chunk =
2415 yaffs_find_chunk_in_file
2416 (object, tags.chunk_id,
2417 NULL);
2418
2419 if (old_chunk != matching_chunk)
2420 yaffs_trace(YAFFS_TRACE_ERROR,
2421 "gc: page in gc mismatch: %d %d %d %d",
2422 old_chunk,
2423 matching_chunk,
2424 tags.obj_id,
2425 tags.chunk_id);
2426 }
2427
2428 if (!object) {
2429 yaffs_trace(YAFFS_TRACE_ERROR,
2430 "page %d in gc has no object: %d %d %d ",
2431 old_chunk,
2432 tags.obj_id, tags.chunk_id,
2433 tags.n_bytes);
2434 }
2435
2436 if (object &&
2437 object->deleted &&
2438 object->soft_del && tags.chunk_id != 0) {
2439 /* Data chunk in a soft deleted file,
2440 * throw it away.
2441 * It's a soft deleted data chunk,
2442 * No need to copy this, just forget
2443 * about it and fix up the object.
2444 */
2445
2446 /* Free chunks already includes
2447 * softdeleted chunks, how ever this
2448 * chunk is going to soon be really
2449 * deleted which will increment free
2450 * chunks. We have to decrement free
2451 * chunks so this works out properly.
2452 */
2453 dev->n_free_chunks--;
2454 bi->soft_del_pages--;
2455
2456 object->n_data_chunks--;
2457 if (object->n_data_chunks <= 0) {
2458 /* remeber to clean up obj */
2459 dev->gc_cleanup_list[dev->n_clean_ups] = tags.obj_id;
2460 dev->n_clean_ups++;
2461 }
2462 mark_flash = 0;
2463 } else if (object) {
2464 /* It's either a data chunk in a live
2465 * file or an ObjectHeader, so we're
2466 * interested in it.
2467 * NB Need to keep the ObjectHeaders of
2468 * deleted files until the whole file
2469 * has been deleted off
2470 */
2471 tags.serial_number++;
2472 dev->n_gc_copies++;
2473
2474 if (tags.chunk_id == 0) {
2475 /* It is an object Id,
2476 * We need to nuke the
2477 * shrinkheader flags since its
2478 * work is done.
2479 * Also need to clean up
2480 * shadowing.
2481 */
2482 struct yaffs_obj_hdr *oh;
2483 oh = (struct yaffs_obj_hdr *) buffer;
2484
2485 oh->is_shrink = 0;
2486 tags.extra_is_shrink = 0;
2487 oh->shadows_obj = 0;
2488 oh->inband_shadowed_obj_id = 0;
2489 tags.extra_shadows = 0;
2490
2491 /* Update file size */
2492 if (object->variant_type == YAFFS_OBJECT_TYPE_FILE) {
2493 yaffs_oh_size_load(oh,
2494 object->variant.file_variant.file_size);
2495 tags.extra_file_size =
2496 object->variant.file_variant.file_size;
2497 }
2498
2499 yaffs_verify_oh(object, oh, &tags, 1);
2500 new_chunk =
2501 yaffs_write_new_chunk(dev, (u8 *) oh, &tags, 1);
2502 } else {
2503 new_chunk =
2504 yaffs_write_new_chunk(dev, buffer, &tags, 1);
2505 }
2506
2507 if (new_chunk < 0) {
2508 ret_val = YAFFS_FAIL;
2509 } else {
2510
2511 /* Now fix up the Tnodes etc. */
2512
2513 if (tags.chunk_id == 0) {
2514 /* It's a header */
2515 object->hdr_chunk = new_chunk;
2516 object->serial = tags.serial_number;
2517 } else {
2518 /* It's a data chunk */
2519 yaffs_put_chunk_in_file(object, tags.chunk_id,
2520 new_chunk, 0);
2521 }
2522 }
2523 }
2524 if (ret_val == YAFFS_OK)
2525 yaffs_chunk_del(dev, old_chunk, mark_flash, __LINE__);
2526 return ret_val;
2527 }
2528
2529 static int yaffs_gc_block(struct yaffs_dev *dev, int block, int whole_block)
2530 {
2531 int old_chunk;
2532 int ret_val = YAFFS_OK;
2533 int i;
2534 int is_checkpt_block;
2535 int max_copies;
2536 int chunks_before = yaffs_get_erased_chunks(dev);
2537 int chunks_after;
2538 struct yaffs_block_info *bi = yaffs_get_block_info(dev, block);
2539
2540 is_checkpt_block = (bi->block_state == YAFFS_BLOCK_STATE_CHECKPOINT);
2541
2542 yaffs_trace(YAFFS_TRACE_TRACING,
2543 "Collecting block %d, in use %d, shrink %d, whole_block %d",
2544 block, bi->pages_in_use, bi->has_shrink_hdr,
2545 whole_block);
2546
2547 /*yaffs_verify_free_chunks(dev); */
2548
2549 if (bi->block_state == YAFFS_BLOCK_STATE_FULL)
2550 bi->block_state = YAFFS_BLOCK_STATE_COLLECTING;
2551
2552 bi->has_shrink_hdr = 0; /* clear the flag so that the block can erase */
2553
2554 dev->gc_disable = 1;
2555
2556 yaffs_summary_gc(dev, block);
2557
2558 if (is_checkpt_block || !yaffs_still_some_chunks(dev, block)) {
2559 yaffs_trace(YAFFS_TRACE_TRACING,
2560 "Collecting block %d that has no chunks in use",
2561 block);
2562 yaffs_block_became_dirty(dev, block);
2563 } else {
2564
2565 u8 *buffer = yaffs_get_temp_buffer(dev);
2566
2567 yaffs_verify_blk(dev, bi, block);
2568
2569 max_copies = (whole_block) ? dev->param.chunks_per_block : 5;
2570 old_chunk = block * dev->param.chunks_per_block + dev->gc_chunk;
2571
2572 for (/* init already done */ ;
2573 ret_val == YAFFS_OK &&
2574 dev->gc_chunk < dev->param.chunks_per_block &&
2575 (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) &&
2576 max_copies > 0;
2577 dev->gc_chunk++, old_chunk++) {
2578 if (yaffs_check_chunk_bit(dev, block, dev->gc_chunk)) {
2579 /* Page is in use and might need to be copied */
2580 max_copies--;
2581 ret_val = yaffs_gc_process_chunk(dev, bi,
2582 old_chunk, buffer);
2583 }
2584 }
2585 yaffs_release_temp_buffer(dev, buffer);
2586 }
2587
2588 yaffs_verify_collected_blk(dev, bi, block);
2589
2590 if (bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2591 /*
2592 * The gc did not complete. Set block state back to FULL
2593 * because checkpointing does not restore gc.
2594 */
2595 bi->block_state = YAFFS_BLOCK_STATE_FULL;
2596 } else {
2597 /* The gc completed. */
2598 /* Do any required cleanups */
2599 for (i = 0; i < dev->n_clean_ups; i++) {
2600 /* Time to delete the file too */
2601 struct yaffs_obj *object =
2602 yaffs_find_by_number(dev, dev->gc_cleanup_list[i]);
2603 if (object) {
2604 yaffs_free_tnode(dev,
2605 object->variant.file_variant.top);
2606 object->variant.file_variant.top = NULL;
2607 yaffs_trace(YAFFS_TRACE_GC,
2608 "yaffs: About to finally delete object %d",
2609 object->obj_id);
2610 yaffs_generic_obj_del(object);
2611 object->my_dev->n_deleted_files--;
2612 }
2613
2614 }
2615 chunks_after = yaffs_get_erased_chunks(dev);
2616 if (chunks_before >= chunks_after)
2617 yaffs_trace(YAFFS_TRACE_GC,
2618 "gc did not increase free chunks before %d after %d",
2619 chunks_before, chunks_after);
2620 dev->gc_block = 0;
2621 dev->gc_chunk = 0;
2622 dev->n_clean_ups = 0;
2623 }
2624
2625 dev->gc_disable = 0;
2626
2627 return ret_val;
2628 }
2629
2630 /*
2631 * find_gc_block() selects the dirtiest block (or close enough)
2632 * for garbage collection.
2633 */
2634
2635 static unsigned yaffs_find_gc_block(struct yaffs_dev *dev,
2636 int aggressive, int background)
2637 {
2638 int i;
2639 int iterations;
2640 unsigned selected = 0;
2641 int prioritised = 0;
2642 int prioritised_exist = 0;
2643 struct yaffs_block_info *bi;
2644 int threshold;
2645
2646 /* First let's see if we need to grab a prioritised block */
2647 if (dev->has_pending_prioritised_gc && !aggressive) {
2648 dev->gc_dirtiest = 0;
2649 bi = dev->block_info;
2650 for (i = dev->internal_start_block;
2651 i <= dev->internal_end_block && !selected; i++) {
2652
2653 if (bi->gc_prioritise) {
2654 prioritised_exist = 1;
2655 if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2656 yaffs_block_ok_for_gc(dev, bi)) {
2657 selected = i;
2658 prioritised = 1;
2659 }
2660 }
2661 bi++;
2662 }
2663
2664 /*
2665 * If there is a prioritised block and none was selected then
2666 * this happened because there is at least one old dirty block
2667 * gumming up the works. Let's gc the oldest dirty block.
2668 */
2669
2670 if (prioritised_exist &&
2671 !selected && dev->oldest_dirty_block > 0)
2672 selected = dev->oldest_dirty_block;
2673
2674 if (!prioritised_exist) /* None found, so we can clear this */
2675 dev->has_pending_prioritised_gc = 0;
2676 }
2677
2678 /* If we're doing aggressive GC then we are happy to take a less-dirty
2679 * block, and search harder.
2680 * else (leasurely gc), then we only bother to do this if the
2681 * block has only a few pages in use.
2682 */
2683
2684 if (!selected) {
2685 int pages_used;
2686 int n_blocks =
2687 dev->internal_end_block - dev->internal_start_block + 1;
2688 if (aggressive) {
2689 threshold = dev->param.chunks_per_block;
2690 iterations = n_blocks;
2691 } else {
2692 int max_threshold;
2693
2694 if (background)
2695 max_threshold = dev->param.chunks_per_block / 2;
2696 else
2697 max_threshold = dev->param.chunks_per_block / 8;
2698
2699 if (max_threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2700 max_threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2701
2702 threshold = background ? (dev->gc_not_done + 2) * 2 : 0;
2703 if (threshold < YAFFS_GC_PASSIVE_THRESHOLD)
2704 threshold = YAFFS_GC_PASSIVE_THRESHOLD;
2705 if (threshold > max_threshold)
2706 threshold = max_threshold;
2707
2708 iterations = n_blocks / 16 + 1;
2709 if (iterations > 100)
2710 iterations = 100;
2711 }
2712
2713 for (i = 0;
2714 i < iterations &&
2715 (dev->gc_dirtiest < 1 ||
2716 dev->gc_pages_in_use > YAFFS_GC_GOOD_ENOUGH);
2717 i++) {
2718 dev->gc_block_finder++;
2719 if (dev->gc_block_finder < dev->internal_start_block ||
2720 dev->gc_block_finder > dev->internal_end_block)
2721 dev->gc_block_finder =
2722 dev->internal_start_block;
2723
2724 bi = yaffs_get_block_info(dev, dev->gc_block_finder);
2725
2726 pages_used = bi->pages_in_use - bi->soft_del_pages;
2727
2728 if (bi->block_state == YAFFS_BLOCK_STATE_FULL &&
2729 pages_used < dev->param.chunks_per_block &&
2730 (dev->gc_dirtiest < 1 ||
2731 pages_used < dev->gc_pages_in_use) &&
2732 yaffs_block_ok_for_gc(dev, bi)) {
2733 dev->gc_dirtiest = dev->gc_block_finder;
2734 dev->gc_pages_in_use = pages_used;
2735 }
2736 }
2737
2738 if (dev->gc_dirtiest > 0 && dev->gc_pages_in_use <= threshold)
2739 selected = dev->gc_dirtiest;
2740 }
2741
2742 /*
2743 * If nothing has been selected for a while, try the oldest dirty
2744 * because that's gumming up the works.
2745 */
2746
2747 if (!selected && dev->param.is_yaffs2 &&
2748 dev->gc_not_done >= (background ? 10 : 20)) {
2749 yaffs2_find_oldest_dirty_seq(dev);
2750 if (dev->oldest_dirty_block > 0) {
2751 selected = dev->oldest_dirty_block;
2752 dev->gc_dirtiest = selected;
2753 dev->oldest_dirty_gc_count++;
2754 bi = yaffs_get_block_info(dev, selected);
2755 dev->gc_pages_in_use =
2756 bi->pages_in_use - bi->soft_del_pages;
2757 } else {
2758 dev->gc_not_done = 0;
2759 }
2760 }
2761
2762 if (selected) {
2763 yaffs_trace(YAFFS_TRACE_GC,
2764 "GC Selected block %d with %d free, prioritised:%d",
2765 selected,
2766 dev->param.chunks_per_block - dev->gc_pages_in_use,
2767 prioritised);
2768
2769 dev->n_gc_blocks++;
2770 if (background)
2771 dev->bg_gcs++;
2772
2773 dev->gc_dirtiest = 0;
2774 dev->gc_pages_in_use = 0;
2775 dev->gc_not_done = 0;
2776 if (dev->refresh_skip > 0)
2777 dev->refresh_skip--;
2778 } else {
2779 dev->gc_not_done++;
2780 yaffs_trace(YAFFS_TRACE_GC,
2781 "GC none: finder %d skip %d threshold %d dirtiest %d using %d oldest %d%s",
2782 dev->gc_block_finder, dev->gc_not_done, threshold,
2783 dev->gc_dirtiest, dev->gc_pages_in_use,
2784 dev->oldest_dirty_block, background ? " bg" : "");
2785 }
2786
2787 return selected;
2788 }
2789
2790 /* New garbage collector
2791 * If we're very low on erased blocks then we do aggressive garbage collection
2792 * otherwise we do "leasurely" garbage collection.
2793 * Aggressive gc looks further (whole array) and will accept less dirty blocks.
2794 * Passive gc only inspects smaller areas and only accepts more dirty blocks.
2795 *
2796 * The idea is to help clear out space in a more spread-out manner.
2797 * Dunno if it really does anything useful.
2798 */
2799 static int yaffs_check_gc(struct yaffs_dev *dev, int background)
2800 {
2801 int aggressive = 0;
2802 int gc_ok = YAFFS_OK;
2803 int max_tries = 0;
2804 int min_erased;
2805 int erased_chunks;
2806 int checkpt_block_adjust;
2807
2808 if (dev->param.gc_control_fn &&
2809 (dev->param.gc_control_fn(dev) & 1) == 0)
2810 return YAFFS_OK;
2811
2812 if (dev->gc_disable)
2813 /* Bail out so we don't get recursive gc */
2814 return YAFFS_OK;
2815
2816 /* This loop should pass the first time.
2817 * Only loops here if the collection does not increase space.
2818 */
2819
2820 do {
2821 max_tries++;
2822
2823 checkpt_block_adjust = yaffs_calc_checkpt_blocks_required(dev);
2824
2825 min_erased =
2826 dev->param.n_reserved_blocks + checkpt_block_adjust + 1;
2827 erased_chunks =
2828 dev->n_erased_blocks * dev->param.chunks_per_block;
2829
2830 /* If we need a block soon then do aggressive gc. */
2831 if (dev->n_erased_blocks < min_erased)
2832 aggressive = 1;
2833 else {
2834 if (!background
2835 && erased_chunks > (dev->n_free_chunks / 4))
2836 break;
2837
2838 if (dev->gc_skip > 20)
2839 dev->gc_skip = 20;
2840 if (erased_chunks < dev->n_free_chunks / 2 ||
2841 dev->gc_skip < 1 || background)
2842 aggressive = 0;
2843 else {
2844 dev->gc_skip--;
2845 break;
2846 }
2847 }
2848
2849 dev->gc_skip = 5;
2850
2851 /* If we don't already have a block being gc'd then see if we
2852 * should start another */
2853
2854 if (dev->gc_block < 1 && !aggressive) {
2855 dev->gc_block = yaffs2_find_refresh_block(dev);
2856 dev->gc_chunk = 0;
2857 dev->n_clean_ups = 0;
2858 }
2859 if (dev->gc_block < 1) {
2860 dev->gc_block =
2861 yaffs_find_gc_block(dev, aggressive, background);
2862 dev->gc_chunk = 0;
2863 dev->n_clean_ups = 0;
2864 }
2865
2866 if (dev->gc_block > 0) {
2867 dev->all_gcs++;
2868 if (!aggressive)
2869 dev->passive_gc_count++;
2870
2871 yaffs_trace(YAFFS_TRACE_GC,
2872 "yaffs: GC n_erased_blocks %d aggressive %d",
2873 dev->n_erased_blocks, aggressive);
2874
2875 gc_ok = yaffs_gc_block(dev, dev->gc_block, aggressive);
2876 }
2877
2878 if (dev->n_erased_blocks < (dev->param.n_reserved_blocks) &&
2879 dev->gc_block > 0) {
2880 yaffs_trace(YAFFS_TRACE_GC,
2881 "yaffs: GC !!!no reclaim!!! n_erased_blocks %d after try %d block %d",
2882 dev->n_erased_blocks, max_tries,
2883 dev->gc_block);
2884 }
2885 } while ((dev->n_erased_blocks < dev->param.n_reserved_blocks) &&
2886 (dev->gc_block > 0) && (max_tries < 2));
2887
2888 return aggressive ? gc_ok : YAFFS_OK;
2889 }
2890
2891 /*
2892 * yaffs_bg_gc()
2893 * Garbage collects. Intended to be called from a background thread.
2894 * Returns non-zero if at least half the free chunks are erased.
2895 */
2896 int yaffs_bg_gc(struct yaffs_dev *dev, unsigned urgency)
2897 {
2898 int erased_chunks = dev->n_erased_blocks * dev->param.chunks_per_block;
2899
2900 yaffs_trace(YAFFS_TRACE_BACKGROUND, "Background gc %u", urgency);
2901
2902 yaffs_check_gc(dev, 1);
2903 return erased_chunks > dev->n_free_chunks / 2;
2904 }
2905
2906 /*-------------------- Data file manipulation -----------------*/
2907
2908 static int yaffs_rd_data_obj(struct yaffs_obj *in, int inode_chunk, u8 * buffer)
2909 {
2910 int nand_chunk = yaffs_find_chunk_in_file(in, inode_chunk, NULL);
2911
2912 if (nand_chunk >= 0)
2913 return yaffs_rd_chunk_tags_nand(in->my_dev, nand_chunk,
2914 buffer, NULL);
2915 else {
2916 yaffs_trace(YAFFS_TRACE_NANDACCESS,
2917 "Chunk %d not found zero instead",
2918 nand_chunk);
2919 /* get sane (zero) data if you read a hole */
2920 memset(buffer, 0, in->my_dev->data_bytes_per_chunk);
2921 return 0;
2922 }
2923
2924 }
2925
2926 void yaffs_chunk_del(struct yaffs_dev *dev, int chunk_id, int mark_flash,
2927 int lyn)
2928 {
2929 int block;
2930 int page;
2931 struct yaffs_ext_tags tags;
2932 struct yaffs_block_info *bi;
2933
2934 if (chunk_id <= 0)
2935 return;
2936
2937 dev->n_deletions++;
2938 block = chunk_id / dev->param.chunks_per_block;
2939 page = chunk_id % dev->param.chunks_per_block;
2940
2941 if (!yaffs_check_chunk_bit(dev, block, page))
2942 yaffs_trace(YAFFS_TRACE_VERIFY,
2943 "Deleting invalid chunk %d", chunk_id);
2944
2945 bi = yaffs_get_block_info(dev, block);
2946
2947 yaffs2_update_oldest_dirty_seq(dev, block, bi);
2948
2949 yaffs_trace(YAFFS_TRACE_DELETION,
2950 "line %d delete of chunk %d",
2951 lyn, chunk_id);
2952
2953 if (!dev->param.is_yaffs2 && mark_flash &&
2954 bi->block_state != YAFFS_BLOCK_STATE_COLLECTING) {
2955
2956 memset(&tags, 0, sizeof(tags));
2957 tags.is_deleted = 1;
2958 yaffs_wr_chunk_tags_nand(dev, chunk_id, NULL, &tags);
2959 yaffs_handle_chunk_update(dev, chunk_id, &tags);
2960 } else {
2961 dev->n_unmarked_deletions++;
2962 }
2963
2964 /* Pull out of the management area.
2965 * If the whole block became dirty, this will kick off an erasure.
2966 */
2967 if (bi->block_state == YAFFS_BLOCK_STATE_ALLOCATING ||
2968 bi->block_state == YAFFS_BLOCK_STATE_FULL ||
2969 bi->block_state == YAFFS_BLOCK_STATE_NEEDS_SCAN ||
2970 bi->block_state == YAFFS_BLOCK_STATE_COLLECTING) {
2971 dev->n_free_chunks++;
2972 yaffs_clear_chunk_bit(dev, block, page);
2973 bi->pages_in_use--;
2974
2975 if (bi->pages_in_use == 0 &&
2976 !bi->has_shrink_hdr &&
2977 bi->block_state != YAFFS_BLOCK_STATE_ALLOCATING &&
2978 bi->block_state != YAFFS_BLOCK_STATE_NEEDS_SCAN) {
2979 yaffs_block_became_dirty(dev, block);
2980 }
2981 }
2982 }
2983
2984 static int yaffs_wr_data_obj(struct yaffs_obj *in, int inode_chunk,
2985 const u8 *buffer, int n_bytes, int use_reserve)
2986 {
2987 /* Find old chunk Need to do this to get serial number
2988 * Write new one and patch into tree.
2989 * Invalidate old tags.
2990 */
2991
2992 int prev_chunk_id;
2993 struct yaffs_ext_tags prev_tags;
2994 int new_chunk_id;
2995 struct yaffs_ext_tags new_tags;
2996 struct yaffs_dev *dev = in->my_dev;
2997
2998 yaffs_check_gc(dev, 0);
2999
3000 /* Get the previous chunk at this location in the file if it exists.
3001 * If it does not exist then put a zero into the tree. This creates
3002 * the tnode now, rather than later when it is harder to clean up.
3003 */
3004 prev_chunk_id = yaffs_find_chunk_in_file(in, inode_chunk, &prev_tags);
3005 if (prev_chunk_id < 1 &&
3006 !yaffs_put_chunk_in_file(in, inode_chunk, 0, 0))
3007 return 0;
3008
3009 /* Set up new tags */
3010 memset(&new_tags, 0, sizeof(new_tags));
3011
3012 new_tags.chunk_id = inode_chunk;
3013 new_tags.obj_id = in->obj_id;
3014 new_tags.serial_number =
3015 (prev_chunk_id > 0) ? prev_tags.serial_number + 1 : 1;
3016 new_tags.n_bytes = n_bytes;
3017
3018 if (n_bytes < 1 || n_bytes > dev->param.total_bytes_per_chunk) {
3019 yaffs_trace(YAFFS_TRACE_ERROR,
3020 "Writing %d bytes to chunk!!!!!!!!!",
3021 n_bytes);
3022 BUG();
3023 }
3024
3025 new_chunk_id =
3026 yaffs_write_new_chunk(dev, buffer, &new_tags, use_reserve);
3027
3028 if (new_chunk_id > 0) {
3029 yaffs_put_chunk_in_file(in, inode_chunk, new_chunk_id, 0);
3030
3031 if (prev_chunk_id > 0)
3032 yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3033
3034 yaffs_verify_file_sane(in);
3035 }
3036 return new_chunk_id;
3037
3038 }
3039
3040
3041
3042 static int yaffs_do_xattrib_mod(struct yaffs_obj *obj, int set,
3043 const YCHAR *name, const void *value, int size,
3044 int flags)
3045 {
3046 struct yaffs_xattr_mod xmod;
3047 int result;
3048
3049 xmod.set = set;
3050 xmod.name = name;
3051 xmod.data = value;
3052 xmod.size = size;
3053 xmod.flags = flags;
3054 xmod.result = -ENOSPC;
3055
3056 result = yaffs_update_oh(obj, NULL, 0, 0, 0, &xmod);
3057
3058 if (result > 0)
3059 return xmod.result;
3060 else
3061 return -ENOSPC;
3062 }
3063
3064 static int yaffs_apply_xattrib_mod(struct yaffs_obj *obj, char *buffer,
3065 struct yaffs_xattr_mod *xmod)
3066 {
3067 int retval = 0;
3068 int x_offs = sizeof(struct yaffs_obj_hdr);
3069 struct yaffs_dev *dev = obj->my_dev;
3070 int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3071 char *x_buffer = buffer + x_offs;
3072
3073 if (xmod->set)
3074 retval =
3075 nval_set(x_buffer, x_size, xmod->name, xmod->data,
3076 xmod->size, xmod->flags);
3077 else
3078 retval = nval_del(x_buffer, x_size, xmod->name);
3079
3080 obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3081 obj->xattr_known = 1;
3082 xmod->result = retval;
3083
3084 return retval;
3085 }
3086
3087 static int yaffs_do_xattrib_fetch(struct yaffs_obj *obj, const YCHAR *name,
3088 void *value, int size)
3089 {
3090 char *buffer = NULL;
3091 int result;
3092 struct yaffs_ext_tags tags;
3093 struct yaffs_dev *dev = obj->my_dev;
3094 int x_offs = sizeof(struct yaffs_obj_hdr);
3095 int x_size = dev->data_bytes_per_chunk - sizeof(struct yaffs_obj_hdr);
3096 char *x_buffer;
3097 int retval = 0;
3098
3099 if (obj->hdr_chunk < 1)
3100 return -ENODATA;
3101
3102 /* If we know that the object has no xattribs then don't do all the
3103 * reading and parsing.
3104 */
3105 if (obj->xattr_known && !obj->has_xattr) {
3106 if (name)
3107 return -ENODATA;
3108 else
3109 return 0;
3110 }
3111
3112 buffer = (char *)yaffs_get_temp_buffer(dev);
3113 if (!buffer)
3114 return -ENOMEM;
3115
3116 result =
3117 yaffs_rd_chunk_tags_nand(dev, obj->hdr_chunk, (u8 *) buffer, &tags);
3118
3119 if (result != YAFFS_OK)
3120 retval = -ENOENT;
3121 else {
3122 x_buffer = buffer + x_offs;
3123
3124 if (!obj->xattr_known) {
3125 obj->has_xattr = nval_hasvalues(x_buffer, x_size);
3126 obj->xattr_known = 1;
3127 }
3128
3129 if (name)
3130 retval = nval_get(x_buffer, x_size, name, value, size);
3131 else
3132 retval = nval_list(x_buffer, x_size, value, size);
3133 }
3134 yaffs_release_temp_buffer(dev, (u8 *) buffer);
3135 return retval;
3136 }
3137
3138 int yaffs_set_xattrib(struct yaffs_obj *obj, const YCHAR * name,
3139 const void *value, int size, int flags)
3140 {
3141 return yaffs_do_xattrib_mod(obj, 1, name, value, size, flags);
3142 }
3143
3144 int yaffs_remove_xattrib(struct yaffs_obj *obj, const YCHAR * name)
3145 {
3146 return yaffs_do_xattrib_mod(obj, 0, name, NULL, 0, 0);
3147 }
3148
3149 int yaffs_get_xattrib(struct yaffs_obj *obj, const YCHAR * name, void *value,
3150 int size)
3151 {
3152 return yaffs_do_xattrib_fetch(obj, name, value, size);
3153 }
3154
3155 int yaffs_list_xattrib(struct yaffs_obj *obj, char *buffer, int size)
3156 {
3157 return yaffs_do_xattrib_fetch(obj, NULL, buffer, size);
3158 }
3159
3160 static void yaffs_check_obj_details_loaded(struct yaffs_obj *in)
3161 {
3162 u8 *buf;
3163 struct yaffs_obj_hdr *oh;
3164 struct yaffs_dev *dev;
3165 struct yaffs_ext_tags tags;
3166 int result;
3167 int alloc_failed = 0;
3168
3169 if (!in || !in->lazy_loaded || in->hdr_chunk < 1)
3170 return;
3171
3172 dev = in->my_dev;
3173 in->lazy_loaded = 0;
3174 buf = yaffs_get_temp_buffer(dev);
3175
3176 result = yaffs_rd_chunk_tags_nand(dev, in->hdr_chunk, buf, &tags);
3177 oh = (struct yaffs_obj_hdr *)buf;
3178
3179 in->yst_mode = oh->yst_mode;
3180 yaffs_load_attribs(in, oh);
3181 yaffs_set_obj_name_from_oh(in, oh);
3182
3183 if (in->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
3184 in->variant.symlink_variant.alias =
3185 yaffs_clone_str(oh->alias);
3186 if (!in->variant.symlink_variant.alias)
3187 alloc_failed = 1; /* Not returned */
3188 }
3189 yaffs_release_temp_buffer(dev, buf);
3190 }
3191
3192 static void yaffs_load_name_from_oh(struct yaffs_dev *dev, YCHAR *name,
3193 const YCHAR *oh_name, int buff_size)
3194 {
3195 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3196 if (dev->param.auto_unicode) {
3197 if (*oh_name) {
3198 /* It is an ASCII name, do an ASCII to
3199 * unicode conversion */
3200 const char *ascii_oh_name = (const char *)oh_name;
3201 int n = buff_size - 1;
3202 while (n > 0 && *ascii_oh_name) {
3203 *name = *ascii_oh_name;
3204 name++;
3205 ascii_oh_name++;
3206 n--;
3207 }
3208 } else {
3209 strncpy(name, oh_name + 1, buff_size - 1);
3210 }
3211 } else {
3212 #else
3213 (void) dev;
3214 {
3215 #endif
3216 strncpy(name, oh_name, buff_size - 1);
3217 }
3218 }
3219
3220 static void yaffs_load_oh_from_name(struct yaffs_dev *dev, YCHAR *oh_name,
3221 const YCHAR *name)
3222 {
3223 #ifdef CONFIG_YAFFS_AUTO_UNICODE
3224
3225 int is_ascii;
3226 YCHAR *w;
3227
3228 if (dev->param.auto_unicode) {
3229
3230 is_ascii = 1;
3231 w = name;
3232
3233 /* Figure out if the name will fit in ascii character set */
3234 while (is_ascii && *w) {
3235 if ((*w) & 0xff00)
3236 is_ascii = 0;
3237 w++;
3238 }
3239
3240 if (is_ascii) {
3241 /* It is an ASCII name, so convert unicode to ascii */
3242 char *ascii_oh_name = (char *)oh_name;
3243 int n = YAFFS_MAX_NAME_LENGTH - 1;
3244 while (n > 0 && *name) {
3245 *ascii_oh_name = *name;
3246 name++;
3247 ascii_oh_name++;
3248 n--;
3249 }
3250 } else {
3251 /* Unicode name, so save starting at the second YCHAR */
3252 *oh_name = 0;
3253 strncpy(oh_name + 1, name, YAFFS_MAX_NAME_LENGTH - 2);
3254 }
3255 } else {
3256 #else
3257 dev = dev;
3258 {
3259 #endif
3260 strncpy(oh_name, name, YAFFS_MAX_NAME_LENGTH - 1);
3261 }
3262 }
3263
3264 /* UpdateObjectHeader updates the header on NAND for an object.
3265 * If name is not NULL, then that new name is used.
3266 */
3267 int yaffs_update_oh(struct yaffs_obj *in, const YCHAR *name, int force,
3268 int is_shrink, int shadows, struct yaffs_xattr_mod *xmod)
3269 {
3270
3271 struct yaffs_block_info *bi;
3272 struct yaffs_dev *dev = in->my_dev;
3273 int prev_chunk_id;
3274 int ret_val = 0;
3275 int result = 0;
3276 int new_chunk_id;
3277 struct yaffs_ext_tags new_tags;
3278 struct yaffs_ext_tags old_tags;
3279 const YCHAR *alias = NULL;
3280 u8 *buffer = NULL;
3281 YCHAR old_name[YAFFS_MAX_NAME_LENGTH + 1];
3282 struct yaffs_obj_hdr *oh = NULL;
3283 loff_t file_size = 0;
3284
3285 strcpy(old_name, _Y("silly old name"));
3286
3287 if (in->fake && in != dev->root_dir && !force && !xmod)
3288 return ret_val;
3289
3290 yaffs_check_gc(dev, 0);
3291 yaffs_check_obj_details_loaded(in);
3292
3293 buffer = yaffs_get_temp_buffer(in->my_dev);
3294 oh = (struct yaffs_obj_hdr *)buffer;
3295
3296 prev_chunk_id = in->hdr_chunk;
3297
3298 if (prev_chunk_id > 0) {
3299 result = yaffs_rd_chunk_tags_nand(dev, prev_chunk_id,
3300 buffer, &old_tags);
3301
3302 yaffs_verify_oh(in, oh, &old_tags, 0);
3303 memcpy(old_name, oh->name, sizeof(oh->name));
3304 memset(buffer, 0xff, sizeof(struct yaffs_obj_hdr));
3305 } else {
3306 memset(buffer, 0xff, dev->data_bytes_per_chunk);
3307 }
3308
3309 oh->type = in->variant_type;
3310 oh->yst_mode = in->yst_mode;
3311 oh->shadows_obj = oh->inband_shadowed_obj_id = shadows;
3312
3313 yaffs_load_attribs_oh(oh, in);
3314
3315 if (in->parent)
3316 oh->parent_obj_id = in->parent->obj_id;
3317 else
3318 oh->parent_obj_id = 0;
3319
3320 if (name && *name) {
3321 memset(oh->name, 0, sizeof(oh->name));
3322 yaffs_load_oh_from_name(dev, oh->name, name);
3323 } else if (prev_chunk_id > 0) {
3324 memcpy(oh->name, old_name, sizeof(oh->name));
3325 } else {
3326 memset(oh->name, 0, sizeof(oh->name));
3327 }
3328
3329 oh->is_shrink = is_shrink;
3330
3331 switch (in->variant_type) {
3332 case YAFFS_OBJECT_TYPE_UNKNOWN:
3333 /* Should not happen */
3334 break;
3335 case YAFFS_OBJECT_TYPE_FILE:
3336 if (oh->parent_obj_id != YAFFS_OBJECTID_DELETED &&
3337 oh->parent_obj_id != YAFFS_OBJECTID_UNLINKED)
3338 file_size = in->variant.file_variant.file_size;
3339 yaffs_oh_size_load(oh, file_size);
3340 break;
3341 case YAFFS_OBJECT_TYPE_HARDLINK:
3342 oh->equiv_id = in->variant.hardlink_variant.equiv_id;
3343 break;
3344 case YAFFS_OBJECT_TYPE_SPECIAL:
3345 /* Do nothing */
3346 break;
3347 case YAFFS_OBJECT_TYPE_DIRECTORY:
3348 /* Do nothing */
3349 break;
3350 case YAFFS_OBJECT_TYPE_SYMLINK:
3351 alias = in->variant.symlink_variant.alias;
3352 if (!alias)
3353 alias = _Y("no alias");
3354 strncpy(oh->alias, alias, YAFFS_MAX_ALIAS_LENGTH);
3355 oh->alias[YAFFS_MAX_ALIAS_LENGTH] = 0;
3356 break;
3357 }
3358
3359 /* process any xattrib modifications */
3360 if (xmod)
3361 yaffs_apply_xattrib_mod(in, (char *)buffer, xmod);
3362
3363 /* Tags */
3364 memset(&new_tags, 0, sizeof(new_tags));
3365 in->serial++;
3366 new_tags.chunk_id = 0;
3367 new_tags.obj_id = in->obj_id;
3368 new_tags.serial_number = in->serial;
3369
3370 /* Add extra info for file header */
3371 new_tags.extra_available = 1;
3372 new_tags.extra_parent_id = oh->parent_obj_id;
3373 new_tags.extra_file_size = file_size;
3374 new_tags.extra_is_shrink = oh->is_shrink;
3375 new_tags.extra_equiv_id = oh->equiv_id;
3376 new_tags.extra_shadows = (oh->shadows_obj > 0) ? 1 : 0;
3377 new_tags.extra_obj_type = in->variant_type;
3378 yaffs_verify_oh(in, oh, &new_tags, 1);
3379
3380 /* Create new chunk in NAND */
3381 new_chunk_id =
3382 yaffs_write_new_chunk(dev, buffer, &new_tags,
3383 (prev_chunk_id > 0) ? 1 : 0);
3384
3385 if (buffer)
3386 yaffs_release_temp_buffer(dev, buffer);
3387
3388 if (new_chunk_id < 0)
3389 return new_chunk_id;
3390
3391 in->hdr_chunk = new_chunk_id;
3392
3393 if (prev_chunk_id > 0)
3394 yaffs_chunk_del(dev, prev_chunk_id, 1, __LINE__);
3395
3396 if (!yaffs_obj_cache_dirty(in))
3397 in->dirty = 0;
3398
3399 /* If this was a shrink, then mark the block
3400 * that the chunk lives on */
3401 if (is_shrink) {
3402 bi = yaffs_get_block_info(in->my_dev,
3403 new_chunk_id /
3404 in->my_dev->param.chunks_per_block);
3405 bi->has_shrink_hdr = 1;
3406 }
3407
3408
3409 return new_chunk_id;
3410 }
3411
3412 /*--------------------- File read/write ------------------------
3413 * Read and write have very similar structures.
3414 * In general the read/write has three parts to it
3415 * An incomplete chunk to start with (if the read/write is not chunk-aligned)
3416 * Some complete chunks
3417 * An incomplete chunk to end off with
3418 *
3419 * Curve-balls: the first chunk might also be the last chunk.
3420 */
3421
3422 int yaffs_file_rd(struct yaffs_obj *in, u8 * buffer, loff_t offset, int n_bytes)
3423 {
3424 int chunk;
3425 u32 start;
3426 int n_copy;
3427 int n = n_bytes;
3428 int n_done = 0;
3429 struct yaffs_cache *cache;
3430 struct yaffs_dev *dev;
3431
3432 dev = in->my_dev;
3433
3434 while (n > 0) {
3435 yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3436 chunk++;
3437
3438 /* OK now check for the curveball where the start and end are in
3439 * the same chunk.
3440 */
3441 if ((start + n) < dev->data_bytes_per_chunk)
3442 n_copy = n;
3443 else
3444 n_copy = dev->data_bytes_per_chunk - start;
3445
3446 cache = yaffs_find_chunk_cache(in, chunk);
3447
3448 /* If the chunk is already in the cache or it is less than
3449 * a whole chunk or we're using inband tags then use the cache
3450 * (if there is caching) else bypass the cache.
3451 */
3452 if (cache || n_copy != dev->data_bytes_per_chunk ||
3453 dev->param.inband_tags) {
3454 if (dev->param.n_caches > 0) {
3455
3456 /* If we can't find the data in the cache,
3457 * then load it up. */
3458
3459 if (!cache) {
3460 cache =
3461 yaffs_grab_chunk_cache(in->my_dev);
3462 cache->object = in;
3463 cache->chunk_id = chunk;
3464 cache->dirty = 0;
3465 cache->locked = 0;
3466 yaffs_rd_data_obj(in, chunk,
3467 cache->data);
3468 cache->n_bytes = 0;
3469 }
3470
3471 yaffs_use_cache(dev, cache, 0);
3472
3473 cache->locked = 1;
3474
3475 memcpy(buffer, &cache->data[start], n_copy);
3476
3477 cache->locked = 0;
3478 } else {
3479 /* Read into the local buffer then copy.. */
3480
3481 u8 *local_buffer =
3482 yaffs_get_temp_buffer(dev);
3483 yaffs_rd_data_obj(in, chunk, local_buffer);
3484
3485 memcpy(buffer, &local_buffer[start], n_copy);
3486
3487 yaffs_release_temp_buffer(dev, local_buffer);
3488 }
3489 } else {
3490 /* A full chunk. Read directly into the buffer. */
3491 yaffs_rd_data_obj(in, chunk, buffer);
3492 }
3493 n -= n_copy;
3494 offset += n_copy;
3495 buffer += n_copy;
3496 n_done += n_copy;
3497 }
3498 return n_done;
3499 }
3500
3501 int yaffs_do_file_wr(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3502 int n_bytes, int write_through)
3503 {
3504
3505 int chunk;
3506 u32 start;
3507 int n_copy;
3508 int n = n_bytes;
3509 int n_done = 0;
3510 int n_writeback;
3511 loff_t start_write = offset;
3512 int chunk_written = 0;
3513 u32 n_bytes_read;
3514 loff_t chunk_start;
3515 struct yaffs_dev *dev;
3516
3517 dev = in->my_dev;
3518
3519 while (n > 0 && chunk_written >= 0) {
3520 yaffs_addr_to_chunk(dev, offset, &chunk, &start);
3521
3522 if (((loff_t)chunk) *
3523 dev->data_bytes_per_chunk + start != offset ||
3524 start >= dev->data_bytes_per_chunk) {
3525 yaffs_trace(YAFFS_TRACE_ERROR,
3526 "AddrToChunk of offset %lld gives chunk %d start %d",
3527 offset, chunk, start);
3528 }
3529 chunk++; /* File pos to chunk in file offset */
3530
3531 /* OK now check for the curveball where the start and end are in
3532 * the same chunk.
3533 */
3534
3535 if ((start + n) < dev->data_bytes_per_chunk) {
3536 n_copy = n;
3537
3538 /* Now calculate how many bytes to write back....
3539 * If we're overwriting and not writing to then end of
3540 * file then we need to write back as much as was there
3541 * before.
3542 */
3543
3544 chunk_start = (((loff_t)(chunk - 1)) *
3545 dev->data_bytes_per_chunk);
3546
3547 if (chunk_start > in->variant.file_variant.file_size)
3548 n_bytes_read = 0; /* Past end of file */
3549 else
3550 n_bytes_read =
3551 in->variant.file_variant.file_size -
3552 chunk_start;
3553
3554 if (n_bytes_read > dev->data_bytes_per_chunk)
3555 n_bytes_read = dev->data_bytes_per_chunk;
3556
3557 n_writeback =
3558 (n_bytes_read >
3559 (start + n)) ? n_bytes_read : (start + n);
3560
3561 if (n_writeback < 0 ||
3562 n_writeback > dev->data_bytes_per_chunk)
3563 BUG();
3564
3565 } else {
3566 n_copy = dev->data_bytes_per_chunk - start;
3567 n_writeback = dev->data_bytes_per_chunk;
3568 }
3569
3570 if (n_copy != dev->data_bytes_per_chunk ||
3571 !dev->param.cache_bypass_aligned ||
3572 dev->param.inband_tags) {
3573 /* An incomplete start or end chunk (or maybe both
3574 * start and end chunk), or we're using inband tags,
3575 * or we're forcing writes through the cache,
3576 * so we want to use the cache buffers.
3577 */
3578 if (dev->param.n_caches > 0) {
3579 struct yaffs_cache *cache;
3580
3581 /* If we can't find the data in the cache, then
3582 * load the cache */
3583 cache = yaffs_find_chunk_cache(in, chunk);
3584
3585 if (!cache &&
3586 yaffs_check_alloc_available(dev, 1)) {
3587 cache = yaffs_grab_chunk_cache(dev);
3588 cache->object = in;
3589 cache->chunk_id = chunk;
3590 cache->dirty = 0;
3591 cache->locked = 0;
3592 yaffs_rd_data_obj(in, chunk,
3593 cache->data);
3594 } else if (cache &&
3595 !cache->dirty &&
3596 !yaffs_check_alloc_available(dev,
3597 1)) {
3598 /* Drop the cache if it was a read cache
3599 * item and no space check has been made
3600 * for it.
3601 */
3602 cache = NULL;
3603 }
3604
3605 if (cache) {
3606 yaffs_use_cache(dev, cache, 1);
3607 cache->locked = 1;
3608
3609 memcpy(&cache->data[start], buffer,
3610 n_copy);
3611
3612 cache->locked = 0;
3613 cache->n_bytes = n_writeback;
3614
3615 if (write_through) {
3616 chunk_written =
3617 yaffs_wr_data_obj
3618 (cache->object,
3619 cache->chunk_id,
3620 cache->data,
3621 cache->n_bytes, 1);
3622 cache->dirty = 0;
3623 }
3624 } else {
3625 chunk_written = -1; /* fail write */
3626 }
3627 } else {
3628 /* An incomplete start or end chunk (or maybe
3629 * both start and end chunk). Read into the
3630 * local buffer then copy over and write back.
3631 */
3632
3633 u8 *local_buffer = yaffs_get_temp_buffer(dev);
3634
3635 yaffs_rd_data_obj(in, chunk, local_buffer);
3636 memcpy(&local_buffer[start], buffer, n_copy);
3637
3638 chunk_written =
3639 yaffs_wr_data_obj(in, chunk,
3640 local_buffer,
3641 n_writeback, 0);
3642
3643 yaffs_release_temp_buffer(dev, local_buffer);
3644 }
3645 } else {
3646 /* A full chunk. Write directly from the buffer. */
3647
3648 chunk_written =
3649 yaffs_wr_data_obj(in, chunk, buffer,
3650 dev->data_bytes_per_chunk, 0);
3651
3652 /* Since we've overwritten the cached data,
3653 * we better invalidate it. */
3654 yaffs_invalidate_chunk_cache(in, chunk);
3655 }
3656
3657 if (chunk_written >= 0) {
3658 n -= n_copy;
3659 offset += n_copy;
3660 buffer += n_copy;
3661 n_done += n_copy;
3662 }
3663 }
3664
3665 /* Update file object */
3666
3667 if ((start_write + n_done) > in->variant.file_variant.file_size)
3668 in->variant.file_variant.file_size = (start_write + n_done);
3669
3670 in->dirty = 1;
3671 return n_done;
3672 }
3673
3674 int yaffs_wr_file(struct yaffs_obj *in, const u8 *buffer, loff_t offset,
3675 int n_bytes, int write_through)
3676 {
3677 yaffs2_handle_hole(in, offset);
3678 return yaffs_do_file_wr(in, buffer, offset, n_bytes, write_through);
3679 }
3680
3681 /* ---------------------- File resizing stuff ------------------ */
3682
3683 static void yaffs_prune_chunks(struct yaffs_obj *in, loff_t new_size)
3684 {
3685
3686 struct yaffs_dev *dev = in->my_dev;
3687 loff_t old_size = in->variant.file_variant.file_size;
3688 int i;
3689 int chunk_id;
3690 u32 dummy;
3691 int last_del;
3692 int start_del;
3693
3694 if (old_size > 0)
3695 yaffs_addr_to_chunk(dev, old_size - 1, &last_del, &dummy);
3696 else
3697 last_del = 0;
3698
3699 yaffs_addr_to_chunk(dev, new_size + dev->data_bytes_per_chunk - 1,
3700 &start_del, &dummy);
3701 last_del++;
3702 start_del++;
3703
3704 /* Delete backwards so that we don't end up with holes if
3705 * power is lost part-way through the operation.
3706 */
3707 for (i = last_del; i >= start_del; i--) {
3708 /* NB this could be optimised somewhat,
3709 * eg. could retrieve the tags and write them without
3710 * using yaffs_chunk_del
3711 */
3712
3713 chunk_id = yaffs_find_del_file_chunk(in, i, NULL);
3714
3715 if (chunk_id < 1)
3716 continue;
3717
3718 if (chunk_id <
3719 (dev->internal_start_block * dev->param.chunks_per_block) ||
3720 chunk_id >=
3721 ((dev->internal_end_block + 1) *
3722 dev->param.chunks_per_block)) {
3723 yaffs_trace(YAFFS_TRACE_ALWAYS,
3724 "Found daft chunk_id %d for %d",
3725 chunk_id, i);
3726 } else {
3727 in->n_data_chunks--;
3728 yaffs_chunk_del(dev, chunk_id, 1, __LINE__);
3729 }
3730 }
3731 }
3732
3733 void yaffs_resize_file_down(struct yaffs_obj *obj, loff_t new_size)
3734 {
3735 int new_full;
3736 u32 new_partial;
3737 struct yaffs_dev *dev = obj->my_dev;
3738
3739 yaffs_addr_to_chunk(dev, new_size, &new_full, &new_partial);
3740
3741 yaffs_prune_chunks(obj, new_size);
3742
3743 if (new_partial != 0) {
3744 int last_chunk = 1 + new_full;
3745 u8 *local_buffer = yaffs_get_temp_buffer(dev);
3746
3747 /* Rewrite the last chunk with its new size and zero pad */
3748 yaffs_rd_data_obj(obj, last_chunk, local_buffer);
3749 memset(local_buffer + new_partial, 0,
3750 dev->data_bytes_per_chunk - new_partial);
3751
3752 yaffs_wr_data_obj(obj, last_chunk, local_buffer,
3753 new_partial, 1);
3754
3755 yaffs_release_temp_buffer(dev, local_buffer);
3756 }
3757
3758 obj->variant.file_variant.file_size = new_size;
3759
3760 yaffs_prune_tree(dev, &obj->variant.file_variant);
3761 }
3762
3763 int yaffs_resize_file(struct yaffs_obj *in, loff_t new_size)
3764 {
3765 struct yaffs_dev *dev = in->my_dev;
3766 loff_t old_size = in->variant.file_variant.file_size;
3767
3768 yaffs_flush_file_cache(in);
3769 yaffs_invalidate_whole_cache(in);
3770
3771 yaffs_check_gc(dev, 0);
3772
3773 if (in->variant_type != YAFFS_OBJECT_TYPE_FILE)
3774 return YAFFS_FAIL;
3775
3776 if (new_size == old_size)
3777 return YAFFS_OK;
3778
3779 if (new_size > old_size) {
3780 yaffs2_handle_hole(in, new_size);
3781 in->variant.file_variant.file_size = new_size;
3782 } else {
3783 /* new_size < old_size */
3784 yaffs_resize_file_down(in, new_size);
3785 }
3786
3787 /* Write a new object header to reflect the resize.
3788 * show we've shrunk the file, if need be
3789 * Do this only if the file is not in the deleted directories
3790 * and is not shadowed.
3791 */
3792 if (in->parent &&
3793 !in->is_shadowed &&
3794 in->parent->obj_id != YAFFS_OBJECTID_UNLINKED &&
3795 in->parent->obj_id != YAFFS_OBJECTID_DELETED)
3796 yaffs_update_oh(in, NULL, 0, 0, 0, NULL);
3797
3798 return YAFFS_OK;
3799 }
3800
3801 int yaffs_flush_file(struct yaffs_obj *in, int update_time, int data_sync)
3802 {
3803 if (!in->dirty)
3804 return YAFFS_OK;
3805
3806 yaffs_flush_file_cache(in);
3807
3808 if (data_sync)
3809 return YAFFS_OK;
3810
3811 if (update_time)
3812 yaffs_load_current_time(in, 0, 0);
3813
3814 return (yaffs_update_oh(in, NULL, 0, 0, 0, NULL) >= 0) ?
3815 YAFFS_OK : YAFFS_FAIL;
3816 }
3817
3818
3819 /* yaffs_del_file deletes the whole file data
3820 * and the inode associated with the file.
3821 * It does not delete the links associated with the file.
3822 */
3823 static int yaffs_unlink_file_if_needed(struct yaffs_obj *in)
3824 {
3825 int ret_val;
3826 int del_now = 0;
3827 struct yaffs_dev *dev = in->my_dev;
3828
3829 if (!in->my_inode)
3830 del_now = 1;
3831
3832 if (del_now) {
3833 ret_val =
3834 yaffs_change_obj_name(in, in->my_dev->del_dir,
3835 _Y("deleted"), 0, 0);
3836 yaffs_trace(YAFFS_TRACE_TRACING,
3837 "yaffs: immediate deletion of file %d",
3838 in->obj_id);
3839 in->deleted = 1;
3840 in->my_dev->n_deleted_files++;
3841 if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3842 yaffs_resize_file(in, 0);
3843 yaffs_soft_del_file(in);
3844 } else {
3845 ret_val =
3846 yaffs_change_obj_name(in, in->my_dev->unlinked_dir,
3847 _Y("unlinked"), 0, 0);
3848 }
3849 return ret_val;
3850 }
3851
3852 static int yaffs_del_file(struct yaffs_obj *in)
3853 {
3854 int ret_val = YAFFS_OK;
3855 int deleted; /* Need to cache value on stack if in is freed */
3856 struct yaffs_dev *dev = in->my_dev;
3857
3858 if (dev->param.disable_soft_del || dev->param.is_yaffs2)
3859 yaffs_resize_file(in, 0);
3860
3861 if (in->n_data_chunks > 0) {
3862 /* Use soft deletion if there is data in the file.
3863 * That won't be the case if it has been resized to zero.
3864 */
3865 if (!in->unlinked)
3866 ret_val = yaffs_unlink_file_if_needed(in);
3867
3868 deleted = in->deleted;
3869
3870 if (ret_val == YAFFS_OK && in->unlinked && !in->deleted) {
3871 in->deleted = 1;
3872 deleted = 1;
3873 in->my_dev->n_deleted_files++;
3874 yaffs_soft_del_file(in);
3875 }
3876 return deleted ? YAFFS_OK : YAFFS_FAIL;
3877 } else {
3878 /* The file has no data chunks so we toss it immediately */
3879 yaffs_free_tnode(in->my_dev, in->variant.file_variant.top);
3880 in->variant.file_variant.top = NULL;
3881 yaffs_generic_obj_del(in);
3882
3883 return YAFFS_OK;
3884 }
3885 }
3886
3887 int yaffs_is_non_empty_dir(struct yaffs_obj *obj)
3888 {
3889 return (obj &&
3890 obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY) &&
3891 !(list_empty(&obj->variant.dir_variant.children));
3892 }
3893
3894 static int yaffs_del_dir(struct yaffs_obj *obj)
3895 {
3896 /* First check that the directory is empty. */
3897 if (yaffs_is_non_empty_dir(obj))
3898 return YAFFS_FAIL;
3899
3900 return yaffs_generic_obj_del(obj);
3901 }
3902
3903 static int yaffs_del_symlink(struct yaffs_obj *in)
3904 {
3905 kfree(in->variant.symlink_variant.alias);
3906 in->variant.symlink_variant.alias = NULL;
3907
3908 return yaffs_generic_obj_del(in);
3909 }
3910
3911 static int yaffs_del_link(struct yaffs_obj *in)
3912 {
3913 /* remove this hardlink from the list associated with the equivalent
3914 * object
3915 */
3916 list_del_init(&in->hard_links);
3917 return yaffs_generic_obj_del(in);
3918 }
3919
3920 int yaffs_del_obj(struct yaffs_obj *obj)
3921 {
3922 int ret_val = -1;
3923
3924 switch (obj->variant_type) {
3925 case YAFFS_OBJECT_TYPE_FILE:
3926 ret_val = yaffs_del_file(obj);
3927 break;
3928 case YAFFS_OBJECT_TYPE_DIRECTORY:
3929 if (!list_empty(&obj->variant.dir_variant.dirty)) {
3930 yaffs_trace(YAFFS_TRACE_BACKGROUND,
3931 "Remove object %d from dirty directories",
3932 obj->obj_id);
3933 list_del_init(&obj->variant.dir_variant.dirty);
3934 }
3935 return yaffs_del_dir(obj);
3936 break;
3937 case YAFFS_OBJECT_TYPE_SYMLINK:
3938 ret_val = yaffs_del_symlink(obj);
3939 break;
3940 case YAFFS_OBJECT_TYPE_HARDLINK:
3941 ret_val = yaffs_del_link(obj);
3942 break;
3943 case YAFFS_OBJECT_TYPE_SPECIAL:
3944 ret_val = yaffs_generic_obj_del(obj);
3945 break;
3946 case YAFFS_OBJECT_TYPE_UNKNOWN:
3947 ret_val = 0;
3948 break; /* should not happen. */
3949 }
3950 return ret_val;
3951 }
3952
3953 static int yaffs_unlink_worker(struct yaffs_obj *obj)
3954 {
3955 int del_now = 0;
3956
3957 if (!obj)
3958 return YAFFS_FAIL;
3959
3960 if (!obj->my_inode)
3961 del_now = 1;
3962
3963 yaffs_update_parent(obj->parent);
3964
3965 if (obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
3966 return yaffs_del_link(obj);
3967 } else if (!list_empty(&obj->hard_links)) {
3968 /* Curve ball: We're unlinking an object that has a hardlink.
3969 *
3970 * This problem arises because we are not strictly following
3971 * The Linux link/inode model.
3972 *
3973 * We can't really delete the object.
3974 * Instead, we do the following:
3975 * - Select a hardlink.
3976 * - Unhook it from the hard links
3977 * - Move it from its parent directory so that the rename works.
3978 * - Rename the object to the hardlink's name.
3979 * - Delete the hardlink
3980 */
3981
3982 struct yaffs_obj *hl;
3983 struct yaffs_obj *parent;
3984 int ret_val;
3985 YCHAR name[YAFFS_MAX_NAME_LENGTH + 1];
3986
3987 hl = list_entry(obj->hard_links.next, struct yaffs_obj,
3988 hard_links);
3989
3990 yaffs_get_obj_name(hl, name, YAFFS_MAX_NAME_LENGTH + 1);
3991 parent = hl->parent;
3992
3993 list_del_init(&hl->hard_links);
3994
3995 yaffs_add_obj_to_dir(obj->my_dev->unlinked_dir, hl);
3996
3997 ret_val = yaffs_change_obj_name(obj, parent, name, 0, 0);
3998
3999 if (ret_val == YAFFS_OK)
4000 ret_val = yaffs_generic_obj_del(hl);
4001
4002 return ret_val;
4003
4004 } else if (del_now) {
4005 switch (obj->variant_type) {
4006 case YAFFS_OBJECT_TYPE_FILE:
4007 return yaffs_del_file(obj);
4008 break;
4009 case YAFFS_OBJECT_TYPE_DIRECTORY:
4010 list_del_init(&obj->variant.dir_variant.dirty);
4011 return yaffs_del_dir(obj);
4012 break;
4013 case YAFFS_OBJECT_TYPE_SYMLINK:
4014 return yaffs_del_symlink(obj);
4015 break;
4016 case YAFFS_OBJECT_TYPE_SPECIAL:
4017 return yaffs_generic_obj_del(obj);
4018 break;
4019 case YAFFS_OBJECT_TYPE_HARDLINK:
4020 case YAFFS_OBJECT_TYPE_UNKNOWN:
4021 default:
4022 return YAFFS_FAIL;
4023 }
4024 } else if (yaffs_is_non_empty_dir(obj)) {
4025 return YAFFS_FAIL;
4026 } else {
4027 return yaffs_change_obj_name(obj, obj->my_dev->unlinked_dir,
4028 _Y("unlinked"), 0, 0);
4029 }
4030 }
4031
4032 static int yaffs_unlink_obj(struct yaffs_obj *obj)
4033 {
4034 if (obj && obj->unlink_allowed)
4035 return yaffs_unlink_worker(obj);
4036
4037 return YAFFS_FAIL;
4038 }
4039
4040 int yaffs_unlinker(struct yaffs_obj *dir, const YCHAR *name)
4041 {
4042 struct yaffs_obj *obj;
4043
4044 obj = yaffs_find_by_name(dir, name);
4045 return yaffs_unlink_obj(obj);
4046 }
4047
4048 /* Note:
4049 * If old_name is NULL then we take old_dir as the object to be renamed.
4050 */
4051 int yaffs_rename_obj(struct yaffs_obj *old_dir, const YCHAR *old_name,
4052 struct yaffs_obj *new_dir, const YCHAR *new_name)
4053 {
4054 struct yaffs_obj *obj = NULL;
4055 struct yaffs_obj *existing_target = NULL;
4056 int force = 0;
4057 int result;
4058 struct yaffs_dev *dev;
4059
4060 if (!old_dir || old_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4061 BUG();
4062 return YAFFS_FAIL;
4063 }
4064 if (!new_dir || new_dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4065 BUG();
4066 return YAFFS_FAIL;
4067 }
4068
4069 dev = old_dir->my_dev;
4070
4071 #ifdef CONFIG_YAFFS_CASE_INSENSITIVE
4072 /* Special case for case insemsitive systems.
4073 * While look-up is case insensitive, the name isn't.
4074 * Therefore we might want to change x.txt to X.txt
4075 */
4076 if (old_dir == new_dir &&
4077 old_name && new_name &&
4078 strcmp(old_name, new_name) == 0)
4079 force = 1;
4080 #endif
4081
4082 if (strnlen(new_name, YAFFS_MAX_NAME_LENGTH + 1) >
4083 YAFFS_MAX_NAME_LENGTH)
4084 /* ENAMETOOLONG */
4085 return YAFFS_FAIL;
4086
4087 if (old_name)
4088 obj = yaffs_find_by_name(old_dir, old_name);
4089 else{
4090 obj = old_dir;
4091 old_dir = obj->parent;
4092 }
4093
4094 if (obj && obj->rename_allowed) {
4095 /* Now handle an existing target, if there is one */
4096 existing_target = yaffs_find_by_name(new_dir, new_name);
4097 if (yaffs_is_non_empty_dir(existing_target)) {
4098 return YAFFS_FAIL; /* ENOTEMPTY */
4099 } else if (existing_target && existing_target != obj) {
4100 /* Nuke the target first, using shadowing,
4101 * but only if it isn't the same object.
4102 *
4103 * Note we must disable gc here otherwise it can mess
4104 * up the shadowing.
4105 *
4106 */
4107 dev->gc_disable = 1;
4108 yaffs_change_obj_name(obj, new_dir, new_name, force,
4109 existing_target->obj_id);
4110 existing_target->is_shadowed = 1;
4111 yaffs_unlink_obj(existing_target);
4112 dev->gc_disable = 0;
4113 }
4114
4115 result = yaffs_change_obj_name(obj, new_dir, new_name, 1, 0);
4116
4117 yaffs_update_parent(old_dir);
4118 if (new_dir != old_dir)
4119 yaffs_update_parent(new_dir);
4120
4121 return result;
4122 }
4123 return YAFFS_FAIL;
4124 }
4125
4126 /*----------------------- Initialisation Scanning ---------------------- */
4127
4128 void yaffs_handle_shadowed_obj(struct yaffs_dev *dev, int obj_id,
4129 int backward_scanning)
4130 {
4131 struct yaffs_obj *obj;
4132
4133 if (backward_scanning) {
4134 /* Handle YAFFS2 case (backward scanning)
4135 * If the shadowed object exists then ignore.
4136 */
4137 obj = yaffs_find_by_number(dev, obj_id);
4138 if (obj)
4139 return;
4140 }
4141
4142 /* Let's create it (if it does not exist) assuming it is a file so that
4143 * it can do shrinking etc.
4144 * We put it in unlinked dir to be cleaned up after the scanning
4145 */
4146 obj =
4147 yaffs_find_or_create_by_number(dev, obj_id, YAFFS_OBJECT_TYPE_FILE);
4148 if (!obj)
4149 return;
4150 obj->is_shadowed = 1;
4151 yaffs_add_obj_to_dir(dev->unlinked_dir, obj);
4152 obj->variant.file_variant.shrink_size = 0;
4153 obj->valid = 1; /* So that we don't read any other info. */
4154 }
4155
4156 void yaffs_link_fixup(struct yaffs_dev *dev, struct list_head *hard_list)
4157 {
4158 struct list_head *lh;
4159 struct list_head *save;
4160 struct yaffs_obj *hl;
4161 struct yaffs_obj *in;
4162
4163 list_for_each_safe(lh, save, hard_list) {
4164 hl = list_entry(lh, struct yaffs_obj, hard_links);
4165 in = yaffs_find_by_number(dev,
4166 hl->variant.hardlink_variant.equiv_id);
4167
4168 if (in) {
4169 /* Add the hardlink pointers */
4170 hl->variant.hardlink_variant.equiv_obj = in;
4171 list_add(&hl->hard_links, &in->hard_links);
4172 } else {
4173 /* Todo Need to report/handle this better.
4174 * Got a problem... hardlink to a non-existant object
4175 */
4176 hl->variant.hardlink_variant.equiv_obj = NULL;
4177 INIT_LIST_HEAD(&hl->hard_links);
4178 }
4179 }
4180 }
4181
4182 static void yaffs_strip_deleted_objs(struct yaffs_dev *dev)
4183 {
4184 /*
4185 * Sort out state of unlinked and deleted objects after scanning.
4186 */
4187 struct list_head *i;
4188 struct list_head *n;
4189 struct yaffs_obj *l;
4190
4191 if (dev->read_only)
4192 return;
4193
4194 /* Soft delete all the unlinked files */
4195 list_for_each_safe(i, n,
4196 &dev->unlinked_dir->variant.dir_variant.children) {
4197 l = list_entry(i, struct yaffs_obj, siblings);
4198 yaffs_del_obj(l);
4199 }
4200
4201 list_for_each_safe(i, n, &dev->del_dir->variant.dir_variant.children) {
4202 l = list_entry(i, struct yaffs_obj, siblings);
4203 yaffs_del_obj(l);
4204 }
4205 }
4206
4207 /*
4208 * This code iterates through all the objects making sure that they are rooted.
4209 * Any unrooted objects are re-rooted in lost+found.
4210 * An object needs to be in one of:
4211 * - Directly under deleted, unlinked
4212 * - Directly or indirectly under root.
4213 *
4214 * Note:
4215 * This code assumes that we don't ever change the current relationships
4216 * between directories:
4217 * root_dir->parent == unlinked_dir->parent == del_dir->parent == NULL
4218 * lost-n-found->parent == root_dir
4219 *
4220 * This fixes the problem where directories might have inadvertently been
4221 * deleted leaving the object "hanging" without being rooted in the
4222 * directory tree.
4223 */
4224
4225 static int yaffs_has_null_parent(struct yaffs_dev *dev, struct yaffs_obj *obj)
4226 {
4227 return (obj == dev->del_dir ||
4228 obj == dev->unlinked_dir || obj == dev->root_dir);
4229 }
4230
4231 static void yaffs_fix_hanging_objs(struct yaffs_dev *dev)
4232 {
4233 struct yaffs_obj *obj;
4234 struct yaffs_obj *parent;
4235 int i;
4236 struct list_head *lh;
4237 struct list_head *n;
4238 int depth_limit;
4239 int hanging;
4240
4241 if (dev->read_only)
4242 return;
4243
4244 /* Iterate through the objects in each hash entry,
4245 * looking at each object.
4246 * Make sure it is rooted.
4247 */
4248
4249 for (i = 0; i < YAFFS_NOBJECT_BUCKETS; i++) {
4250 list_for_each_safe(lh, n, &dev->obj_bucket[i].list) {
4251 obj = list_entry(lh, struct yaffs_obj, hash_link);
4252 parent = obj->parent;
4253
4254 if (yaffs_has_null_parent(dev, obj)) {
4255 /* These directories are not hanging */
4256 hanging = 0;
4257 } else if (!parent ||
4258 parent->variant_type !=
4259 YAFFS_OBJECT_TYPE_DIRECTORY) {
4260 hanging = 1;
4261 } else if (yaffs_has_null_parent(dev, parent)) {
4262 hanging = 0;
4263 } else {
4264 /*
4265 * Need to follow the parent chain to
4266 * see if it is hanging.
4267 */
4268 hanging = 0;
4269 depth_limit = 100;
4270
4271 while (parent != dev->root_dir &&
4272 parent->parent &&
4273 parent->parent->variant_type ==
4274 YAFFS_OBJECT_TYPE_DIRECTORY &&
4275 depth_limit > 0) {
4276 parent = parent->parent;
4277 depth_limit--;
4278 }
4279 if (parent != dev->root_dir)
4280 hanging = 1;
4281 }
4282 if (hanging) {
4283 yaffs_trace(YAFFS_TRACE_SCAN,
4284 "Hanging object %d moved to lost and found",
4285 obj->obj_id);
4286 yaffs_add_obj_to_dir(dev->lost_n_found, obj);
4287 }
4288 }
4289 }
4290 }
4291
4292 /*
4293 * Delete directory contents for cleaning up lost and found.
4294 */
4295 static void yaffs_del_dir_contents(struct yaffs_obj *dir)
4296 {
4297 struct yaffs_obj *obj;
4298 struct list_head *lh;
4299 struct list_head *n;
4300
4301 if (dir->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY)
4302 BUG();
4303
4304 list_for_each_safe(lh, n, &dir->variant.dir_variant.children) {
4305 obj = list_entry(lh, struct yaffs_obj, siblings);
4306 if (obj->variant_type == YAFFS_OBJECT_TYPE_DIRECTORY)
4307 yaffs_del_dir_contents(obj);
4308 yaffs_trace(YAFFS_TRACE_SCAN,
4309 "Deleting lost_found object %d",
4310 obj->obj_id);
4311 yaffs_unlink_obj(obj);
4312 }
4313 }
4314
4315 static void yaffs_empty_l_n_f(struct yaffs_dev *dev)
4316 {
4317 yaffs_del_dir_contents(dev->lost_n_found);
4318 }
4319
4320
4321 struct yaffs_obj *yaffs_find_by_name(struct yaffs_obj *directory,
4322 const YCHAR *name)
4323 {
4324 int sum;
4325 struct list_head *i;
4326 YCHAR buffer[YAFFS_MAX_NAME_LENGTH + 1];
4327 struct yaffs_obj *l;
4328
4329 if (!name)
4330 return NULL;
4331
4332 if (!directory) {
4333 yaffs_trace(YAFFS_TRACE_ALWAYS,
4334 "tragedy: yaffs_find_by_name: null pointer directory"
4335 );
4336 BUG();
4337 return NULL;
4338 }
4339 if (directory->variant_type != YAFFS_OBJECT_TYPE_DIRECTORY) {
4340 yaffs_trace(YAFFS_TRACE_ALWAYS,
4341 "tragedy: yaffs_find_by_name: non-directory"
4342 );
4343 BUG();
4344 }
4345
4346 sum = yaffs_calc_name_sum(name);
4347
4348 list_for_each(i, &directory->variant.dir_variant.children) {
4349 l = list_entry(i, struct yaffs_obj, siblings);
4350
4351 if (l->parent != directory)
4352 BUG();
4353
4354 yaffs_check_obj_details_loaded(l);
4355
4356 /* Special case for lost-n-found */
4357 if (l->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4358 if (!strcmp(name, YAFFS_LOSTNFOUND_NAME))
4359 return l;
4360 } else if (l->sum == sum || l->hdr_chunk <= 0) {
4361 /* LostnFound chunk called Objxxx
4362 * Do a real check
4363 */
4364 yaffs_get_obj_name(l, buffer,
4365 YAFFS_MAX_NAME_LENGTH + 1);
4366 if (!strncmp(name, buffer, YAFFS_MAX_NAME_LENGTH))
4367 return l;
4368 }
4369 }
4370 return NULL;
4371 }
4372
4373 /* GetEquivalentObject dereferences any hard links to get to the
4374 * actual object.
4375 */
4376
4377 struct yaffs_obj *yaffs_get_equivalent_obj(struct yaffs_obj *obj)
4378 {
4379 if (obj && obj->variant_type == YAFFS_OBJECT_TYPE_HARDLINK) {
4380 obj = obj->variant.hardlink_variant.equiv_obj;
4381 yaffs_check_obj_details_loaded(obj);
4382 }
4383 return obj;
4384 }
4385
4386 /*
4387 * A note or two on object names.
4388 * * If the object name is missing, we then make one up in the form objnnn
4389 *
4390 * * ASCII names are stored in the object header's name field from byte zero
4391 * * Unicode names are historically stored starting from byte zero.
4392 *
4393 * Then there are automatic Unicode names...
4394 * The purpose of these is to save names in a way that can be read as
4395 * ASCII or Unicode names as appropriate, thus allowing a Unicode and ASCII
4396 * system to share files.
4397 *
4398 * These automatic unicode are stored slightly differently...
4399 * - If the name can fit in the ASCII character space then they are saved as
4400 * ascii names as per above.
4401 * - If the name needs Unicode then the name is saved in Unicode
4402 * starting at oh->name[1].
4403
4404 */
4405 static void yaffs_fix_null_name(struct yaffs_obj *obj, YCHAR *name,
4406 int buffer_size)
4407 {
4408 /* Create an object name if we could not find one. */
4409 if (strnlen(name, YAFFS_MAX_NAME_LENGTH) == 0) {
4410 YCHAR local_name[20];
4411 YCHAR num_string[20];
4412 YCHAR *x = &num_string[19];
4413 unsigned v = obj->obj_id;
4414 num_string[19] = 0;
4415 while (v > 0) {
4416 x--;
4417 *x = '0' + (v % 10);
4418 v /= 10;
4419 }
4420 /* make up a name */
4421 strcpy(local_name, YAFFS_LOSTNFOUND_PREFIX);
4422 strcat(local_name, x);
4423 strncpy(name, local_name, buffer_size - 1);
4424 }
4425 }
4426
4427 int yaffs_get_obj_name(struct yaffs_obj *obj, YCHAR *name, int buffer_size)
4428 {
4429 memset(name, 0, buffer_size * sizeof(YCHAR));
4430 yaffs_check_obj_details_loaded(obj);
4431 if (obj->obj_id == YAFFS_OBJECTID_LOSTNFOUND) {
4432 strncpy(name, YAFFS_LOSTNFOUND_NAME, buffer_size - 1);
4433 } else if (obj->short_name[0]) {
4434 strcpy(name, obj->short_name);
4435 } else if (obj->hdr_chunk > 0) {
4436 int result;
4437 u8 *buffer = yaffs_get_temp_buffer(obj->my_dev);
4438
4439 struct yaffs_obj_hdr *oh = (struct yaffs_obj_hdr *)buffer;
4440
4441 memset(buffer, 0, obj->my_dev->data_bytes_per_chunk);
4442
4443 if (obj->hdr_chunk > 0) {
4444 result = yaffs_rd_chunk_tags_nand(obj->my_dev,
4445 obj->hdr_chunk,
4446 buffer, NULL);
4447 }
4448 yaffs_load_name_from_oh(obj->my_dev, name, oh->name,
4449 buffer_size);
4450
4451 yaffs_release_temp_buffer(obj->my_dev, buffer);
4452 }
4453
4454 yaffs_fix_null_name(obj, name, buffer_size);
4455
4456 return strnlen(name, YAFFS_MAX_NAME_LENGTH);
4457 }
4458
4459 loff_t yaffs_get_obj_length(struct yaffs_obj *obj)
4460 {
4461 /* Dereference any hard linking */
4462 obj = yaffs_get_equivalent_obj(obj);
4463
4464 if (obj->variant_type == YAFFS_OBJECT_TYPE_FILE)
4465 return obj->variant.file_variant.file_size;
4466 if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK) {
4467 if (!obj->variant.symlink_variant.alias)
4468 return 0;
4469 return strnlen(obj->variant.symlink_variant.alias,
4470 YAFFS_MAX_ALIAS_LENGTH);
4471 } else {
4472 /* Only a directory should drop through to here */
4473 return obj->my_dev->data_bytes_per_chunk;
4474 }
4475 }
4476
4477 int yaffs_get_obj_link_count(struct yaffs_obj *obj)
4478 {
4479 int count = 0;
4480 struct list_head *i;
4481
4482 if (!obj->unlinked)
4483 count++; /* the object itself */
4484
4485 list_for_each(i, &obj->hard_links)
4486 count++; /* add the hard links; */
4487
4488 return count;
4489 }
4490
4491 int yaffs_get_obj_inode(struct yaffs_obj *obj)
4492 {
4493 obj = yaffs_get_equivalent_obj(obj);
4494
4495 return obj->obj_id;
4496 }
4497
4498 unsigned yaffs_get_obj_type(struct yaffs_obj *obj)
4499 {
4500 obj = yaffs_get_equivalent_obj(obj);
4501
4502 switch (obj->variant_type) {
4503 case YAFFS_OBJECT_TYPE_FILE:
4504 return DT_REG;
4505 break;
4506 case YAFFS_OBJECT_TYPE_DIRECTORY:
4507 return DT_DIR;
4508 break;
4509 case YAFFS_OBJECT_TYPE_SYMLINK:
4510 return DT_LNK;
4511 break;
4512 case YAFFS_OBJECT_TYPE_HARDLINK:
4513 return DT_REG;
4514 break;
4515 case YAFFS_OBJECT_TYPE_SPECIAL:
4516 if (S_ISFIFO(obj->yst_mode))
4517 return DT_FIFO;
4518 if (S_ISCHR(obj->yst_mode))
4519 return DT_CHR;
4520 if (S_ISBLK(obj->yst_mode))
4521 return DT_BLK;
4522 if (S_ISSOCK(obj->yst_mode))
4523 return DT_SOCK;
4524 return DT_REG;
4525 break;
4526 default:
4527 return DT_REG;
4528 break;
4529 }
4530 }
4531
4532 YCHAR *yaffs_get_symlink_alias(struct yaffs_obj *obj)
4533 {
4534 obj = yaffs_get_equivalent_obj(obj);
4535 if (obj->variant_type == YAFFS_OBJECT_TYPE_SYMLINK)
4536 return yaffs_clone_str(obj->variant.symlink_variant.alias);
4537 else
4538 return yaffs_clone_str(_Y(""));
4539 }
4540
4541 /*--------------------------- Initialisation code -------------------------- */
4542
4543 static int yaffs_check_dev_fns(struct yaffs_dev *dev)
4544 {
4545 struct yaffs_driver *drv = &dev->drv;
4546 struct yaffs_tags_handler *tagger = &dev->tagger;
4547
4548 /* Common functions, gotta have */
4549 if (!drv->drv_read_chunk_fn ||
4550 !drv->drv_write_chunk_fn ||
4551 !drv->drv_erase_fn)
4552 return 0;
4553
4554 if (dev->param.is_yaffs2 &&
4555 (!drv->drv_mark_bad_fn || !drv->drv_check_bad_fn))
4556 return 0;
4557
4558 /* Install the default tags marshalling functions if needed. */
4559 yaffs_tags_compat_install(dev);
4560 yaffs_tags_marshall_install(dev);
4561
4562 /* Check we now have the marshalling functions required. */
4563 if (!tagger->write_chunk_tags_fn ||
4564 !tagger->read_chunk_tags_fn ||
4565 !tagger->query_block_fn ||
4566 !tagger->mark_bad_fn)
4567 return 0;
4568
4569 return 1;
4570 }
4571
4572 static int yaffs_create_initial_dir(struct yaffs_dev *dev)
4573 {
4574 /* Initialise the unlinked, deleted, root and lost+found directories */
4575 dev->lost_n_found = dev->root_dir = NULL;
4576 dev->unlinked_dir = dev->del_dir = NULL;
4577 dev->unlinked_dir =
4578 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_UNLINKED, S_IFDIR);
4579 dev->del_dir =
4580 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_DELETED, S_IFDIR);
4581 dev->root_dir =
4582 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_ROOT,
4583 YAFFS_ROOT_MODE | S_IFDIR);
4584 dev->lost_n_found =
4585 yaffs_create_fake_dir(dev, YAFFS_OBJECTID_LOSTNFOUND,
4586 YAFFS_LOSTNFOUND_MODE | S_IFDIR);
4587
4588 if (dev->lost_n_found && dev->root_dir && dev->unlinked_dir
4589 && dev->del_dir) {
4590 yaffs_add_obj_to_dir(dev->root_dir, dev->lost_n_found);
4591 return YAFFS_OK;
4592 }
4593 return YAFFS_FAIL;
4594 }
4595
4596 /* Low level init.
4597 * Typically only used by yaffs_guts_initialise, but also used by the
4598 * Low level yaffs driver tests.
4599 */
4600
4601 int yaffs_guts_ll_init(struct yaffs_dev *dev)
4602 {
4603
4604
4605 yaffs_trace(YAFFS_TRACE_TRACING, "yaffs: yaffs_ll_init()");
4606
4607 if (!dev) {
4608 yaffs_trace(YAFFS_TRACE_ALWAYS,
4609 "yaffs: Need a device"
4610 );
4611 return YAFFS_FAIL;
4612 }
4613
4614 if (dev->ll_init)
4615 return YAFFS_OK;
4616
4617 dev->internal_start_block = dev->param.start_block;
4618 dev->internal_end_block = dev->param.end_block;
4619 dev->block_offset = 0;
4620 dev->chunk_offset = 0;
4621 dev->n_free_chunks = 0;
4622
4623 dev->gc_block = 0;
4624
4625 if (dev->param.start_block == 0) {
4626 dev->internal_start_block = dev->param.start_block + 1;
4627 dev->internal_end_block = dev->param.end_block + 1;
4628 dev->block_offset = 1;
4629 dev->chunk_offset = dev->param.chunks_per_block;
4630 }
4631
4632 /* Check geometry parameters. */
4633
4634 if ((!dev->param.inband_tags && dev->param.is_yaffs2 &&
4635 dev->param.total_bytes_per_chunk < 1024) ||
4636 (!dev->param.is_yaffs2 &&
4637 dev->param.total_bytes_per_chunk < 512) ||
4638 (dev->param.inband_tags && !dev->param.is_yaffs2) ||
4639 dev->param.chunks_per_block < 2 ||
4640 dev->param.n_reserved_blocks < 2 ||
4641 dev->internal_start_block <= 0 ||
4642 dev->internal_end_block <= 0 ||
4643 dev->internal_end_block <=
4644 (dev->internal_start_block + dev->param.n_reserved_blocks + 2)
4645 ) {
4646 /* otherwise it is too small */
4647 yaffs_trace(YAFFS_TRACE_ALWAYS,
4648 "NAND geometry problems: chunk size %d, type is yaffs%s, inband_tags %d ",
4649 dev->param.total_bytes_per_chunk,
4650 dev->param.is_yaffs2 ? "2" : "",
4651 dev->param.inband_tags);
4652 return YAFFS_FAIL;
4653 }
4654
4655 /* Sort out space for inband tags, if required */
4656 if (dev->param.inband_tags)
4657 dev->data_bytes_per_chunk =
4658 dev->param.total_bytes_per_chunk -
4659 sizeof(struct yaffs_packed_tags2_tags_only);
4660 else
4661 dev->data_bytes_per_chunk = dev->param.total_bytes_per_chunk;
4662
4663 /* Got the right mix of functions? */
4664 if (!yaffs_check_dev_fns(dev)) {
4665 /* Function missing */
4666 yaffs_trace(YAFFS_TRACE_ALWAYS,
4667 "device function(s) missing or wrong");
4668
4669 return YAFFS_FAIL;
4670 }
4671
4672 if (yaffs_init_nand(dev) != YAFFS_OK) {
4673 yaffs_trace(YAFFS_TRACE_ALWAYS, "InitialiseNAND failed");
4674 return YAFFS_FAIL;
4675 }
4676
4677 return YAFFS_OK;
4678 }
4679
4680
4681 int yaffs_format_dev(struct yaffs_dev *dev)
4682 {
4683 int i;
4684 enum yaffs_block_state state;
4685 u32 dummy;
4686
4687 if(yaffs_guts_ll_init(dev) != YAFFS_OK)
4688 return YAFFS_FAIL;
4689
4690 if(dev->is_mounted)
4691 return YAFFS_FAIL;
4692
4693 for (i = dev->internal_start_block; i <= dev->internal_end_block; i++) {
4694 yaffs_query_init_block_state(dev, i, &state, &dummy);
4695 if (state != YAFFS_BLOCK_STATE_DEAD)
4696 yaffs_erase_block(dev, i);
4697 }
4698
4699 return YAFFS_OK;
4700 }
4701
4702
4703 int yaffs_guts_initialise(struct yaffs_dev *dev)
4704 {
4705 int init_failed = 0;
4706 unsigned x;
4707 int bits;
4708
4709 if(yaffs_guts_ll_init(dev) != YAFFS_OK)
4710 return YAFFS_FAIL;
4711
4712 if (dev->is_mounted) {
4713 yaffs_trace(YAFFS_TRACE_ALWAYS, "device already mounted");
4714 return YAFFS_FAIL;
4715 }
4716
4717 dev->is_mounted = 1;
4718
4719 /* OK now calculate a few things for the device */
4720
4721 /*
4722 * Calculate all the chunk size manipulation numbers:
4723 */
4724 x = dev->data_bytes_per_chunk;
4725 /* We always use dev->chunk_shift and dev->chunk_div */
4726 dev->chunk_shift = calc_shifts(x);
4727 x >>= dev->chunk_shift;
4728 dev->chunk_div = x;
4729 /* We only use chunk mask if chunk_div is 1 */
4730 dev->chunk_mask = (1 << dev->chunk_shift) - 1;
4731
4732 /*
4733 * Calculate chunk_grp_bits.
4734 * We need to find the next power of 2 > than internal_end_block
4735 */
4736
4737 x = dev->param.chunks_per_block * (dev->internal_end_block + 1);
4738
4739 bits = calc_shifts_ceiling(x);
4740
4741 /* Set up tnode width if wide tnodes are enabled. */
4742 if (!dev->param.wide_tnodes_disabled) {
4743 /* bits must be even so that we end up with 32-bit words */
4744 if (bits & 1)
4745 bits++;
4746 if (bits < 16)
4747 dev->tnode_width = 16;
4748 else
4749 dev->tnode_width = bits;
4750 } else {
4751 dev->tnode_width = 16;
4752 }
4753
4754 dev->tnode_mask = (1 << dev->tnode_width) - 1;
4755
4756 /* Level0 Tnodes are 16 bits or wider (if wide tnodes are enabled),
4757 * so if the bitwidth of the
4758 * chunk range we're using is greater than 16 we need
4759 * to figure out chunk shift and chunk_grp_size
4760 */
4761
4762 if (bits <= dev->tnode_width)
4763 dev->chunk_grp_bits = 0;
4764 else
4765 dev->chunk_grp_bits = bits - dev->tnode_width;
4766
4767 dev->tnode_size = (dev->tnode_width * YAFFS_NTNODES_LEVEL0) / 8;
4768 if (dev->tnode_size < sizeof(struct yaffs_tnode))
4769 dev->tnode_size = sizeof(struct yaffs_tnode);
4770
4771 dev->chunk_grp_size = 1 << dev->chunk_grp_bits;
4772
4773 if (dev->param.chunks_per_block < dev->chunk_grp_size) {
4774 /* We have a problem because the soft delete won't work if
4775 * the chunk group size > chunks per block.
4776 * This can be remedied by using larger "virtual blocks".
4777 */
4778 yaffs_trace(YAFFS_TRACE_ALWAYS, "chunk group too large");
4779
4780 return YAFFS_FAIL;
4781 }
4782
4783 /* Finished verifying the device, continue with initialisation */
4784
4785 /* More device initialisation */
4786 dev->all_gcs = 0;
4787 dev->passive_gc_count = 0;
4788 dev->oldest_dirty_gc_count = 0;
4789 dev->bg_gcs = 0;
4790 dev->gc_block_finder = 0;
4791 dev->buffered_block = -1;
4792 dev->doing_buffered_block_rewrite = 0;
4793 dev->n_deleted_files = 0;
4794 dev->n_bg_deletions = 0;
4795 dev->n_unlinked_files = 0;
4796 dev->n_ecc_fixed = 0;
4797 dev->n_ecc_unfixed = 0;
4798 dev->n_tags_ecc_fixed = 0;
4799 dev->n_tags_ecc_unfixed = 0;
4800 dev->n_erase_failures = 0;
4801 dev->n_erased_blocks = 0;
4802 dev->gc_disable = 0;
4803 dev->has_pending_prioritised_gc = 1;
4804 /* Assume the worst for now, will get fixed on first GC */
4805 INIT_LIST_HEAD(&dev->dirty_dirs);
4806 dev->oldest_dirty_seq = 0;
4807 dev->oldest_dirty_block = 0;
4808
4809 /* Initialise temporary buffers and caches. */
4810 if (!yaffs_init_tmp_buffers(dev))
4811 init_failed = 1;
4812
4813 dev->cache = NULL;
4814 dev->gc_cleanup_list = NULL;
4815
4816 if (!init_failed && dev->param.n_caches > 0) {
4817 int i;
4818 void *buf;
4819 int cache_bytes =
4820 dev->param.n_caches * sizeof(struct yaffs_cache);
4821
4822 if (dev->param.n_caches > YAFFS_MAX_SHORT_OP_CACHES)
4823 dev->param.n_caches = YAFFS_MAX_SHORT_OP_CACHES;
4824
4825 dev->cache = kmalloc(cache_bytes, GFP_NOFS);
4826
4827 buf = (u8 *) dev->cache;
4828
4829 if (dev->cache)
4830 memset(dev->cache, 0, cache_bytes);
4831
4832 for (i = 0; i < dev->param.n_caches && buf; i++) {
4833 dev->cache[i].object = NULL;
4834 dev->cache[i].last_use = 0;
4835 dev->cache[i].dirty = 0;
4836 dev->cache[i].data = buf =
4837 kmalloc(dev->param.total_bytes_per_chunk, GFP_NOFS);
4838 }
4839 if (!buf)
4840 init_failed = 1;
4841
4842 dev->cache_last_use = 0;
4843 }
4844
4845 dev->cache_hits = 0;
4846
4847 if (!init_failed) {
4848 dev->gc_cleanup_list =
4849 kmalloc(dev->param.chunks_per_block * sizeof(u32),
4850 GFP_NOFS);
4851 if (!dev->gc_cleanup_list)
4852 init_failed = 1;
4853 }
4854
4855 if (dev->param.is_yaffs2)
4856 dev->param.use_header_file_size = 1;
4857
4858 if (!init_failed && !yaffs_init_blocks(dev))
4859 init_failed = 1;
4860
4861 yaffs_init_tnodes_and_objs(dev);
4862
4863 if (!init_failed && !yaffs_create_initial_dir(dev))
4864 init_failed = 1;
4865
4866 if (!init_failed && dev->param.is_yaffs2 &&
4867 !dev->param.disable_summary &&
4868 !yaffs_summary_init(dev))
4869 init_failed = 1;
4870
4871 if (!init_failed) {
4872 /* Now scan the flash. */
4873 if (dev->param.is_yaffs2) {
4874 if (yaffs2_checkpt_restore(dev)) {
4875 yaffs_check_obj_details_loaded(dev->root_dir);
4876 yaffs_trace(YAFFS_TRACE_CHECKPOINT |
4877 YAFFS_TRACE_MOUNT,
4878 "yaffs: restored from checkpoint"
4879 );
4880 } else {
4881
4882 /* Clean up the mess caused by an aborted
4883 * checkpoint load then scan backwards.
4884 */
4885 yaffs_deinit_blocks(dev);
4886
4887 yaffs_deinit_tnodes_and_objs(dev);
4888
4889 dev->n_erased_blocks = 0;
4890 dev->n_free_chunks = 0;
4891 dev->alloc_block = -1;
4892 dev->alloc_page = -1;
4893 dev->n_deleted_files = 0;
4894 dev->n_unlinked_files = 0;
4895 dev->n_bg_deletions = 0;
4896
4897 if (!init_failed && !yaffs_init_blocks(dev))
4898 init_failed = 1;
4899
4900 yaffs_init_tnodes_and_objs(dev);
4901
4902 if (!init_failed
4903 && !yaffs_create_initial_dir(dev))
4904 init_failed = 1;
4905
4906 if (!init_failed && !yaffs2_scan_backwards(dev))
4907 init_failed = 1;
4908 }
4909 } else if (!yaffs1_scan(dev)) {
4910 init_failed = 1;
4911 }
4912
4913 yaffs_strip_deleted_objs(dev);
4914 yaffs_fix_hanging_objs(dev);
4915 if (dev->param.empty_lost_n_found)
4916 yaffs_empty_l_n_f(dev);
4917 }
4918
4919 if (init_failed) {
4920 /* Clean up the mess */
4921 yaffs_trace(YAFFS_TRACE_TRACING,
4922 "yaffs: yaffs_guts_initialise() aborted.");
4923
4924 yaffs_deinitialise(dev);
4925 return YAFFS_FAIL;
4926 }
4927
4928 /* Zero out stats */
4929 dev->n_page_reads = 0;
4930 dev->n_page_writes = 0;
4931 dev->n_erasures = 0;
4932 dev->n_gc_copies = 0;
4933 dev->n_retried_writes = 0;
4934
4935 dev->n_retired_blocks = 0;
4936
4937 yaffs_verify_free_chunks(dev);
4938 yaffs_verify_blocks(dev);
4939
4940 /* Clean up any aborted checkpoint data */
4941 if (!dev->is_checkpointed && dev->blocks_in_checkpt > 0)
4942 yaffs2_checkpt_invalidate(dev);
4943
4944 yaffs_trace(YAFFS_TRACE_TRACING,
4945 "yaffs: yaffs_guts_initialise() done.");
4946 return YAFFS_OK;
4947 }
4948
4949 void yaffs_deinitialise(struct yaffs_dev *dev)
4950 {
4951 if (dev->is_mounted) {
4952 int i;
4953
4954 yaffs_deinit_blocks(dev);
4955 yaffs_deinit_tnodes_and_objs(dev);
4956 yaffs_summary_deinit(dev);
4957
4958 if (dev->param.n_caches > 0 && dev->cache) {
4959
4960 for (i = 0; i < dev->param.n_caches; i++) {
4961 kfree(dev->cache[i].data);
4962 dev->cache[i].data = NULL;
4963 }
4964
4965 kfree(dev->cache);
4966 dev->cache = NULL;
4967 }
4968
4969 kfree(dev->gc_cleanup_list);
4970
4971 for (i = 0; i < YAFFS_N_TEMP_BUFFERS; i++)
4972 kfree(dev->temp_buffer[i].buffer);
4973
4974 dev->is_mounted = 0;
4975
4976 yaffs_deinit_nand(dev);
4977 }
4978 }
4979
4980 int yaffs_count_free_chunks(struct yaffs_dev *dev)
4981 {
4982 int n_free = 0;
4983 int b;
4984 struct yaffs_block_info *blk;
4985
4986 blk = dev->block_info;
4987 for (b = dev->internal_start_block; b <= dev->internal_end_block; b++) {
4988 switch (blk->block_state) {
4989 case YAFFS_BLOCK_STATE_EMPTY:
4990 case YAFFS_BLOCK_STATE_ALLOCATING:
4991 case YAFFS_BLOCK_STATE_COLLECTING:
4992 case YAFFS_BLOCK_STATE_FULL:
4993 n_free +=
4994 (dev->param.chunks_per_block - blk->pages_in_use +
4995 blk->soft_del_pages);
4996 break;
4997 default:
4998 break;
4999 }
5000 blk++;
5001 }
5002 return n_free;
5003 }
5004
5005 int yaffs_get_n_free_chunks(struct yaffs_dev *dev)
5006 {
5007 /* This is what we report to the outside world */
5008 int n_free;
5009 int n_dirty_caches;
5010 int blocks_for_checkpt;
5011 int i;
5012
5013 n_free = dev->n_free_chunks;
5014 n_free += dev->n_deleted_files;
5015
5016 /* Now count and subtract the number of dirty chunks in the cache. */
5017
5018 for (n_dirty_caches = 0, i = 0; i < dev->param.n_caches; i++) {
5019 if (dev->cache[i].dirty)
5020 n_dirty_caches++;
5021 }
5022
5023 n_free -= n_dirty_caches;
5024
5025 n_free -=
5026 ((dev->param.n_reserved_blocks + 1) * dev->param.chunks_per_block);
5027
5028 /* Now figure checkpoint space and report that... */
5029 blocks_for_checkpt = yaffs_calc_checkpt_blocks_required(dev);
5030
5031 n_free -= (blocks_for_checkpt * dev->param.chunks_per_block);
5032
5033 if (n_free < 0)
5034 n_free = 0;
5035
5036 return n_free;
5037 }
5038
5039
5040
5041 /*
5042 * Marshalling functions to get loff_t file sizes into and out of
5043 * object headers.
5044 */
5045 void yaffs_oh_size_load(struct yaffs_obj_hdr *oh, loff_t fsize)
5046 {
5047 oh->file_size_low = (fsize & 0xFFFFFFFF);
5048 oh->file_size_high = ((fsize >> 32) & 0xFFFFFFFF);
5049 }
5050
5051 loff_t yaffs_oh_to_size(struct yaffs_obj_hdr *oh)
5052 {
5053 loff_t retval;
5054
5055 if (sizeof(loff_t) >= 8 && ~(oh->file_size_high))
5056 retval = (((loff_t) oh->file_size_high) << 32) |
5057 (((loff_t) oh->file_size_low) & 0xFFFFFFFF);
5058 else
5059 retval = (loff_t) oh->file_size_low;
5060
5061 return retval;
5062 }
5063
5064
5065 void yaffs_count_blocks_by_state(struct yaffs_dev *dev, int bs[10])
5066 {
5067 int i;
5068 struct yaffs_block_info *bi;
5069 int s;
5070
5071 for(i = 0; i < 10; i++)
5072 bs[i] = 0;
5073
5074 for(i = dev->internal_start_block; i <= dev->internal_end_block; i++) {
5075 bi = yaffs_get_block_info(dev, i);
5076 s = bi->block_state;
5077 if(s > YAFFS_BLOCK_STATE_DEAD || s < YAFFS_BLOCK_STATE_UNKNOWN)
5078 bs[0]++;
5079 else
5080 bs[s]++;
5081 }
5082 }