add common functions for the new config file format
[openwrt/svn-archive/archive.git] / openwrt / target / linux / package / ieee80211-dscape / src / ieee80211.c
1 /*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005, Devicescape Software, Inc.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 */
9
10 #ifndef EXPORT_SYMTAB
11 #define EXPORT_SYMTAB
12 #endif
13
14 #include <linux/config.h>
15 #include <linux/version.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/netdevice.h>
19 #include <linux/types.h>
20 #include <linux/slab.h>
21 #include <linux/skbuff.h>
22 #include <linux/etherdevice.h>
23 #include <linux/if_arp.h>
24 #include <linux/wireless.h>
25 #include <net/iw_handler.h>
26 #include <linux/compiler.h>
27
28 #include <net/ieee80211.h>
29 #include <net/ieee80211_common.h>
30 #include <net/ieee80211_mgmt.h>
31 #include "ieee80211_i.h"
32 #include "ieee80211_proc.h"
33 #include "rate_control.h"
34 #include "wep.h"
35 #include "wpa.h"
36 #include "tkip.h"
37 #include "wme.h"
38
39
40 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
41 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
42 static unsigned char rfc1042_header[] =
43 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
44 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
45 static unsigned char bridge_tunnel_header[] =
46 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
47 /* No encapsulation header if EtherType < 0x600 (=length) */
48
49 static unsigned char eapol_header[] =
50 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00, 0x88, 0x8e };
51
52
53 struct rate_control_algs {
54 struct rate_control_algs *next;
55 struct rate_control_ops *ops;
56 };
57
58 static struct rate_control_algs *ieee80211_rate_ctrl_algs;
59
60 static int rate_control_initialize(struct ieee80211_local *local);
61
62
63 static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len);
64
65
66 struct ieee80211_key_conf *
67 ieee80211_key_data2conf(struct ieee80211_local *local,
68 struct ieee80211_key *data)
69 {
70 struct ieee80211_key_conf *conf;
71
72 conf = kmalloc(sizeof(*conf) + data->keylen, GFP_ATOMIC);
73 if (conf == NULL)
74 return NULL;
75
76 conf->hw_key_idx = data->hw_key_idx;
77 conf->alg = data->alg;
78 conf->keylen = data->keylen;
79 conf->force_sw_encrypt = data->force_sw_encrypt;
80 conf->keyidx = data->keyidx;
81 conf->default_tx_key = data->default_tx_key;
82 conf->default_wep_only = local->default_wep_only;
83 memcpy(conf->key, data->key, data->keylen);
84
85 return conf;
86 }
87
88
89 static int rate_list_match(int *rate_list, int rate)
90 {
91 int i;
92
93 if (rate_list == NULL)
94 return 0;
95
96 for (i = 0; rate_list[i] >= 0; i++)
97 if (rate_list[i] == rate)
98 return 1;
99
100 return 0;
101 }
102
103
104 void ieee80211_prepare_rates(struct net_device *dev)
105 {
106 struct ieee80211_local *local = dev->priv;
107 int i;
108
109 for (i = 0; i < local->num_curr_rates; i++) {
110 struct ieee80211_rate *rate = &local->curr_rates[i];
111
112 rate->flags &= ~(IEEE80211_RATE_SUPPORTED |
113 IEEE80211_RATE_BASIC);
114
115 if (local->supp_rates[local->conf.phymode]) {
116 if (!rate_list_match(local->supp_rates
117 [local->conf.phymode],
118 rate->rate))
119 continue;
120 }
121
122 rate->flags |= IEEE80211_RATE_SUPPORTED;
123
124 /* Use configured basic rate set if it is available. If not,
125 * use defaults that are sane for most cases. */
126 if (local->basic_rates[local->conf.phymode]) {
127 if (rate_list_match(local->basic_rates
128 [local->conf.phymode],
129 rate->rate))
130 rate->flags |= IEEE80211_RATE_BASIC;
131 } else switch (local->conf.phymode) {
132 case MODE_IEEE80211A:
133 if (rate->rate == 60 || rate->rate == 120 ||
134 rate->rate == 240)
135 rate->flags |= IEEE80211_RATE_BASIC;
136 break;
137 case MODE_IEEE80211B:
138 if (rate->rate == 10 || rate->rate == 20)
139 rate->flags |= IEEE80211_RATE_BASIC;
140 break;
141 case MODE_ATHEROS_TURBO:
142 if (rate->rate == 120 || rate->rate == 240 ||
143 rate->rate == 480)
144 rate->flags |= IEEE80211_RATE_BASIC;
145 break;
146 case MODE_IEEE80211G:
147 if (rate->rate == 10 || rate->rate == 20 ||
148 rate->rate == 55 || rate->rate == 110)
149 rate->flags |= IEEE80211_RATE_BASIC;
150 break;
151 }
152
153 /* Set ERP and MANDATORY flags based on phymode */
154 switch (local->conf.phymode) {
155 case MODE_IEEE80211A:
156 if (rate->rate == 60 || rate->rate == 120 ||
157 rate->rate == 240)
158 rate->flags |= IEEE80211_RATE_MANDATORY;
159 break;
160 case MODE_IEEE80211B:
161 if (rate->rate == 10)
162 rate->flags |= IEEE80211_RATE_MANDATORY;
163 break;
164 case MODE_ATHEROS_TURBO:
165 break;
166 case MODE_IEEE80211G:
167 if (rate->rate == 10 || rate->rate == 20 ||
168 rate->rate == 55 || rate->rate == 110 ||
169 rate->rate == 60 || rate->rate == 120 ||
170 rate->rate == 240)
171 rate->flags |= IEEE80211_RATE_MANDATORY;
172 if (rate->rate != 10 && rate->rate != 20 &&
173 rate->rate != 55 && rate->rate != 110)
174 rate->flags |= IEEE80211_RATE_ERP;
175 break;
176 }
177 }
178 }
179
180
181 static void ieee80211_key_threshold_notify(struct net_device *dev,
182 struct ieee80211_key *key,
183 struct sta_info *sta)
184 {
185 struct sk_buff *skb;
186 struct ieee80211_msg_key_notification *msg;
187
188 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
189 sizeof(struct ieee80211_msg_key_notification));
190 if (skb == NULL)
191 return;
192
193 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
194 msg = (struct ieee80211_msg_key_notification *)
195 skb_put(skb, sizeof(struct ieee80211_msg_key_notification));
196 msg->tx_rx_count = key->tx_rx_count;
197 memcpy(msg->ifname, dev->name, IFNAMSIZ);
198 if (sta)
199 memcpy(msg->addr, sta->addr, ETH_ALEN);
200 else
201 memset(msg->addr, 0xff, ETH_ALEN);
202
203 key->tx_rx_count = 0;
204
205 ieee80211_rx_mgmt(dev, skb, 0,
206 ieee80211_msg_key_threshold_notification);
207 }
208
209
210 int ieee80211_get_hdrlen(u16 fc)
211 {
212 int hdrlen = 24;
213
214 switch (WLAN_FC_GET_TYPE(fc)) {
215 case WLAN_FC_TYPE_DATA:
216 if ((fc & WLAN_FC_FROMDS) && (fc & WLAN_FC_TODS))
217 hdrlen = 30; /* Addr4 */
218 if (WLAN_FC_GET_STYPE(fc) & 0x08)
219 hdrlen += 2; /* QoS Control Field */
220 break;
221 case WLAN_FC_TYPE_CTRL:
222 switch (WLAN_FC_GET_STYPE(fc)) {
223 case WLAN_FC_STYPE_CTS:
224 case WLAN_FC_STYPE_ACK:
225 hdrlen = 10;
226 break;
227 default:
228 hdrlen = 16;
229 break;
230 }
231 break;
232 }
233
234 return hdrlen;
235 }
236
237
238 int ieee80211_get_hdrlen_from_skb(struct sk_buff *skb)
239 {
240 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
241 int hdrlen;
242
243 if (unlikely(skb->len < 10))
244 return 0;
245 hdrlen = ieee80211_get_hdrlen(le16_to_cpu(hdr->frame_control));
246 if (unlikely(hdrlen > skb->len))
247 return 0;
248 return hdrlen;
249 }
250
251
252 #ifdef IEEE80211_VERBOSE_DEBUG_FRAME_DUMP
253 static void ieee80211_dump_frame(const char *ifname, const char *title,
254 struct sk_buff *skb)
255 {
256 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
257 u16 fc;
258 int hdrlen;
259
260 printk(KERN_DEBUG "%s: %s (len=%d)", ifname, title, skb->len);
261 if (skb->len < 4) {
262 printk("\n");
263 return;
264 }
265
266 fc = le16_to_cpu(hdr->frame_control);
267 hdrlen = ieee80211_get_hdrlen(fc);
268 if (hdrlen > skb->len)
269 hdrlen = skb->len;
270 if (hdrlen >= 4)
271 printk(" FC=0x%04x DUR=0x%04x",
272 fc, le16_to_cpu(hdr->duration_id));
273 if (hdrlen >= 10)
274 printk(" A1=" MACSTR, MAC2STR(hdr->addr1));
275 if (hdrlen >= 16)
276 printk(" A2=" MACSTR, MAC2STR(hdr->addr2));
277 if (hdrlen >= 24)
278 printk(" A3=" MACSTR, MAC2STR(hdr->addr3));
279 if (hdrlen >= 30)
280 printk(" A4=" MACSTR, MAC2STR(hdr->addr4));
281 printk("\n");
282 }
283 #else /* IEEE80211_VERBOSE_DEBUG_FRAME_DUMP */
284 static inline void ieee80211_dump_frame(const char *ifname, const char *title,
285 struct sk_buff *skb)
286 {
287 }
288 #endif /* IEEE80211_VERBOSE_DEBUG_FRAME_DUMP */
289
290
291 static int ieee80211_is_eapol(struct sk_buff *skb)
292 {
293 struct ieee80211_hdr *hdr;
294 u16 fc;
295 int hdrlen;
296
297 if (unlikely(skb->len < 10))
298 return 0;
299
300 hdr = (struct ieee80211_hdr *) skb->data;
301 fc = le16_to_cpu(hdr->frame_control);
302
303 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
304 return 0;
305
306 hdrlen = ieee80211_get_hdrlen(fc);
307
308 if (unlikely(skb->len >= hdrlen + sizeof(eapol_header) &&
309 memcmp(skb->data + hdrlen, eapol_header,
310 sizeof(eapol_header)) == 0))
311 return 1;
312
313 return 0;
314 }
315
316
317 static ieee80211_txrx_result
318 ieee80211_tx_h_rate_ctrl(struct ieee80211_txrx_data *tx)
319 {
320 struct rate_control_extra extra;
321
322 memset(&extra, 0, sizeof(extra));
323 extra.mgmt_data = tx->sdata &&
324 tx->sdata->type == IEEE80211_SUB_IF_TYPE_MGMT;
325 extra.ethertype = tx->ethertype;
326 extra.startidx = 0;
327 extra.endidx = tx->local->num_curr_rates;
328
329
330 tx->u.tx.rate = rate_control_get_rate(tx->dev, tx->skb, &extra);
331 if (unlikely(extra.probe != NULL)) {
332 tx->u.tx.control->rate_ctrl_probe = 1;
333 tx->u.tx.probe_last_frag = 1;
334 // tx->u.tx.control->alt_retry_rate = tx->u.tx.rate->val;
335 tx->u.tx.rate = extra.probe;
336 } else {
337 // tx->u.tx.control->alt_retry_rate = -1;
338 }
339 if (!tx->u.tx.rate)
340 return TXRX_DROP;
341 if (tx->local->conf.phymode == MODE_IEEE80211G &&
342 tx->local->cts_protect_erp_frames && tx->fragmented &&
343 extra.nonerp) {
344 tx->u.tx.last_frag_rate = tx->u.tx.rate;
345 tx->u.tx.last_frag_rateidx = extra.rateidx;
346 tx->u.tx.probe_last_frag = extra.probe ? 1 : 0;
347
348 tx->u.tx.rate = extra.nonerp;
349 // tx->u.tx.control->rateidx = extra.nonerp_idx;
350 tx->u.tx.control->rate_ctrl_probe = 0;
351 } else {
352 tx->u.tx.last_frag_rate = tx->u.tx.rate;
353 tx->u.tx.last_frag_rateidx = extra.rateidx;
354 // tx->u.tx.control->rateidx = extra.rateidx;
355 }
356 tx->u.tx.control->tx_rate = tx->u.tx.rate->val;
357 if ((tx->u.tx.rate->flags & IEEE80211_RATE_PREAMBLE2) &&
358 tx->local->short_preamble &&
359 (!tx->sta || (tx->sta->flags & WLAN_STA_SHORT_PREAMBLE))) {
360 tx->u.tx.short_preamble = 1;
361 tx->u.tx.control->tx_rate = tx->u.tx.rate->val2;
362 }
363
364 return TXRX_CONTINUE;
365 }
366
367
368 static ieee80211_txrx_result
369 ieee80211_tx_h_select_key(struct ieee80211_txrx_data *tx)
370 {
371 if (tx->sta)
372 tx->u.tx.control->key_idx = tx->sta->key_idx_compression;
373 else
374 tx->u.tx.control->key_idx = HW_KEY_IDX_INVALID;
375
376 if (unlikely(tx->u.tx.control->do_not_encrypt))
377 tx->key = NULL;
378 else if (tx->sta && tx->sta->key)
379 tx->key = tx->sta->key;
380 else if (tx->sdata->default_key)
381 tx->key = tx->sdata->default_key;
382 else if (tx->sdata->drop_unencrypted && !(tx->sdata->eapol && ieee80211_is_eapol(tx->skb))) {
383 I802_DEBUG_INC(tx->local->tx_handlers_drop_unencrypted);
384 return TXRX_DROP;
385 } else
386 tx->key = NULL;
387
388 if (tx->key) {
389 tx->key->tx_rx_count++;
390 if (unlikely(tx->local->key_tx_rx_threshold &&
391 tx->key->tx_rx_count >
392 tx->local->key_tx_rx_threshold)) {
393 ieee80211_key_threshold_notify(tx->dev, tx->key,
394 tx->sta);
395 }
396 }
397
398 return TXRX_CONTINUE;
399 }
400
401
402 static ieee80211_txrx_result
403 ieee80211_tx_h_fragment(struct ieee80211_txrx_data *tx)
404 {
405 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
406 size_t hdrlen, per_fragm, num_fragm, payload_len, left;
407 struct sk_buff **frags, *first, *frag;
408 int i;
409 u8 *pos;
410 int frag_threshold = tx->local->fragmentation_threshold;
411
412 if (!tx->fragmented)
413 return TXRX_CONTINUE;
414
415
416 first = tx->skb;
417
418 hdrlen = ieee80211_get_hdrlen(tx->fc);
419 payload_len = first->len - hdrlen;
420 per_fragm = frag_threshold - hdrlen - 4 /* FCS */;
421 num_fragm = (payload_len + per_fragm - 1) / per_fragm;
422
423 frags = (struct sk_buff **)
424 kmalloc(num_fragm * sizeof(struct sk_buff *), GFP_ATOMIC);
425 if (frags == NULL)
426 goto fail;
427 memset(frags, 0, num_fragm * sizeof(struct sk_buff *));
428
429 hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREFRAG);
430 pos = first->data + hdrlen + per_fragm;
431 left = payload_len - per_fragm;
432 for (i = 0; i < num_fragm - 1; i++) {
433 struct ieee80211_hdr *fhdr;
434 size_t copylen;
435
436 if (left <= 0)
437 goto fail;
438
439 /* reserve enough extra head and tail room for possible
440 * encryption */
441 #define IEEE80211_ENCRYPT_HEADROOM 8
442 #define IEEE80211_ENCRYPT_TAILROOM 12
443 frag = frags[i] =
444 dev_alloc_skb(frag_threshold +
445 IEEE80211_ENCRYPT_HEADROOM +
446 IEEE80211_ENCRYPT_TAILROOM);
447 if (!frag)
448 goto fail;
449 /* Make sure that all fragments use the same priority so
450 * that they end up using the same TX queue */
451 frag->priority = first->priority;
452 skb_reserve(frag, IEEE80211_ENCRYPT_HEADROOM);
453 fhdr = (struct ieee80211_hdr *) skb_put(frag, hdrlen);
454 memcpy(fhdr, first->data, hdrlen);
455 if (i == num_fragm - 2)
456 fhdr->frame_control &= cpu_to_le16(~WLAN_FC_MOREFRAG);
457 fhdr->seq_ctrl = cpu_to_le16(i + 1);
458 copylen = left > per_fragm ? per_fragm : left;
459 memcpy(skb_put(frag, copylen), pos, copylen);
460
461 pos += copylen;
462 left -= copylen;
463 }
464 skb_trim(first, hdrlen + per_fragm);
465
466 tx->u.tx.num_extra_frag = num_fragm - 1;
467 tx->u.tx.extra_frag = frags;
468
469 return TXRX_CONTINUE;
470
471 fail:
472 printk(KERN_DEBUG "%s: failed to fragment frame\n", tx->dev->name);
473 if (frags) {
474 for (i = 0; i < num_fragm - 1; i++)
475 if (frags[i])
476 dev_kfree_skb(frags[i]);
477 kfree(frags);
478 }
479 I802_DEBUG_INC(tx->local->tx_handlers_drop_fragment);
480 return TXRX_DROP;
481 }
482
483
484 static int wep_encrypt_skb(struct ieee80211_txrx_data *tx, struct sk_buff *skb)
485 {
486 if (tx->key->force_sw_encrypt || tx->local->conf.sw_encrypt) {
487 if (ieee80211_wep_encrypt(tx->local, skb, tx->key))
488 return -1;
489 } else {
490 tx->u.tx.control->key_idx = tx->key->hw_key_idx;
491 if (tx->local->hw->wep_include_iv) {
492 if (ieee80211_wep_add_iv(tx->local, skb, tx->key) ==
493 NULL)
494 return -1;
495 }
496 }
497 return 0;
498 }
499
500
501 void ieee80211_tx_set_iswep(struct ieee80211_txrx_data *tx)
502 {
503 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
504
505 hdr->frame_control |= cpu_to_le16(WLAN_FC_ISWEP);
506 if (tx->u.tx.extra_frag) {
507 struct ieee80211_hdr *fhdr;
508 int i;
509 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
510 fhdr = (struct ieee80211_hdr *)
511 tx->u.tx.extra_frag[i]->data;
512 fhdr->frame_control |= cpu_to_le16(WLAN_FC_ISWEP);
513 }
514 }
515 }
516
517
518 static ieee80211_txrx_result
519 ieee80211_tx_h_wep_encrypt(struct ieee80211_txrx_data *tx)
520 {
521 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
522 u16 fc;
523
524 fc = le16_to_cpu(hdr->frame_control);
525
526 if (!tx->key || tx->key->alg != ALG_WEP ||
527 (WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_DATA &&
528 (WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_MGMT ||
529 WLAN_FC_GET_STYPE(fc) != WLAN_FC_STYPE_AUTH)))
530 return TXRX_CONTINUE;
531
532 tx->u.tx.control->iv_len = WEP_IV_LEN;
533 tx->u.tx.control->icv_len = WEP_ICV_LEN;
534 ieee80211_tx_set_iswep(tx);
535
536 if (wep_encrypt_skb(tx, tx->skb) < 0) {
537 I802_DEBUG_INC(tx->local->tx_handlers_drop_wep);
538 return TXRX_DROP;
539 }
540
541 if (tx->u.tx.extra_frag) {
542 int i;
543 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
544 if (wep_encrypt_skb(tx, tx->u.tx.extra_frag[i]) < 0) {
545 I802_DEBUG_INC(tx->local->
546 tx_handlers_drop_wep);
547 return TXRX_DROP;
548 }
549 }
550 }
551
552 return TXRX_CONTINUE;
553 }
554
555
556 static inline int ceiling_div(int dividend, int divisor)
557 {
558 return ((dividend + divisor - 1) / divisor);
559 }
560
561
562 static int ieee80211_frame_duration(struct ieee80211_local *local, size_t len,
563 int rate, int erp, int short_preamble)
564 {
565 int dur;
566
567 /* calculate duration (in microseconds, rounded up to next higher
568 * integer if it includes a fractional microsecond) to send frame of
569 * len bytes (does not include FCS) at the given rate. Duration will
570 * also include SIFS.
571 *
572 * rate is in 100 kbps, so divident is multiplied by 10 in the
573 * ceiling_div() operations.
574 */
575
576 if (local->conf.phymode == MODE_IEEE80211A || erp ||
577 local->conf.phymode == MODE_ATHEROS_TURBO) {
578 /*
579 * OFDM:
580 *
581 * N_DBPS = DATARATE x 4
582 * N_SYM = Ceiling((16+8xLENGTH+6) / N_DBPS)
583 * (16 = SIGNAL time, 6 = tail bits)
584 * TXTIME = T_PREAMBLE + T_SIGNAL + T_SYM x N_SYM + Signal Ext
585 *
586 * T_SYM = 4 usec
587 * 802.11a - 17.5.2: aSIFSTime = 16 usec
588 * 802.11g - 19.8.4: aSIFSTime = 10 usec +
589 * signal ext = 6 usec
590 */
591 /* FIX: Atheros Turbo may have different (shorter) duration? */
592 dur = 16; /* SIFS + signal ext */
593 dur += 16; /* 17.3.2.3: T_PREAMBLE = 16 usec */
594 dur += 4; /* 17.3.2.3: T_SIGNAL = 4 usec */
595 dur += 4 * ceiling_div((16 + 8 * (len + 4) + 6) * 10,
596 4 * rate); /* T_SYM x N_SYM */
597 } else {
598 /*
599 * 802.11b or 802.11g with 802.11b compatibility:
600 * 18.3.4: TXTIME = PreambleLength + PLCPHeaderTime +
601 * Ceiling(((LENGTH+PBCC)x8)/DATARATE). PBCC=0.
602 *
603 * 802.11 (DS): 15.3.3, 802.11b: 18.3.4
604 * aSIFSTime = 10 usec
605 * aPreambleLength = 144 usec or 72 usec with short preamble
606 * aPLCPHeaderLength = 48 ms or 24 ms with short preamble
607 */
608 dur = 10; /* aSIFSTime = 10 usec */
609 dur += short_preamble ? (72 + 24) : (144 + 48);
610
611 dur += ceiling_div(8 * (len + 4) * 10, rate);
612 }
613
614 return dur;
615 }
616
617
618 static u16 ieee80211_duration(struct ieee80211_txrx_data *tx, int group_addr,
619 int next_frag_len)
620 {
621 int rate, mrate, erp, dur, i;
622 struct ieee80211_rate *txrate = tx->u.tx.rate;
623 struct ieee80211_local *local = tx->local;
624
625 erp = txrate->flags & IEEE80211_RATE_ERP;
626
627 /*
628 * data and mgmt (except PS Poll):
629 * - during CFP: 32768
630 * - during contention period:
631 * if addr1 is group address: 0
632 * if more fragments = 0 and addr1 is individual address: time to
633 * transmit one ACK plus SIFS
634 * if more fragments = 1 and addr1 is individual address: time to
635 * transmit next fragment plus 2 x ACK plus 3 x SIFS
636 *
637 * IEEE 802.11, 9.6:
638 * - control response frame (CTS or ACK) shall be transmitted using the
639 * same rate as the immediately previous frame in the frame exchange
640 * sequence, if this rate belongs to the PHY mandatory rates, or else
641 * at the highest possible rate belonging to the PHY rates in the
642 * BSSBasicRateSet
643 */
644
645 if (WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_CTRL) {
646 /* TODO: These control frames are not currently sent by
647 * 80211.o, but should they be implemented, this function
648 * needs to be updated to support duration field calculation.
649 *
650 * RTS: time needed to transmit pending data/mgmt frame plus
651 * one CTS frame plus one ACK frame plus 3 x SIFS
652 * CTS: duration of immediately previous RTS minus time
653 * required to transmit CTS and its SIFS
654 * ACK: 0 if immediately previous directed data/mgmt had
655 * more=0, with more=1 duration in ACK frame is duration
656 * from previous frame minus time needed to transmit ACK
657 * and its SIFS
658 * PS Poll: BIT(15) | BIT(14) | aid
659 */
660 return 0;
661 }
662
663 /* data/mgmt */
664 if (0 /* FIX: data/mgmt during CFP */)
665 return 32768;
666
667 if (group_addr) /* Group address as the destination - no ACK */
668 return 0;
669
670 /* Individual destination address:
671 * IEEE 802.11, Ch. 9.6 (after IEEE 802.11g changes)
672 * CTS and ACK frames shall be transmitted using the highest rate in
673 * basic rate set that is less than or equal to the rate of the
674 * immediately previous frame and that is using the same modulation
675 * (CCK or OFDM). If no basic rate set matches with these requirements,
676 * the highest mandatory rate of the PHY that is less than or equal to
677 * the rate of the previous frame is used.
678 * Mandatory rates for IEEE 802.11g PHY: 1, 2, 5.5, 11, 6, 12, 24 Mbps
679 */
680 rate = -1;
681 mrate = 10; /* use 1 Mbps if everything fails */
682 for (i = 0; i < local->num_curr_rates; i++) {
683 struct ieee80211_rate *r = &local->curr_rates[i];
684 if (r->rate > txrate->rate)
685 break;
686
687 if (IEEE80211_RATE_MODULATION(txrate->flags) !=
688 IEEE80211_RATE_MODULATION(r->flags))
689 continue;
690
691 if (r->flags & IEEE80211_RATE_BASIC)
692 rate = r->rate;
693 else if (r->flags & IEEE80211_RATE_MANDATORY)
694 mrate = r->rate;
695 }
696 if (rate == -1) {
697 /* No matching basic rate found; use highest suitable mandatory
698 * PHY rate */
699 rate = mrate;
700 }
701
702 /* Time needed to transmit ACK
703 * (10 bytes + 4-byte FCS = 112 bits) plus SIFS; rounded up
704 * to closest integer */
705
706 dur = ieee80211_frame_duration(local, 10, rate, erp,
707 local->short_preamble);
708
709 if (next_frag_len) {
710 /* Frame is fragmented: duration increases with time needed to
711 * transmit next fragment plus ACK and 2 x SIFS. */
712 dur *= 2; /* ACK + SIFS */
713 /* next fragment */
714 dur += ieee80211_frame_duration(local, next_frag_len,
715 txrate->rate, erp,
716 local->short_preamble);
717 }
718
719 return dur;
720 }
721
722
723 static ieee80211_txrx_result
724 ieee80211_tx_h_misc(struct ieee80211_txrx_data *tx)
725 {
726 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) tx->skb->data;
727 u16 dur;
728 struct ieee80211_tx_control *control = tx->u.tx.control;
729
730 if (!MULTICAST_ADDR(hdr->addr1)) {
731 if (tx->skb->len >= tx->local->rts_threshold &&
732 tx->local->rts_threshold < IEEE80211_MAX_RTS_THRESHOLD) {
733 control->use_rts_cts = 1;
734 control->retry_limit =
735 tx->local->long_retry_limit;
736 } else {
737 control->retry_limit =
738 tx->local->short_retry_limit;
739 }
740 } else {
741 control->retry_limit = 1;
742 }
743
744 if (tx->fragmented) {
745 /* Do not use multiple retry rates when sending fragmented
746 * frames.
747 * TODO: The last fragment could still use multiple retry
748 * rates. */
749 // control->alt_retry_rate = -1;
750 }
751
752 /* Use CTS protection for unicast frames sent using extended rates if
753 * there are associated non-ERP stations and RTS/CTS is not configured
754 * for the frame. */
755 if (tx->local->conf.phymode == MODE_IEEE80211G &&
756 (tx->u.tx.rate->flags & IEEE80211_RATE_ERP) &&
757 tx->u.tx.unicast &&
758 tx->local->cts_protect_erp_frames &&
759 !control->use_rts_cts)
760 control->use_cts_protect = 1;
761
762
763 /* Setup duration field for the first fragment of the frame. Duration
764 * for remaining fragments will be updated when they are being sent
765 * to low-level driver in ieee80211_tx(). */
766 dur = ieee80211_duration(tx, MULTICAST_ADDR(hdr->addr1),
767 tx->fragmented ? tx->u.tx.extra_frag[0]->len :
768 0);
769 hdr->duration_id = cpu_to_le16(dur);
770
771 if (control->use_rts_cts || control->use_cts_protect) {
772 struct ieee80211_rate *rate;
773 int erp = tx->u.tx.rate->flags & IEEE80211_RATE_ERP;
774
775 /* Do not use multiple retry rates when using RTS/CTS */
776 // control->alt_retry_rate = -1;
777
778 /* Use min(data rate, max base rate) as CTS/RTS rate */
779 rate = tx->u.tx.rate;
780 while (rate > tx->local->curr_rates &&
781 !(rate->flags & IEEE80211_RATE_BASIC))
782 rate--;
783
784
785 if (control->use_rts_cts)
786 dur += ieee80211_frame_duration(tx->local, 10,
787 rate->rate, erp,
788 tx->local->
789 short_preamble);
790 dur += ieee80211_frame_duration(tx->local, tx->skb->len,
791 tx->u.tx.rate->rate, erp,
792 tx->u.tx.short_preamble);
793 control->rts_cts_duration = dur;
794 control->rts_cts_rate = rate->val;
795 }
796
797 if (tx->sta) {
798 tx->sta->tx_packets++;
799 tx->sta->tx_fragments++;
800 tx->sta->tx_bytes += tx->skb->len;
801 if (tx->u.tx.extra_frag) {
802 int i;
803 tx->sta->tx_fragments += tx->u.tx.num_extra_frag;
804 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
805 tx->sta->tx_bytes +=
806 tx->u.tx.extra_frag[i]->len;
807 }
808 }
809 }
810 tx->local->scan.txrx_count++;
811
812 return TXRX_CONTINUE;
813 }
814
815
816 static void ieee80211_rate_limit(unsigned long data)
817 {
818 struct ieee80211_local *local = (struct ieee80211_local *) data;
819
820 if (local->rate_limit) {
821 local->rate_limit_bucket += local->rate_limit;
822 if (local->rate_limit_bucket > local->rate_limit_burst)
823 local->rate_limit_bucket = local->rate_limit_burst;
824 local->rate_limit_timer.expires = jiffies + HZ;
825 add_timer(&local->rate_limit_timer);
826 }
827
828 }
829
830 static ieee80211_txrx_result
831 ieee80211_tx_h_rate_limit(struct ieee80211_txrx_data *tx)
832 {
833
834 if (likely(!tx->local->rate_limit || tx->u.tx.unicast))
835 return TXRX_CONTINUE;
836
837 /* rate limit */
838 if (tx->local->rate_limit_bucket) {
839 tx->local->rate_limit_bucket--;
840 return TXRX_CONTINUE;
841 }
842
843 I802_DEBUG_INC(tx->local->tx_handlers_drop_rate_limit);
844 return TXRX_DROP;
845 }
846
847
848
849 static ieee80211_txrx_result
850 ieee80211_tx_h_check_assoc(struct ieee80211_txrx_data *tx)
851 {
852 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
853 struct sk_buff *skb = tx->skb;
854 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
855 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
856 u32 sta_flags;
857
858 if (unlikely(tx->local->sta_scanning != 0) &&
859 (WLAN_FC_GET_TYPE(tx->fc) != WLAN_FC_TYPE_MGMT ||
860 WLAN_FC_GET_STYPE(tx->fc) != WLAN_FC_STYPE_PROBE_REQ))
861 return TXRX_DROP;
862
863 if (tx->u.tx.ps_buffered)
864 return TXRX_CONTINUE;
865
866 sta_flags = tx->sta ? tx->sta->flags : 0;
867
868 if (likely(tx->u.tx.unicast)) {
869 if (unlikely(!(sta_flags & WLAN_STA_ASSOC) &&
870 tx->local->conf.mode != IW_MODE_ADHOC &&
871 WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_DATA)) {
872 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
873 printk(KERN_DEBUG "%s: dropped data frame to not "
874 "associated station " MACSTR "\n",
875 tx->dev->name, MAC2STR(hdr->addr1));
876 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
877 I802_DEBUG_INC(tx->local->tx_handlers_drop_not_assoc);
878 return TXRX_DROP;
879 }
880 } else {
881 if (unlikely(WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_DATA &&
882 tx->local->num_sta == 0 &&
883 !tx->local->allow_broadcast_always &&
884 tx->local->conf.mode != IW_MODE_ADHOC)) {
885 /*
886 * No associated STAs - no need to send multicast
887 * frames.
888 */
889 return TXRX_DROP;
890 }
891 return TXRX_CONTINUE;
892 }
893
894 if (unlikely(!tx->u.tx.mgmt_interface && tx->sdata->ieee802_1x &&
895 !(sta_flags & WLAN_STA_AUTHORIZED))) {
896 #ifdef CONFIG_IEEE80211_DEBUG
897 struct ieee80211_hdr *hdr =
898 (struct ieee80211_hdr *) tx->skb->data;
899 printk(KERN_DEBUG "%s: dropped frame to " MACSTR
900 " (unauthorized port)\n", tx->dev->name,
901 MAC2STR(hdr->addr1));
902 #endif
903 I802_DEBUG_INC(tx->local->tx_handlers_drop_unauth_port);
904 return TXRX_DROP;
905 }
906
907 return TXRX_CONTINUE;
908 }
909
910
911 /* This function is called whenever the AP is about to exceed the maximum limit
912 * of buffered frames for power saving STAs. This situation should not really
913 * happen often during normal operation, so dropping the oldest buffered packet
914 * from each queue should be OK to make some room for new frames. */
915 static void purge_old_ps_buffers(struct ieee80211_local *local)
916 {
917 int total = 0, purged = 0;
918 struct sk_buff *skb;
919 struct list_head *ptr;
920
921 spin_lock_bh(&local->sub_if_lock);
922 list_for_each(ptr, &local->sub_if_list) {
923 struct ieee80211_if_norm *norm;
924 struct ieee80211_sub_if_data *sdata =
925 list_entry(ptr, struct ieee80211_sub_if_data, list);
926 if (sdata->dev == local->mdev ||
927 sdata->type != IEEE80211_SUB_IF_TYPE_NORM)
928 continue;
929 norm = &sdata->u.norm;
930 skb = skb_dequeue(&norm->ps_bc_buf);
931 if (skb) {
932 purged++;
933 dev_kfree_skb(skb);
934 }
935 total += skb_queue_len(&norm->ps_bc_buf);
936 }
937 spin_unlock_bh(&local->sub_if_lock);
938
939 spin_lock_bh(&local->sta_lock);
940 list_for_each(ptr, &local->sta_list) {
941 struct sta_info *sta =
942 list_entry(ptr, struct sta_info, list);
943 skb = skb_dequeue(&sta->ps_tx_buf);
944 if (skb) {
945 purged++;
946 dev_kfree_skb(skb);
947 }
948 total += skb_queue_len(&sta->ps_tx_buf);
949 }
950 spin_unlock_bh(&local->sta_lock);
951
952 local->total_ps_buffered = total;
953 printk(KERN_DEBUG "%s: PS buffers full - purged %d frames\n",
954 local->mdev->name, purged);
955 }
956
957
958 static inline ieee80211_txrx_result
959 ieee80211_tx_h_multicast_ps_buf(struct ieee80211_txrx_data *tx)
960 {
961 /* broadcast/multicast frame */
962 /* If any of the associated stations is in power save mode,
963 * the frame is buffered to be sent after DTIM beacon frame */
964 if (tx->local->hw->host_broadcast_ps_buffering &&
965 tx->sdata->type != IEEE80211_SUB_IF_TYPE_WDS &&
966 tx->sdata->bss && atomic_read(&tx->sdata->bss->num_sta_ps) &&
967 !(tx->fc & WLAN_FC_ORDER)) {
968 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
969 purge_old_ps_buffers(tx->local);
970 if (skb_queue_len(&tx->sdata->bss->ps_bc_buf) >=
971 AP_MAX_BC_BUFFER) {
972 if (net_ratelimit()) {
973 printk(KERN_DEBUG "%s: BC TX buffer full - "
974 "dropping the oldest frame\n",
975 tx->dev->name);
976 }
977 dev_kfree_skb(skb_dequeue(&tx->sdata->bss->ps_bc_buf));
978 } else
979 tx->local->total_ps_buffered++;
980 skb_queue_tail(&tx->sdata->bss->ps_bc_buf, tx->skb);
981 return TXRX_QUEUED;
982 }
983
984 return TXRX_CONTINUE;
985 }
986
987
988 static inline ieee80211_txrx_result
989 ieee80211_tx_h_unicast_ps_buf(struct ieee80211_txrx_data *tx)
990 {
991 struct sta_info *sta = tx->sta;
992
993 if (unlikely(!sta ||
994 (WLAN_FC_GET_TYPE(tx->fc) == WLAN_FC_TYPE_MGMT &&
995 WLAN_FC_GET_STYPE(tx->fc) == WLAN_FC_STYPE_PROBE_RESP)))
996 return TXRX_CONTINUE;
997
998 if (unlikely((sta->flags & WLAN_STA_PS) && !sta->pspoll)) {
999 struct ieee80211_tx_packet_data *pkt_data;
1000 #ifdef IEEE80211_VERBOSE_DEBUG_PS
1001 printk(KERN_DEBUG "STA " MACSTR " aid %d: PS buffer (entries "
1002 "before %d)\n",
1003 MAC2STR(sta->addr), sta->aid,
1004 skb_queue_len(&sta->ps_tx_buf));
1005 #endif /* IEEE80211_VERBOSE_DEBUG_PS */
1006 sta->flags |= WLAN_STA_TIM;
1007 if (tx->local->total_ps_buffered >= TOTAL_MAX_TX_BUFFER)
1008 purge_old_ps_buffers(tx->local);
1009 if (skb_queue_len(&sta->ps_tx_buf) >= STA_MAX_TX_BUFFER) {
1010 struct sk_buff *old = skb_dequeue(&sta->ps_tx_buf);
1011 if (net_ratelimit()) {
1012 printk(KERN_DEBUG "%s: STA " MACSTR " TX "
1013 "buffer full - dropping oldest frame\n",
1014 tx->dev->name, MAC2STR(sta->addr));
1015 }
1016 dev_kfree_skb(old);
1017 } else
1018 tx->local->total_ps_buffered++;
1019 /* Queue frame to be sent after STA sends an PS Poll frame */
1020 if (skb_queue_empty(&sta->ps_tx_buf) && tx->local->hw->set_tim)
1021 tx->local->hw->set_tim(tx->dev, sta->aid, 1);
1022 pkt_data = (struct ieee80211_tx_packet_data *)tx->skb->cb;
1023 pkt_data->jiffies = jiffies;
1024 skb_queue_tail(&sta->ps_tx_buf, tx->skb);
1025 return TXRX_QUEUED;
1026 }
1027 #ifdef IEEE80211_VERBOSE_DEBUG_PS
1028 else if (unlikely(sta->flags & WLAN_STA_PS)) {
1029 printk(KERN_DEBUG "%s: STA " MACSTR " in PS mode, but pspoll "
1030 "set -> send frame\n", tx->dev->name,
1031 MAC2STR(sta->addr));
1032 }
1033 #endif /* IEEE80211_VERBOSE_DEBUG_PS */
1034 sta->pspoll = 0;
1035
1036 return TXRX_CONTINUE;
1037 }
1038
1039
1040 static ieee80211_txrx_result
1041 ieee80211_tx_h_ps_buf(struct ieee80211_txrx_data *tx)
1042 {
1043 if (unlikely(tx->u.tx.ps_buffered))
1044 return TXRX_CONTINUE;
1045
1046 if (tx->u.tx.unicast)
1047 return ieee80211_tx_h_unicast_ps_buf(tx);
1048 else
1049 return ieee80211_tx_h_multicast_ps_buf(tx);
1050 }
1051
1052
1053 static void inline ieee80211_tx_prepare(struct ieee80211_txrx_data *tx,
1054 struct sk_buff *skb,
1055 struct net_device *dev,
1056 struct ieee80211_tx_control *control)
1057 {
1058 struct ieee80211_local *local = dev->priv;
1059 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1060 struct ieee80211_tx_packet_data *pkt_data;
1061 int hdrlen;
1062
1063 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1064
1065 memset(tx, 0, sizeof(*tx));
1066 tx->skb = skb;
1067 tx->dev = pkt_data->sdata->dev; /* use original interface */
1068 tx->local = local;
1069 tx->sdata = pkt_data->sdata;
1070 tx->sta = sta_info_get(local, hdr->addr1);
1071 tx->fc = le16_to_cpu(hdr->frame_control);
1072 control->power_level = local->conf.power_level;
1073 tx->u.tx.control = control;
1074 tx->u.tx.unicast = !MULTICAST_ADDR(hdr->addr1);
1075 control->no_ack = MULTICAST_ADDR(hdr->addr1);
1076 tx->fragmented = local->fragmentation_threshold <
1077 IEEE80211_MAX_FRAG_THRESHOLD && tx->u.tx.unicast &&
1078 skb->len + 4 /* FCS */ > local->fragmentation_threshold &&
1079 (local->hw->set_frag_threshold == NULL);
1080 if (tx->sta == NULL)
1081 control->clear_dst_mask = 1;
1082 else if (tx->sta->clear_dst_mask) {
1083 control->clear_dst_mask = 1;
1084 tx->sta->clear_dst_mask = 0;
1085 }
1086 control->antenna_sel = local->conf.antenna_sel;
1087 if (local->sta_antenna_sel != STA_ANTENNA_SEL_AUTO && tx->sta)
1088 control->antenna_sel = tx->sta->antenna_sel;
1089 hdrlen = ieee80211_get_hdrlen(tx->fc);
1090 if (skb->len > hdrlen + sizeof(rfc1042_header) + 2) {
1091 u8 *pos = &skb->data[hdrlen + sizeof(rfc1042_header)];
1092 tx->ethertype = (pos[0] << 8) | pos[1];
1093 }
1094
1095 }
1096
1097
1098 static int ieee80211_tx(struct net_device *dev, struct sk_buff *skb,
1099 struct ieee80211_tx_control *control, int mgmt)
1100 {
1101 struct ieee80211_local *local = dev->priv;
1102 struct sta_info *sta;
1103 ieee80211_tx_handler *handler;
1104 struct ieee80211_txrx_data tx;
1105 ieee80211_txrx_result res = TXRX_DROP;
1106 int ret, i;
1107
1108 if (unlikely(skb->len < 10)) {
1109 dev_kfree_skb(skb);
1110 return 0;
1111 }
1112
1113 ieee80211_tx_prepare(&tx, skb, dev, control);
1114 sta = tx.sta;
1115 tx.u.tx.mgmt_interface = mgmt;
1116
1117 for (handler = local->tx_handlers; *handler != NULL; handler++) {
1118 res = (*handler)(&tx);
1119 if (res != TXRX_CONTINUE)
1120 break;
1121 }
1122
1123 skb = tx.skb; /* handlers are allowed to change skb */
1124
1125 if (sta)
1126 sta_info_release(local, sta);
1127
1128 if (unlikely(res == TXRX_DROP)) {
1129 I802_DEBUG_INC(local->tx_handlers_drop);
1130 goto drop;
1131 }
1132
1133 if (unlikely(res == TXRX_QUEUED)) {
1134 I802_DEBUG_INC(local->tx_handlers_queued);
1135 return 0;
1136 }
1137
1138 ieee80211_dump_frame(dev->name, "TX to low-level driver", skb);
1139 ret = local->hw->tx(dev, skb, control);
1140 #ifdef IEEE80211_LEDS
1141 if (!ret && local->tx_led_counter++ == 0) {
1142 ieee80211_tx_led(1, dev);
1143 }
1144 #endif /* IEEE80211_LEDS */
1145 if (tx.u.tx.extra_frag) {
1146 if (ret > 0) {
1147 /* Must free all fragments and return 0 since skb data
1148 * has been fragmented into multiple buffers.
1149 * TODO: could free extra fragments and restore skb to
1150 * the original form since the data is still there and
1151 * then return nonzero so that Linux netif would
1152 * retry. */
1153 goto drop;
1154 }
1155
1156 skb = NULL; /* skb is now owned by low-level driver */
1157 control->use_rts_cts = 0;
1158 control->use_cts_protect = 0;
1159 control->clear_dst_mask = 0;
1160 for (i = 0; i < tx.u.tx.num_extra_frag; i++) {
1161 int next_len, dur;
1162 struct ieee80211_hdr *hdr =
1163 (struct ieee80211_hdr *)
1164 tx.u.tx.extra_frag[i]->data;
1165 if (i + 1 < tx.u.tx.num_extra_frag)
1166 next_len = tx.u.tx.extra_frag[i + 1]->len;
1167 else {
1168 next_len = 0;
1169 tx.u.tx.rate = tx.u.tx.last_frag_rate;
1170 tx.u.tx.control->tx_rate = tx.u.tx.rate->val;
1171 // tx.u.tx.control->rateidx =
1172 // tx.u.tx.last_frag_rateidx;
1173 tx.u.tx.control->rate_ctrl_probe =
1174 tx.u.tx.probe_last_frag;
1175 }
1176 dur = ieee80211_duration(&tx, 0, next_len);
1177 hdr->duration_id = cpu_to_le16(dur);
1178
1179 ieee80211_dump_frame(dev->name,
1180 "TX to low-level driver", skb);
1181 ret = local->hw->tx(dev, tx.u.tx.extra_frag[i],
1182 control);
1183 if (ret > 0)
1184 goto drop;
1185 #ifdef IEEE80211_LEDS
1186 if (local->tx_led_counter++ == 0) {
1187 ieee80211_tx_led(1, dev);
1188 }
1189 #endif /* IEEE80211_LEDS */
1190 tx.u.tx.extra_frag[i] = NULL;
1191 }
1192 kfree(tx.u.tx.extra_frag);
1193 }
1194 if (ret == -1)
1195 ret = 0;
1196 return ret;
1197
1198 drop:
1199 if (skb)
1200 dev_kfree_skb(skb);
1201 for (i = 0; i < tx.u.tx.num_extra_frag; i++)
1202 if (tx.u.tx.extra_frag[i])
1203 dev_kfree_skb(tx.u.tx.extra_frag[i]);
1204 kfree(tx.u.tx.extra_frag);
1205 return 0;
1206 }
1207
1208
1209 static int ieee80211_master_start_xmit(struct sk_buff *skb,
1210 struct net_device *dev)
1211 {
1212 struct ieee80211_tx_control control;
1213 struct ieee80211_tx_packet_data *pkt_data;
1214 struct ieee80211_sub_if_data *sdata;
1215 int ret = 1;
1216
1217 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1218
1219 /*
1220 * copy control out of the skb so other people can use skb->cb
1221 */
1222 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1223 if (unlikely(pkt_data->magic != IEEE80211_CB_MAGIC)) {
1224 printk(KERN_WARNING "%s: Someone messed with our skb->cb\n",
1225 dev->name);
1226 dev_kfree_skb(skb);
1227 return 0;
1228 }
1229 memcpy(&control, &pkt_data->control,
1230 sizeof(struct ieee80211_tx_control));
1231
1232 ret = ieee80211_tx(dev, skb, &control,
1233 pkt_data->sdata->type ==
1234 IEEE80211_SUB_IF_TYPE_MGMT);
1235
1236 return ret;
1237 }
1238
1239
1240 /**
1241 * ieee80211_subif_start_xmit - netif start_xmit function for Ethernet-type
1242 * subinterfaces (wlan#, WDS, and VLAN interfaces)
1243 * @skb: packet to be sent
1244 * @dev: incoming interface
1245 *
1246 * Returns: 0 on success (and frees skb in this case) or 1 on failure (skb will
1247 * not be freed, and caller is responsible for either retrying later or freeing
1248 * skb).
1249 *
1250 * This function takes in an Ethernet header and encapsulates it with suitable
1251 * IEEE 802.11 header based on which interface the packet is coming in. The
1252 * encapsulated packet will then be passed to master interface, wlan#.11, for
1253 * transmission (through low-level driver).
1254 */
1255 static int ieee80211_subif_start_xmit(struct sk_buff *skb,
1256 struct net_device *dev)
1257 {
1258 struct ieee80211_local *local = (struct ieee80211_local *) dev->priv;
1259 struct ieee80211_tx_packet_data *pkt_data;
1260 struct ieee80211_sub_if_data *sdata;
1261 int ret = 1, head_need;
1262 u16 ethertype, hdrlen, fc;
1263 struct ieee80211_hdr hdr;
1264 u8 *encaps_data;
1265 int encaps_len, skip_header_bytes;
1266 int nh_pos, h_pos, no_encrypt = 0;
1267 struct sta_info *sta;
1268
1269 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1270 if (unlikely(skb->len < ETH_HLEN)) {
1271 printk(KERN_DEBUG "%s: short skb (len=%d)\n",
1272 dev->name, skb->len);
1273 ret = 0;
1274 goto fail;
1275 }
1276
1277 nh_pos = skb->nh.raw - skb->data;
1278 h_pos = skb->h.raw - skb->data;
1279
1280 /* convert Ethernet header to proper 802.11 header (based on
1281 * operation mode) */
1282 ethertype = (skb->data[12] << 8) | skb->data[13];
1283 /* TODO: handling for 802.1x authorized/unauthorized port */
1284 fc = (WLAN_FC_TYPE_DATA << 2) | (WLAN_FC_STYPE_DATA << 4);
1285
1286 if (likely(sdata->type == IEEE80211_SUB_IF_TYPE_NORM ||
1287 sdata->type == IEEE80211_SUB_IF_TYPE_VLAN)) {
1288 if (local->conf.mode == IW_MODE_MASTER) {
1289 fc |= WLAN_FC_FROMDS;
1290 /* DA BSSID SA */
1291 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1292 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1293 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
1294 } else if (local->conf.mode == IW_MODE_INFRA) {
1295 fc |= WLAN_FC_TODS;
1296 /* BSSID SA DA */
1297 memcpy(hdr.addr1, local->bssid, ETH_ALEN);
1298 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1299 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1300 } else if (local->conf.mode == IW_MODE_ADHOC) {
1301 /* DA SA BSSID */
1302 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1303 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1304 memcpy(hdr.addr3, local->bssid, ETH_ALEN);
1305 }
1306 hdrlen = 24;
1307 } else if (sdata->type == IEEE80211_SUB_IF_TYPE_WDS) {
1308 fc |= WLAN_FC_FROMDS | WLAN_FC_TODS;
1309 /* RA TA DA SA */
1310 memcpy(hdr.addr1, sdata->u.wds.remote_addr, ETH_ALEN);
1311 memcpy(hdr.addr2, dev->dev_addr, ETH_ALEN);
1312 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1313 memcpy(hdr.addr4, skb->data + ETH_ALEN, ETH_ALEN);
1314 hdrlen = 30;
1315 } else if (sdata->type == IEEE80211_SUB_IF_TYPE_STA) {
1316 if (local->conf.mode == IW_MODE_INFRA) {
1317 fc |= WLAN_FC_TODS;
1318 /* BSSID SA DA */
1319 memcpy(hdr.addr1, sdata->u.sta.bssid, ETH_ALEN);
1320 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1321 memcpy(hdr.addr3, skb->data, ETH_ALEN);
1322 } else {
1323 /* DA SA BSSID */
1324 memcpy(hdr.addr1, skb->data, ETH_ALEN);
1325 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
1326 memcpy(hdr.addr3, sdata->u.sta.bssid, ETH_ALEN);
1327 }
1328 hdrlen = 24;
1329 } else {
1330 ret = 0;
1331 goto fail;
1332 }
1333
1334 /* receiver is QoS enabled, use a QoS type frame */
1335 sta = sta_info_get(local, hdr.addr1);
1336 if (sta) {
1337 if (sta->flags & WLAN_STA_WME) {
1338 fc |= WLAN_FC_STYPE_QOS_DATA << 4;
1339 hdrlen += 2;
1340 }
1341 sta_info_release(local, sta);
1342 }
1343
1344 hdr.frame_control = cpu_to_le16(fc);
1345 hdr.duration_id = 0;
1346 hdr.seq_ctrl = 0;
1347
1348 skip_header_bytes = ETH_HLEN;
1349 if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
1350 encaps_data = bridge_tunnel_header;
1351 encaps_len = sizeof(bridge_tunnel_header);
1352 skip_header_bytes -= 2;
1353 } else if (ethertype >= 0x600) {
1354 encaps_data = rfc1042_header;
1355 encaps_len = sizeof(rfc1042_header);
1356 skip_header_bytes -= 2;
1357 } else {
1358 encaps_data = NULL;
1359 encaps_len = 0;
1360 }
1361
1362 skb_pull(skb, skip_header_bytes);
1363 nh_pos -= skip_header_bytes;
1364 h_pos -= skip_header_bytes;
1365
1366 /* TODO: implement support for fragments so that there is no need to
1367 * reallocate and copy payload; it might be enough to support one
1368 * extra fragment that would be copied in the beginning of the frame
1369 * data.. anyway, it would be nice to include this into skb structure
1370 * somehow
1371 *
1372 * There are few options for this:
1373 * use skb->cb as an extra space for 802.11 header
1374 * allocate new buffer if not enough headroom
1375 * make sure that there is enough headroom in every skb by increasing
1376 * build in headroom in __dev_alloc_skb() (linux/skbuff.h) and
1377 * alloc_skb() (net/core/skbuff.c)
1378 */
1379 head_need = hdrlen + encaps_len + (local->hw->extra_hdr_room ? 2 : 0);
1380 head_need -= skb_headroom(skb);
1381
1382 /* We are going to modify skb data, so make a copy of it if happens to
1383 * be cloned. This could happen, e.g., with Linux bridge code passing
1384 * us broadcast frames. */
1385
1386 if (head_need > 0 || skb_cloned(skb)) {
1387 #if 0
1388 printk(KERN_DEBUG "%s: need to reallocate buffer for %d bytes "
1389 "of headroom\n", dev->name, head_need);
1390 #endif
1391
1392 if (skb_cloned(skb))
1393 I802_DEBUG_INC(local->tx_expand_skb_head_cloned);
1394 else
1395 I802_DEBUG_INC(local->tx_expand_skb_head);
1396 /* Since we have to reallocate the buffer, make sure that there
1397 * is enough room for possible WEP IV/ICV and TKIP (8 bytes
1398 * before payload and 12 after). */
1399 if (pskb_expand_head(skb, (head_need > 0 ? head_need + 8 : 8),
1400 12, GFP_ATOMIC)) {
1401 printk(KERN_DEBUG "%s: failed to reallocate TX buffer"
1402 "\n", dev->name);
1403 goto fail;
1404 }
1405 }
1406
1407 if (encaps_data) {
1408 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
1409 nh_pos += encaps_len;
1410 h_pos += encaps_len;
1411 }
1412 memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
1413 nh_pos += hdrlen;
1414 h_pos += hdrlen;
1415
1416 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1417 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
1418 pkt_data->magic = IEEE80211_CB_MAGIC;
1419 pkt_data->sdata = sdata;
1420 pkt_data->control.do_not_encrypt = no_encrypt;
1421
1422 skb->dev = sdata->master;
1423 sdata->stats.tx_packets++;
1424 sdata->stats.tx_bytes += skb->len;
1425
1426 /* Update skb pointers to various headers since this modified frame
1427 * is going to go through Linux networking code that may potentially
1428 * need things like pointer to IP header. */
1429 skb->mac.raw = skb->data;
1430 skb->nh.raw = skb->data + nh_pos;
1431 skb->h.raw = skb->data + h_pos;
1432
1433
1434 dev_queue_xmit(skb);
1435
1436 return 0;
1437
1438 fail:
1439 if (!ret)
1440 dev_kfree_skb(skb);
1441
1442 return ret;
1443 }
1444
1445
1446 /*
1447 * This is the transmit routine for the 802.11 type interfaces
1448 * called by upper layers of the linux networking
1449 * stack when it has a frame to transmit
1450 */
1451 static int
1452 ieee80211_mgmt_start_xmit(struct sk_buff *skb, struct net_device *dev)
1453 {
1454 struct ieee80211_sub_if_data *sdata;
1455 struct ieee80211_tx_packet_data *pkt_data;
1456 struct ieee80211_hdr *hdr;
1457 u16 fc;
1458
1459 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1460
1461 if (skb->len < 10) {
1462 dev_kfree_skb(skb);
1463 return 0;
1464 }
1465
1466 hdr = (struct ieee80211_hdr *) skb->data;
1467 fc = le16_to_cpu(hdr->frame_control);
1468
1469 pkt_data = (struct ieee80211_tx_packet_data *)skb->cb;
1470 memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
1471 pkt_data->magic = IEEE80211_CB_MAGIC;
1472 pkt_data->sdata = sdata;
1473
1474 if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_MGMT &&
1475 WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_PROBE_RESP)
1476 pkt_data->control.pkt_type = PKT_PROBE_RESP;
1477
1478 skb->priority = 20; /* use hardcode priority for mgmt TX queue */
1479 skb->dev = sdata->master;
1480
1481 /*
1482 * We're using the protocol field of the the frame control header
1483 * to request TX callback for hostapd. BIT(1) is checked.
1484 */
1485 if ((fc & BIT(1)) == BIT(1)) {
1486 pkt_data->control.req_tx_status = 1;
1487 fc &= ~BIT(1);
1488 hdr->frame_control = cpu_to_le16(fc);
1489 }
1490
1491
1492
1493 pkt_data->control.do_not_encrypt = !(fc & WLAN_FC_ISWEP);
1494
1495 sdata->stats.tx_packets++;
1496 sdata->stats.tx_bytes += skb->len;
1497
1498 dev_queue_xmit(skb);
1499
1500 return 0;
1501 }
1502
1503
1504 static void ieee80211_beacon_add_tim(struct ieee80211_local *local,
1505 struct ieee80211_if_norm *bss,
1506 struct sk_buff *skb)
1507 {
1508 u8 *pos, *tim;
1509 int aid0 = 0;
1510 int i, num_bits = 0, n1, n2;
1511 u8 bitmap[251];
1512
1513 /* Generate bitmap for TIM only if there are any STAs in power save
1514 * mode. */
1515 if (atomic_read(&bss->num_sta_ps) > 0 && bss->max_aid > 0) {
1516 memset(bitmap, 0, sizeof(bitmap));
1517 spin_lock_bh(&local->sta_lock);
1518 for (i = 0; i < bss->max_aid; i++) {
1519 if (bss->sta_aid[i] &&
1520 (!skb_queue_empty(&bss->sta_aid[i]->ps_tx_buf) ||
1521 !skb_queue_empty(&bss->sta_aid[i]->tx_filtered)))
1522 {
1523 bitmap[(i + 1) / 8] |= 1 << (i + 1) % 8;
1524 num_bits++;
1525 }
1526 }
1527 spin_unlock_bh(&local->sta_lock);
1528 }
1529
1530 if (bss->dtim_count == 0)
1531 bss->dtim_count = bss->dtim_period - 1;
1532 else
1533 bss->dtim_count--;
1534
1535 tim = pos = (u8 *) skb_put(skb, 6);
1536 *pos++ = WLAN_EID_TIM;
1537 *pos++ = 4;
1538 *pos++ = bss->dtim_count;
1539 *pos++ = bss->dtim_period;
1540
1541 if (bss->dtim_count == 0 && !skb_queue_empty(&bss->ps_bc_buf)) {
1542 aid0 = 1;
1543 }
1544
1545 if (num_bits) {
1546 /* Find largest even number N1 so that bits numbered 1 through
1547 * (N1 x 8) - 1 in the bitmap are 0 and number N2 so that bits
1548 * (N2 + 1) x 8 through 2007 are 0. */
1549 n1 = 0;
1550 for (i = 0; i < sizeof(bitmap); i++) {
1551 if (bitmap[i]) {
1552 n1 = i & 0xfe;
1553 break;
1554 }
1555 }
1556 n2 = n1;
1557 for (i = sizeof(bitmap) - 1; i >= n1; i--) {
1558 if (bitmap[i]) {
1559 n2 = i;
1560 break;
1561 }
1562 }
1563
1564 /* Bitmap control */
1565 *pos++ = n1 | (aid0 ? 1 : 0);
1566 /* Part Virt Bitmap */
1567 memcpy(pos, bitmap + n1, n2 - n1 + 1);
1568
1569 tim[1] = n2 - n1 + 4;
1570 skb_put(skb, n2 - n1);
1571 } else {
1572 *pos++ = aid0 ? 1 : 0; /* Bitmap control */
1573 *pos++ = 0; /* Part Virt Bitmap */
1574 }
1575 }
1576
1577
1578
1579
1580 struct sk_buff * ieee80211_beacon_get(struct net_device *dev, int bss_idx,
1581 struct ieee80211_tx_control *control)
1582 {
1583 struct ieee80211_local *local = dev->priv;
1584 struct sk_buff *skb;
1585 struct net_device *bdev;
1586 struct ieee80211_sub_if_data *sdata = NULL;
1587 struct ieee80211_if_norm *norm = NULL;
1588 struct ieee80211_rate *rate;
1589 struct rate_control_extra extra;
1590 u8 *b_head, *b_tail;
1591 int bh_len, bt_len;
1592
1593
1594 spin_lock_bh(&local->sub_if_lock);
1595 if (bss_idx < 0 || bss_idx >= local->bss_dev_count)
1596 bdev = NULL;
1597 else {
1598 bdev = local->bss_devs[bss_idx];
1599 sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
1600 norm = &sdata->u.norm;
1601 }
1602 spin_unlock_bh(&local->sub_if_lock);
1603
1604 if (bdev == NULL || norm == NULL || norm->beacon_head == NULL) {
1605 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
1606 if (net_ratelimit())
1607 printk(KERN_DEBUG "no beacon data avail for idx=%d "
1608 "(%s)\n", bss_idx, bdev ? bdev->name : "N/A");
1609 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
1610 return NULL;
1611 }
1612
1613 /* Assume we are generating the normal beacon locally */
1614 b_head = norm->beacon_head;
1615 b_tail = norm->beacon_tail;
1616 bh_len = norm->beacon_head_len;
1617 bt_len = norm->beacon_tail_len;
1618
1619
1620 skb = dev_alloc_skb(bh_len + bt_len + 256 /* maximum TIM len */);
1621 if (!skb)
1622 return NULL;
1623
1624 memcpy(skb_put(skb, bh_len), b_head, bh_len);
1625
1626 ieee80211_beacon_add_tim(local, norm, skb);
1627
1628 if (b_tail) {
1629 memcpy(skb_put(skb, bt_len), b_tail, bt_len);
1630 }
1631
1632 memset(&extra, 0, sizeof(extra));
1633 extra.endidx = local->num_curr_rates;
1634
1635
1636 rate = rate_control_get_rate(dev, skb, &extra);
1637 if (rate == NULL) {
1638 if (net_ratelimit()) {
1639 printk(KERN_DEBUG "%s: ieee80211_beacon_get: no rate "
1640 "found\n", dev->name);
1641 }
1642 dev_kfree_skb(skb);
1643 return NULL;
1644 }
1645
1646 control->tx_rate = (local->short_preamble &&
1647 (rate->flags & IEEE80211_RATE_PREAMBLE2)) ?
1648 rate->val2 : rate->val;
1649 control->antenna_sel = local->conf.antenna_sel;
1650 control->power_level = local->conf.power_level;
1651 control->no_ack = 1;
1652 control->retry_limit = 1;
1653 control->rts_cts_duration = 0;
1654 control->clear_dst_mask = 1;
1655
1656
1657 norm->num_beacons++;
1658 return skb;
1659 }
1660
1661 struct sk_buff *
1662 ieee80211_get_buffered_bc(struct net_device *dev, int bss_idx,
1663 struct ieee80211_tx_control *control)
1664 {
1665 struct ieee80211_local *local = dev->priv;
1666 struct sk_buff *skb;
1667 struct sta_info *sta;
1668 ieee80211_tx_handler *handler;
1669 struct ieee80211_txrx_data tx;
1670 ieee80211_txrx_result res = TXRX_DROP;
1671 struct net_device *bdev;
1672 struct ieee80211_sub_if_data *sdata;
1673 struct ieee80211_if_norm *bss;
1674
1675
1676 spin_lock_bh(&local->sub_if_lock);
1677 if (bss_idx < 0 || bss_idx >= local->bss_dev_count) {
1678 bdev = NULL;
1679 bss = NULL;
1680 } else {
1681 bdev = local->bss_devs[bss_idx];
1682 sdata = IEEE80211_DEV_TO_SUB_IF(bdev);
1683 bss = &sdata->u.norm;
1684 }
1685 spin_unlock_bh(&local->sub_if_lock);
1686 if (bdev == NULL || bss == NULL || bss->beacon_head == NULL)
1687 return NULL;
1688
1689 if (bss->dtim_count != 0)
1690 return NULL; /* send buffered bc/mc only after DTIM beacon */
1691 skb = skb_dequeue(&bss->ps_bc_buf);
1692 memset(control, 0, sizeof(*control));
1693 if (skb == NULL)
1694 return NULL;
1695 local->total_ps_buffered--;
1696
1697 if (!skb_queue_empty(&bss->ps_bc_buf) && skb->len >= 2) {
1698 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1699 /* more buffered multicast/broadcast frames ==> set MoreData
1700 * flag in IEEE 802.11 header to inform PS STAs */
1701 hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREDATA);
1702 }
1703
1704 ieee80211_tx_prepare(&tx, skb, dev, control);
1705 sta = tx.sta;
1706 tx.u.tx.ps_buffered = 1;
1707
1708 for (handler = local->tx_handlers; *handler != NULL; handler++) {
1709 res = (*handler)(&tx);
1710 if (res == TXRX_DROP || res == TXRX_QUEUED)
1711 break;
1712 }
1713
1714 if (res == TXRX_DROP) {
1715 I802_DEBUG_INC(local->tx_handlers_drop);
1716 dev_kfree_skb(skb);
1717 skb = NULL;
1718 } else if (res == TXRX_QUEUED) {
1719 I802_DEBUG_INC(local->tx_handlers_queued);
1720 skb = NULL;
1721 }
1722
1723 if (sta)
1724 sta_info_release(local, sta);
1725
1726 return skb;
1727 }
1728
1729
1730 int ieee80211_hw_config(struct net_device *dev)
1731 {
1732 struct ieee80211_local *local = dev->priv;
1733 int i, ret = 0;
1734
1735 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
1736 printk(KERN_DEBUG "HW CONFIG: channel=%d freq=%d mode=%d "
1737 "phymode=%d\n", local->conf.channel, local->conf.freq,
1738 local->conf.mode, local->conf.phymode);
1739 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
1740
1741 if (local->hw->config)
1742 ret = local->hw->config(dev, &local->conf);
1743
1744 for (i = 0; i < local->hw->num_modes; i++) {
1745 struct ieee80211_hw_modes *mode = &local->hw->modes[i];
1746 if (mode->mode == local->conf.phymode) {
1747 if (local->curr_rates != mode->rates) {
1748 rate_control_clear(local);
1749 }
1750 local->curr_rates = mode->rates;
1751 local->num_curr_rates = mode->num_rates;
1752 ieee80211_prepare_rates(dev);
1753 break;
1754 }
1755 }
1756
1757 return ret;
1758 }
1759
1760
1761 struct ieee80211_conf *ieee80211_get_hw_conf(struct net_device *dev)
1762 {
1763 struct ieee80211_local *local = dev->priv;
1764 return &local->conf;
1765 }
1766
1767
1768 static int ieee80211_change_mtu(struct net_device *dev, int new_mtu)
1769 {
1770 /* FIX: what would be proper limits for MTU?
1771 * This interface uses 802.3 frames. */
1772 if (new_mtu < 256 || new_mtu > 2304 - 24 - 6) {
1773 printk(KERN_WARNING "%s: invalid MTU %d\n",
1774 dev->name, new_mtu);
1775 return -EINVAL;
1776 }
1777
1778 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
1779 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
1780 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
1781 dev->mtu = new_mtu;
1782 return 0;
1783 }
1784
1785
1786 static int ieee80211_change_mtu_apdev(struct net_device *dev, int new_mtu)
1787 {
1788 /* FIX: what would be proper limits for MTU?
1789 * This interface uses 802.11 frames. */
1790 if (new_mtu < 256 || new_mtu > 2304) {
1791 printk(KERN_WARNING "%s: invalid MTU %d\n",
1792 dev->name, new_mtu);
1793 return -EINVAL;
1794 }
1795
1796 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
1797 printk(KERN_DEBUG "%s: setting MTU %d\n", dev->name, new_mtu);
1798 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
1799 dev->mtu = new_mtu;
1800 return 0;
1801 }
1802
1803
1804 static void ieee80211_tx_timeout(struct net_device *dev)
1805 {
1806 struct ieee80211_local *local = dev->priv;
1807
1808 printk(KERN_WARNING "%s: resetting interface.\n", dev->name);
1809
1810 if (local->hw->reset(dev))
1811 printk(KERN_ERR "%s: failed to reset interface.\n", dev->name);
1812 else
1813 netif_wake_queue(dev);
1814 }
1815
1816
1817 static int ieee80211_set_mac_address(struct net_device *dev, void *addr)
1818 {
1819 struct ieee80211_local *local = dev->priv;
1820 struct sockaddr *a = addr;
1821 struct list_head *ptr;
1822 int res;
1823
1824 if (!local->hw->set_mac_address)
1825 return -EOPNOTSUPP;
1826
1827 res = local->hw->set_mac_address(dev, addr);
1828 if (res)
1829 return res;
1830
1831 list_for_each(ptr, &local->sub_if_list) {
1832 struct ieee80211_sub_if_data *sdata =
1833 list_entry(ptr, struct ieee80211_sub_if_data, list);
1834 memcpy(sdata->dev->dev_addr, a->sa_data, ETH_ALEN);
1835 }
1836
1837 return 0;
1838 }
1839
1840
1841 static struct net_device_stats *ieee80211_get_stats(struct net_device *dev)
1842 {
1843 struct ieee80211_sub_if_data *sdata;
1844 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1845 return &(sdata->stats);
1846 }
1847
1848
1849 static int ieee80211_open(struct net_device *dev)
1850 {
1851 struct ieee80211_sub_if_data *sdata;
1852 struct ieee80211_local *local = dev->priv;
1853 int res;
1854
1855 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1856
1857 if (local->open_count == 0) {
1858 res = local->hw->open(sdata->master);
1859 if (res)
1860 return res;
1861 ieee80211_init_scan(sdata->master);
1862 }
1863 local->open_count++;
1864
1865 netif_start_queue(dev);
1866 return 0;
1867 }
1868
1869
1870 static int ieee80211_stop(struct net_device *dev)
1871 {
1872 struct ieee80211_sub_if_data *sdata;
1873 struct ieee80211_local *local = dev->priv;
1874 int res;
1875
1876 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1877
1878 netif_stop_queue(dev);
1879
1880 local->open_count--;
1881 if (local->open_count == 0) {
1882 ieee80211_stop_scan(sdata->master);
1883 res = local->hw->stop(sdata->master);
1884 if (res)
1885 return res;
1886 }
1887
1888 return 0;
1889 }
1890
1891
1892 static int header_parse_80211(struct sk_buff *skb, unsigned char *haddr)
1893 {
1894 memcpy(haddr, skb->mac.raw + 10, ETH_ALEN); /* addr2 */
1895 return ETH_ALEN;
1896 }
1897
1898
1899 static struct net_device *
1900 ieee80211_get_wds_dev(struct ieee80211_local *local, u8 *addr)
1901 {
1902 struct list_head *ptr;
1903
1904 list_for_each(ptr, &local->sub_if_list) {
1905 struct ieee80211_sub_if_data *sdata =
1906 list_entry(ptr, struct ieee80211_sub_if_data, list);
1907 if (sdata->type == IEEE80211_SUB_IF_TYPE_WDS &&
1908 memcmp(addr, sdata->u.wds.remote_addr, ETH_ALEN) == 0)
1909 return sdata->dev;
1910 }
1911
1912 return NULL;
1913 }
1914
1915
1916 static struct net_device * ieee80211_own_bssid(struct ieee80211_local *local,
1917 u8 *addr)
1918 {
1919 int i;
1920 struct net_device *dev = NULL;
1921
1922 spin_lock_bh(&local->sub_if_lock);
1923 for (i = 0; i < local->bss_dev_count; i++) {
1924 if ((memcmp(local->bss_devs[i]->dev_addr, addr, ETH_ALEN) == 0)
1925 ) {
1926 dev = local->bss_devs[i];
1927 break;
1928 }
1929 }
1930 spin_unlock_bh(&local->sub_if_lock);
1931
1932 return dev;
1933 }
1934
1935
1936
1937
1938 static struct net_device * ieee80211_sta_bssid(struct ieee80211_local *local,
1939 u8 *addr, u8 *a1,
1940 int *sta_multicast)
1941 {
1942 struct list_head *ptr;
1943 int multicast;
1944 u8 *own_addr = local->mdev->dev_addr;
1945
1946 multicast = a1[0] & 0x01;
1947
1948 /* Try O(1) lookup for a common case of only one AP being used. */
1949 if (own_addr[0] == a1[0] && own_addr[1] == a1[1] &&
1950 own_addr[2] == a1[2]) {
1951 int index = (((int) a1[3] << 16) | ((int) a1[4] << 8) | a1[5])
1952 - (((int) own_addr[3] << 16) |
1953 ((int) own_addr[4] << 8) | own_addr[5]);
1954 if (index >= 0 && index < local->conf.bss_count &&
1955 local->sta_devs[index]) {
1956 struct net_device *dev = local->sta_devs[index];
1957 struct ieee80211_sub_if_data *sdata;
1958 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
1959 if (memcmp(addr, sdata->u.sta.bssid, ETH_ALEN) == 0) {
1960 *sta_multicast = multicast;
1961 return dev;
1962 }
1963 }
1964 }
1965
1966 if (!multicast)
1967 return NULL;
1968
1969 /* Could not find station interface, resort to O(n) lookup. */
1970 list_for_each(ptr, &local->sub_if_list) {
1971 struct ieee80211_sub_if_data *sdata =
1972 list_entry(ptr, struct ieee80211_sub_if_data, list);
1973 if (sdata->type != IEEE80211_SUB_IF_TYPE_STA)
1974 continue;
1975 if (!multicast &&
1976 memcmp(a1, sdata->dev->dev_addr, ETH_ALEN) != 0)
1977 continue;
1978
1979 if (memcmp(addr, sdata->u.sta.bssid, ETH_ALEN) == 0 ||
1980 (memcmp(addr, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) == 0 &&
1981 local->conf.mode == IW_MODE_ADHOC)) {
1982 *sta_multicast = multicast;
1983 return sdata->dev;
1984 }
1985 }
1986
1987 return NULL;
1988 }
1989
1990
1991 static int ieee80211_own_addr(struct net_device *dev, u8 *addr)
1992 {
1993 struct ieee80211_local *local = dev->priv;
1994 u8 *own = dev->dev_addr;
1995 int index;
1996
1997 /* Optimization: assume that BSSID mask does not change for first
1998 * three octets. */
1999 if (own[0] != addr[0] || own[1] != addr[1] || own[2] != addr[2])
2000 return 0;
2001
2002 index = (((int) addr[3] << 16) | ((int) addr[4] << 8) | addr[5]) -
2003 (((int) own[3] << 16) | ((int) own[4] << 8) | own[5]);
2004 if (index >= 0 && index < local->conf.bss_count &&
2005 local->sta_devs[index])
2006 return 1;
2007
2008 return 0;
2009 }
2010
2011
2012 static ieee80211_txrx_result
2013 ieee80211_rx_h_data(struct ieee80211_txrx_data *rx)
2014 {
2015 struct net_device *dev = rx->dev;
2016 struct ieee80211_local *local = rx->local;
2017 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
2018 u16 fc, hdrlen, ethertype;
2019 u8 *payload;
2020 u8 dst[ETH_ALEN];
2021 u8 src[ETH_ALEN];
2022 struct sk_buff *skb = rx->skb, *skb2;
2023 struct ieee80211_sub_if_data *sdata;
2024
2025 fc = rx->fc;
2026 if (unlikely(WLAN_FC_GET_TYPE(fc) != WLAN_FC_TYPE_DATA))
2027 return TXRX_CONTINUE;
2028
2029 if (unlikely(!WLAN_FC_DATA_PRESENT(fc)))
2030 return TXRX_DROP;
2031
2032 hdrlen = ieee80211_get_hdrlen(fc);
2033
2034 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
2035 * header
2036 * IEEE 802.11 address fields:
2037 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
2038 * 0 0 DA SA BSSID n/a
2039 * 0 1 DA BSSID SA n/a
2040 * 1 0 BSSID SA DA n/a
2041 * 1 1 RA TA DA SA
2042 */
2043
2044 switch (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) {
2045 case WLAN_FC_TODS:
2046 /* BSSID SA DA */
2047 memcpy(dst, hdr->addr3, ETH_ALEN);
2048 memcpy(src, hdr->addr2, ETH_ALEN);
2049
2050 if (unlikely(local->conf.mode != IW_MODE_MASTER ||
2051 !ieee80211_own_bssid(local, hdr->addr1))) {
2052 printk(KERN_DEBUG "%s: dropped ToDS frame (BSSID="
2053 MACSTR " SA=" MACSTR " DA=" MACSTR ")\n",
2054 dev->name, MAC2STR(hdr->addr1),
2055 MAC2STR(hdr->addr2), MAC2STR(hdr->addr3));
2056 return TXRX_DROP;
2057 }
2058 break;
2059 case (WLAN_FC_TODS | WLAN_FC_FROMDS):
2060 /* RA TA DA SA */
2061 memcpy(dst, hdr->addr3, ETH_ALEN);
2062 memcpy(src, hdr->addr4, ETH_ALEN);
2063
2064 dev = ieee80211_get_wds_dev(local, hdr->addr2);
2065 if (!dev || memcmp(hdr->addr1, dev->dev_addr, ETH_ALEN) != 0) {
2066 printk(KERN_DEBUG "%s: dropped FromDS&ToDS frame (RA="
2067 MACSTR " TA=" MACSTR " DA=" MACSTR " SA="
2068 MACSTR ")\n",
2069 rx->dev->name, MAC2STR(hdr->addr1),
2070 MAC2STR(hdr->addr2), MAC2STR(hdr->addr3),
2071 MAC2STR(hdr->addr4));
2072 return TXRX_DROP;
2073 }
2074 break;
2075 case WLAN_FC_FROMDS:
2076 /* DA BSSID SA */
2077 memcpy(dst, hdr->addr1, ETH_ALEN);
2078 memcpy(src, hdr->addr3, ETH_ALEN);
2079
2080 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2081 if (sdata->type != IEEE80211_SUB_IF_TYPE_STA ||
2082 memcmp(hdr->addr3, dev->dev_addr, ETH_ALEN) == 0 ||
2083 memcmp(hdr->addr2, sdata->u.sta.bssid, ETH_ALEN) != 0) {
2084 return TXRX_DROP;
2085 }
2086 break;
2087 case 0:
2088 /* DA SA BSSID */
2089 memcpy(dst, hdr->addr1, ETH_ALEN);
2090 memcpy(src, hdr->addr2, ETH_ALEN);
2091
2092 if (local->conf.mode != IW_MODE_ADHOC ||
2093 memcmp(hdr->addr3, local->bssid, ETH_ALEN) != 0) {
2094 if (net_ratelimit()) {
2095 printk(KERN_DEBUG "%s: dropped IBSS frame (DA="
2096 MACSTR " SA=" MACSTR " BSSID=" MACSTR
2097 ")\n",
2098 dev->name, MAC2STR(hdr->addr1),
2099 MAC2STR(hdr->addr2),
2100 MAC2STR(hdr->addr3));
2101 }
2102 return TXRX_DROP;
2103 }
2104 break;
2105 }
2106
2107 payload = skb->data + hdrlen;
2108
2109 if (unlikely(skb->len - hdrlen < 8)) {
2110 if (net_ratelimit()) {
2111 printk(KERN_DEBUG "%s: RX too short data frame "
2112 "payload\n", dev->name);
2113 }
2114 return TXRX_DROP;
2115 }
2116
2117 ethertype = (payload[6] << 8) | payload[7];
2118
2119 if (likely((memcmp(payload, rfc1042_header, 6) == 0 &&
2120 ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
2121 memcmp(payload, bridge_tunnel_header, 6) == 0)) {
2122 /* remove RFC1042 or Bridge-Tunnel encapsulation and
2123 * replace EtherType */
2124 skb_pull(skb, hdrlen + 6);
2125 memcpy(skb_push(skb, ETH_ALEN), src, ETH_ALEN);
2126 memcpy(skb_push(skb, ETH_ALEN), dst, ETH_ALEN);
2127 } else {
2128 struct ethhdr *ehdr;
2129 unsigned short len;
2130 skb_pull(skb, hdrlen);
2131 len = htons(skb->len);
2132 ehdr = (struct ethhdr *)skb_push(skb, sizeof(struct ethhdr));
2133 memcpy(ehdr->h_dest, dst, ETH_ALEN);
2134 memcpy(ehdr->h_source, src, ETH_ALEN);
2135 ehdr->h_proto = len;
2136 }
2137
2138 if (rx->sta && !rx->sta->assoc_ap &&
2139 !(rx->sta && (rx->sta->flags & WLAN_STA_WDS)))
2140 skb->dev = rx->sta->dev;
2141 else
2142 skb->dev = dev;
2143
2144 skb2 = NULL;
2145 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2146
2147 /*
2148 * don't count the master since the low level code
2149 * counts it already for us.
2150 */
2151 if (skb->dev != sdata->master) {
2152 sdata->stats.rx_packets++;
2153 sdata->stats.rx_bytes += skb->len;
2154 }
2155
2156 if (local->bridge_packets && sdata->type != IEEE80211_SUB_IF_TYPE_WDS
2157 && sdata->type != IEEE80211_SUB_IF_TYPE_STA) {
2158 if (MULTICAST_ADDR(skb->data)) {
2159 /* send multicast frames both to higher layers in
2160 * local net stack and back to the wireless media */
2161 skb2 = skb_copy(skb, GFP_ATOMIC);
2162 if (skb2 == NULL)
2163 printk(KERN_DEBUG "%s: failed to clone "
2164 "multicast frame\n", dev->name);
2165 } else {
2166 struct sta_info *dsta;
2167 dsta = sta_info_get(local, skb->data);
2168 if (dsta && dsta->dev == NULL) {
2169 printk(KERN_DEBUG "Station with null dev "
2170 "structure!\n");
2171 } else if (dsta && dsta->dev == dev) {
2172 /* Destination station is associated to this
2173 * AP, so send the frame directly to it and
2174 * do not pass the frame to local net stack.
2175 */
2176 skb2 = skb;
2177 skb = NULL;
2178 }
2179 if (dsta)
2180 sta_info_release(local, dsta);
2181 }
2182 }
2183
2184 if (skb) {
2185 /* deliver to local stack */
2186 skb->protocol = eth_type_trans(skb, dev);
2187 memset(skb->cb, 0, sizeof(skb->cb));
2188 netif_rx(skb);
2189 }
2190
2191 if (skb2) {
2192 /* send to wireless media */
2193 skb2->protocol = __constant_htons(ETH_P_802_3);
2194 skb2->mac.raw = skb2->nh.raw = skb2->data;
2195 dev_queue_xmit(skb2);
2196 }
2197
2198 return TXRX_QUEUED;
2199 }
2200
2201
2202 static struct ieee80211_rate *
2203 ieee80211_get_rate(struct ieee80211_local *local, int phymode, int hw_rate)
2204 {
2205 int m, r;
2206
2207 for (m = 0; m < local->hw->num_modes; m++) {
2208 struct ieee80211_hw_modes *mode = &local->hw->modes[m];
2209 if (mode->mode != phymode)
2210 continue;
2211 for (r = 0; r < mode->num_rates; r++) {
2212 struct ieee80211_rate *rate = &mode->rates[r];
2213 if (rate->val == hw_rate ||
2214 (rate->flags & IEEE80211_RATE_PREAMBLE2 &&
2215 rate->val2 == hw_rate))
2216 return rate;
2217 }
2218 }
2219
2220 return NULL;
2221 }
2222
2223
2224 void
2225 ieee80211_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
2226 struct ieee80211_rx_status *status, u32 msg_type)
2227 {
2228 struct ieee80211_local *local = dev->priv;
2229 struct ieee80211_frame_info *fi;
2230 size_t hlen;
2231 struct ieee80211_sub_if_data *sdata;
2232
2233 dev = local->apdev;
2234 skb->dev = dev;
2235
2236 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
2237
2238 if (skb_headroom(skb) < sizeof(struct ieee80211_frame_info)) {
2239 I802_DEBUG_INC(local->rx_expand_skb_head);
2240 if (pskb_expand_head(skb, sizeof(struct ieee80211_frame_info),
2241 0, GFP_ATOMIC)) {
2242 dev_kfree_skb(skb);
2243 return;
2244 }
2245 }
2246
2247 hlen = sizeof(struct ieee80211_frame_info);
2248 if (msg_type == ieee80211_msg_monitor)
2249 hlen -= sizeof(fi->msg_type);
2250
2251 fi = (struct ieee80211_frame_info *) skb_push(skb, hlen);
2252 memset(fi, 0, hlen);
2253 if (msg_type != ieee80211_msg_monitor)
2254 fi->msg_type = htonl(msg_type);
2255 fi->version = htonl(IEEE80211_FI_VERSION);
2256 fi->length = htonl(hlen);
2257 if (status) {
2258 // struct timespec ts;
2259 struct ieee80211_rate *rate;
2260
2261 #if 0
2262 jiffies_to_timespec(status->hosttime, &ts);
2263 fi->hosttime = cpu_to_be64(ts.tv_sec * 1000000 +
2264 ts.tv_nsec / 1000);
2265 fi->mactime = cpu_to_be64(status->mactime);
2266 #endif
2267 switch (status->phymode) {
2268 case MODE_IEEE80211A:
2269 fi->phytype = htonl(ieee80211_phytype_ofdm_dot11_a);
2270 break;
2271 case MODE_IEEE80211B:
2272 fi->phytype = htonl(ieee80211_phytype_dsss_dot11_b);
2273 break;
2274 case MODE_IEEE80211G:
2275 fi->phytype = htonl(ieee80211_phytype_pbcc_dot11_g);
2276 break;
2277 case MODE_ATHEROS_TURBO:
2278 fi->phytype =
2279 htonl(ieee80211_phytype_dsss_dot11_turbo);
2280 break;
2281 default:
2282 fi->phytype = 0xAAAAAAAA;
2283 break;
2284 }
2285 fi->channel = htonl(status->channel);
2286 rate = ieee80211_get_rate(local, status->phymode,
2287 status->rate);
2288 if (rate) {
2289 fi->datarate = htonl(rate->rate);
2290 if (rate->flags & IEEE80211_RATE_PREAMBLE2) {
2291 if (status->rate == rate->val)
2292 fi->preamble = htonl(2); /* long */
2293 else if (status->rate == rate->val2)
2294 fi->preamble = htonl(1); /* short */
2295 } else
2296 fi->preamble = htonl(0);
2297 } else {
2298 fi->datarate = htonl(0);
2299 fi->preamble = htonl(0);
2300 }
2301
2302 fi->antenna = htonl(status->antenna);
2303 fi->priority = 0xffffffff; /* no clue */
2304 fi->ssi_type = htonl(ieee80211_ssi_raw);
2305 fi->ssi_signal = htonl(status->ssi);
2306 fi->ssi_noise = 0x00000000;
2307 fi->encoding = 0;
2308 } else {
2309 fi->ssi_type = htonl(ieee80211_ssi_none);
2310 }
2311
2312 sdata->stats.rx_packets++;
2313 sdata->stats.rx_bytes += skb->len;
2314
2315 skb->mac.raw = skb->data;
2316 skb->ip_summed = CHECKSUM_UNNECESSARY;
2317 skb->pkt_type = PACKET_OTHERHOST;
2318 skb->protocol = __constant_htons(ETH_P_802_2);
2319 memset(skb->cb, 0, sizeof(skb->cb));
2320 netif_rx(skb);
2321 }
2322
2323
2324 int ieee80211_radar_status(struct net_device *dev, int channel, int radar,
2325 int radar_type)
2326 {
2327 struct sk_buff *skb;
2328 struct ieee80211_radar_info *msg;
2329
2330 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
2331 sizeof(struct ieee80211_radar_info));
2332
2333 if (skb == NULL)
2334 return -ENOMEM;
2335 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
2336
2337 msg = (struct ieee80211_radar_info *)
2338 skb_put(skb, sizeof(struct ieee80211_radar_info));
2339 msg->channel = channel;
2340 msg->radar = radar;
2341 msg->radar_type = radar_type;
2342
2343 ieee80211_rx_mgmt(dev, skb, 0, ieee80211_msg_radar);
2344 return 0;
2345 }
2346
2347
2348 int ieee80211_set_aid_for_sta(struct net_device *dev, u8 *peer_address,
2349 u16 aid)
2350 {
2351 struct sk_buff *skb;
2352 struct ieee80211_msg_set_aid_for_sta *msg;
2353
2354 skb = dev_alloc_skb(sizeof(struct ieee80211_frame_info) +
2355 sizeof(struct ieee80211_msg_set_aid_for_sta));
2356
2357 if (skb == NULL)
2358 return -ENOMEM;
2359 skb_reserve(skb, sizeof(struct ieee80211_frame_info));
2360
2361 msg = (struct ieee80211_msg_set_aid_for_sta *)
2362 skb_put(skb, sizeof(struct ieee80211_msg_set_aid_for_sta));
2363 memcpy(msg->sta_address, peer_address, ETH_ALEN);
2364 msg->aid = aid;
2365
2366 ieee80211_rx_mgmt(dev, skb, 0, ieee80211_msg_set_aid_for_sta);
2367 return 0;
2368 }
2369
2370
2371 static void ap_sta_ps_start(struct net_device *dev, struct sta_info *sta)
2372 {
2373 struct ieee80211_sub_if_data *sdata;
2374 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
2375
2376 if (sdata->bss)
2377 atomic_inc(&sdata->bss->num_sta_ps);
2378 sta->flags |= WLAN_STA_PS;
2379 sta->pspoll = 0;
2380 #ifdef IEEE80211_VERBOSE_DEBUG_PS
2381 printk(KERN_DEBUG "%s: STA " MACSTR " aid %d enters power "
2382 "save mode\n", dev->name, MAC2STR(sta->addr), sta->aid);
2383 #endif /* IEEE80211_VERBOSE_DEBUG_PS */
2384 }
2385
2386
2387 static int ap_sta_ps_end(struct net_device *dev, struct sta_info *sta)
2388 {
2389 struct ieee80211_local *local = dev->priv;
2390 struct sk_buff *skb;
2391 int sent = 0;
2392 struct ieee80211_sub_if_data *sdata;
2393 struct ieee80211_tx_packet_data *pkt_data;
2394
2395 sdata = IEEE80211_DEV_TO_SUB_IF(sta->dev);
2396 if (sdata->bss)
2397 atomic_dec(&sdata->bss->num_sta_ps);
2398 sta->flags &= ~(WLAN_STA_PS | WLAN_STA_TIM);
2399 sta->pspoll = 0;
2400 if (!skb_queue_empty(&sta->ps_tx_buf) && local->hw->set_tim)
2401 local->hw->set_tim(dev, sta->aid, 0);
2402 #ifdef IEEE80211_VERBOSE_DEBUG_PS
2403 printk(KERN_DEBUG "%s: STA " MACSTR " aid %d exits power "
2404 "save mode\n", dev->name, MAC2STR(sta->addr), sta->aid);
2405 #endif /* IEEE80211_VERBOSE_DEBUG_PS */
2406 /* Send all buffered frames to the station */
2407 while ((skb = skb_dequeue(&sta->tx_filtered)) != NULL) {
2408 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
2409 sent++;
2410 pkt_data->control.requeue = 1;
2411 dev_queue_xmit(skb);
2412 }
2413 while ((skb = skb_dequeue(&sta->ps_tx_buf)) != NULL) {
2414 pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
2415 local->total_ps_buffered--;
2416 sent++;
2417 #ifdef IEEE80211_VERBOSE_DEBUG_PS
2418 printk(KERN_DEBUG "%s: STA " MACSTR " aid %d send PS frame "
2419 "since STA not sleeping anymore\n", dev->name,
2420 MAC2STR(sta->addr), sta->aid);
2421 #endif /* IEEE80211_VERBOSE_DEBUG_PS */
2422 pkt_data->control.requeue = 1;
2423 dev_queue_xmit(skb);
2424 }
2425
2426 return sent;
2427 }
2428
2429
2430 static ieee80211_txrx_result
2431 ieee80211_rx_h_ieee80211_rx_h_ps_poll(struct ieee80211_txrx_data *rx)
2432 {
2433 struct sk_buff *skb;
2434 int no_pending_pkts;
2435
2436 if (likely(!rx->sta || WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_CTRL ||
2437 WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_PSPOLL))
2438 return TXRX_CONTINUE;
2439
2440 skb = skb_dequeue(&rx->sta->tx_filtered);
2441 if (skb == NULL) {
2442 skb = skb_dequeue(&rx->sta->ps_tx_buf);
2443 if (skb)
2444 rx->local->total_ps_buffered--;
2445 }
2446 no_pending_pkts = skb_queue_empty(&rx->sta->tx_filtered) &&
2447 skb_queue_empty(&rx->sta->ps_tx_buf);
2448
2449 if (skb) {
2450 struct ieee80211_hdr *hdr =
2451 (struct ieee80211_hdr *) skb->data;
2452
2453 /* tell TX path to send one frame even though the STA may
2454 * still remain is PS mode after this frame exchange */
2455 rx->sta->pspoll = 1;
2456
2457 #ifdef IEEE80211_VERBOSE_DEBUG_PS
2458 printk(KERN_DEBUG "STA " MACSTR " aid %d: PS Poll (entries "
2459 "after %d)\n",
2460 MAC2STR(rx->sta->addr), rx->sta->aid,
2461 skb_queue_len(&rx->sta->ps_tx_buf));
2462 #endif /* IEEE80211_VERBOSE_DEBUG_PS */
2463
2464 /* Use MoreData flag to indicate whether there are more
2465 * buffered frames for this STA */
2466 if (no_pending_pkts) {
2467 hdr->frame_control &= cpu_to_le16(~WLAN_FC_MOREDATA);
2468 rx->sta->flags &= ~WLAN_STA_TIM;
2469 } else
2470 hdr->frame_control |= cpu_to_le16(WLAN_FC_MOREDATA);
2471
2472 dev_queue_xmit(skb);
2473
2474 if (no_pending_pkts && rx->local->hw->set_tim)
2475 rx->local->hw->set_tim(rx->dev, rx->sta->aid, 0);
2476 #ifdef IEEE80211_VERBOSE_DEBUG_PS
2477 } else if (!rx->u.rx.sent_ps_buffered) {
2478 printk(KERN_DEBUG "%s: STA " MACSTR " sent PS Poll even "
2479 "though there is no buffered frames for it\n",
2480 rx->dev->name, MAC2STR(rx->sta->addr));
2481 #endif /* IEEE80211_VERBOSE_DEBUG_PS */
2482
2483 }
2484
2485 /* Free PS Poll skb here instead of returning TXRX_DROP that would
2486 * count as an dropped frame. */
2487 dev_kfree_skb(rx->skb);
2488
2489 return TXRX_QUEUED;
2490 }
2491
2492
2493 static inline struct ieee80211_fragment_entry *
2494 ieee80211_reassemble_add(struct ieee80211_local *local,
2495 unsigned int frag, unsigned int seq, int rx_queue,
2496 struct sk_buff **skb)
2497 {
2498 struct ieee80211_fragment_entry *entry;
2499 int idx;
2500
2501 idx = local->fragment_next;
2502 entry = &local->fragments[local->fragment_next++];
2503 if (local->fragment_next >= IEEE80211_FRAGMENT_MAX)
2504 local->fragment_next = 0;
2505
2506 if (entry->skb) {
2507 #ifdef CONFIG_IEEE80211_DEBUG
2508 struct ieee80211_hdr *hdr =
2509 (struct ieee80211_hdr *) entry->skb->data;
2510 printk(KERN_DEBUG "%s: RX reassembly removed oldest "
2511 "fragment entry (idx=%d age=%lu seq=%d last_frag=%d "
2512 "addr1=" MACSTR " addr2=" MACSTR "\n",
2513 local->mdev->name, idx,
2514 jiffies - entry->first_frag_time, entry->seq,
2515 entry->last_frag, MAC2STR(hdr->addr1),
2516 MAC2STR(hdr->addr2));
2517 #endif /* CONFIG_IEEE80211_DEBUG */
2518 dev_kfree_skb(entry->skb);
2519 }
2520
2521 entry->skb = *skb;
2522 *skb = NULL;
2523 entry->first_frag_time = jiffies;
2524 entry->seq = seq;
2525 entry->rx_queue = rx_queue;
2526 entry->last_frag = frag;
2527 entry->ccmp = 0;
2528
2529 return entry;
2530 }
2531
2532
2533 static inline struct ieee80211_fragment_entry *
2534 ieee80211_reassemble_find(struct ieee80211_local *local,
2535 u16 fc, unsigned int frag, unsigned int seq,
2536 int rx_queue, struct ieee80211_hdr *hdr)
2537 {
2538 struct ieee80211_fragment_entry *entry;
2539 int i, idx;
2540
2541 idx = local->fragment_next;
2542 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++) {
2543 struct ieee80211_hdr *f_hdr;
2544 u16 f_fc;
2545
2546 idx--;
2547 if (idx < 0)
2548 idx = IEEE80211_FRAGMENT_MAX - 1;
2549
2550 entry = &local->fragments[idx];
2551 if (!entry->skb || entry->seq != seq ||
2552 entry->rx_queue != rx_queue ||
2553 entry->last_frag + 1 != frag)
2554 continue;
2555
2556 f_hdr = (struct ieee80211_hdr *) entry->skb->data;
2557 f_fc = le16_to_cpu(f_hdr->frame_control);
2558
2559 if (WLAN_FC_GET_TYPE(fc) != WLAN_FC_GET_TYPE(f_fc) ||
2560 memcmp(hdr->addr1, f_hdr->addr1, ETH_ALEN) != 0 ||
2561 memcmp(hdr->addr2, f_hdr->addr2, ETH_ALEN) != 0)
2562 continue;
2563
2564 if (entry->first_frag_time + 2 * HZ < jiffies) {
2565 dev_kfree_skb(entry->skb);
2566 entry->skb = NULL;
2567 continue;
2568 }
2569 return entry;
2570 }
2571
2572 return NULL;
2573 }
2574
2575
2576 static ieee80211_txrx_result
2577 ieee80211_rx_h_defragment(struct ieee80211_txrx_data *rx)
2578 {
2579 struct ieee80211_hdr *hdr;
2580 u16 sc;
2581 unsigned int frag, seq;
2582 struct ieee80211_fragment_entry *entry;
2583
2584 hdr = (struct ieee80211_hdr *) rx->skb->data;
2585 sc = le16_to_cpu(hdr->seq_ctrl);
2586 frag = WLAN_GET_SEQ_FRAG(sc);
2587
2588 if (likely((!(rx->fc & WLAN_FC_MOREFRAG) && frag == 0) ||
2589 (rx->skb)->len < 24 || MULTICAST_ADDR(hdr->addr1))) {
2590 /* not fragmented */
2591 goto out;
2592 }
2593 I802_DEBUG_INC(rx->local->rx_handlers_fragments);
2594
2595 seq = WLAN_GET_SEQ_SEQ(sc);
2596
2597 if (frag == 0) {
2598 /* This is the first fragment of a new frame. */
2599 entry = ieee80211_reassemble_add(rx->local, frag, seq,
2600 rx->u.rx.queue, &(rx->skb));
2601 if (rx->key && rx->key->alg == ALG_CCMP &&
2602 (rx->fc & WLAN_FC_ISWEP)) {
2603 /* Store CCMP PN so that we can verify that the next
2604 * fragment has a sequential PN value. */
2605 entry->ccmp = 1;
2606 memcpy(entry->last_pn,
2607 rx->key->u.ccmp.rx_pn[rx->u.rx.queue],
2608 CCMP_PN_LEN);
2609 }
2610 return TXRX_QUEUED;
2611 }
2612
2613 /* This is a fragment for a frame that should already be pending in
2614 * fragment cache. Add this fragment to the end of the pending entry.
2615 */
2616 entry = ieee80211_reassemble_find(rx->local, rx->fc, frag, seq,
2617 rx->u.rx.queue, hdr);
2618 if (!entry) {
2619 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2620 return TXRX_DROP;
2621 }
2622
2623 /* Verify that MPDUs within one MSDU have sequential PN values.
2624 * (IEEE 802.11i, 8.3.3.4.5) */
2625 if (entry->ccmp) {
2626 int i;
2627 u8 pn[CCMP_PN_LEN], *rpn;
2628 if (rx->key == NULL || rx->key->alg != ALG_CCMP)
2629 return TXRX_DROP;
2630 memcpy(pn, entry->last_pn, CCMP_PN_LEN);
2631 for (i = CCMP_PN_LEN - 1; i >= 0; i--) {
2632 pn[i]++;
2633 if (pn[i])
2634 break;
2635 }
2636 rpn = rx->key->u.ccmp.rx_pn[rx->u.rx.queue];
2637 if (memcmp(pn, rpn, CCMP_PN_LEN) != 0) {
2638 printk(KERN_DEBUG "%s: defrag: CCMP PN not sequential"
2639 " A2=" MACSTR " PN=%02x%02x%02x%02x%02x%02x "
2640 "(expected %02x%02x%02x%02x%02x%02x)\n",
2641 rx->dev->name, MAC2STR(hdr->addr2),
2642 rpn[0], rpn[1], rpn[2], rpn[3], rpn[4], rpn[5],
2643 pn[0], pn[1], pn[2], pn[3], pn[4], pn[5]);
2644 return TXRX_DROP;
2645 }
2646 memcpy(entry->last_pn, pn, CCMP_PN_LEN);
2647 }
2648
2649 /* TODO: could gather list of skb's and reallocate data buffer only
2650 * after finding out the total length of the frame */
2651 skb_pull(rx->skb, ieee80211_get_hdrlen(rx->fc));
2652 if (skb_tailroom(entry->skb) < rx->skb->len) {
2653 I802_DEBUG_INC(rx->local->rx_expand_skb_head2);
2654 if (unlikely(pskb_expand_head(entry->skb, 0, rx->skb->len,
2655 GFP_ATOMIC))) {
2656 I802_DEBUG_INC(rx->local->rx_handlers_drop_defrag);
2657 return TXRX_DROP;
2658 }
2659 }
2660 memcpy(skb_put(entry->skb, rx->skb->len), rx->skb->data, rx->skb->len);
2661 entry->last_frag = frag;
2662 dev_kfree_skb(rx->skb);
2663
2664 if (rx->fc & WLAN_FC_MOREFRAG) {
2665 rx->skb = NULL;
2666 return TXRX_QUEUED;
2667 }
2668
2669 /* Complete frame has been reassembled - process it now */
2670 rx->skb = entry->skb;
2671 rx->fragmented = 1;
2672 entry->skb = NULL;
2673
2674 out:
2675 if (rx->sta)
2676 rx->sta->rx_packets++;
2677 if (MULTICAST_ADDR(hdr->addr1))
2678 rx->local->dot11MulticastReceivedFrameCount++;
2679 #ifdef IEEE80211_LEDS
2680 else
2681 ieee80211_rx_led(2, rx->dev);
2682 #endif /* IEEE80211_LEDS */
2683 return TXRX_CONTINUE;
2684 }
2685
2686
2687 static ieee80211_txrx_result
2688 ieee80211_rx_h_monitor(struct ieee80211_txrx_data *rx)
2689 {
2690 if (rx->local->conf.mode == IW_MODE_MONITOR) {
2691 ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
2692 ieee80211_msg_monitor);
2693 return TXRX_QUEUED;
2694 }
2695
2696 return TXRX_CONTINUE;
2697 }
2698
2699
2700 static ieee80211_txrx_result
2701 ieee80211_rx_h_check(struct ieee80211_txrx_data *rx)
2702 {
2703 struct ieee80211_hdr *hdr;
2704 int always_sta_key;
2705 hdr = (struct ieee80211_hdr *) rx->skb->data;
2706
2707 /* Drop duplicate 802.11 retransmissions (IEEE 802.11 Chap. 9.2.9) */
2708 if (rx->sta && !MULTICAST_ADDR(hdr->addr1)) {
2709 if (unlikely(rx->fc & WLAN_FC_RETRY &&
2710 rx->sta->last_seq_ctrl[rx->u.rx.queue] ==
2711 hdr->seq_ctrl)) {
2712 rx->local->dot11FrameDuplicateCount++;
2713 rx->sta->num_duplicates++;
2714 return TXRX_DROP;
2715 } else
2716 rx->sta->last_seq_ctrl[rx->u.rx.queue] = hdr->seq_ctrl;
2717 }
2718
2719 if (rx->local->hw->rx_includes_fcs && rx->skb->len > FCS_LEN)
2720 skb_trim(rx->skb, rx->skb->len - FCS_LEN);
2721
2722 if (unlikely(rx->skb->len < 16)) {
2723 I802_DEBUG_INC(rx->local->rx_handlers_drop_short);
2724 return TXRX_DROP;
2725 }
2726
2727 /* Filter out foreign unicast packets when in promiscuous mode.
2728 * FIX: Filter out multicast to foreign BSSID. */
2729 if (rx->local->conf.mode == IW_MODE_INFRA &&
2730 !MULTICAST_ADDR(hdr->addr1) &&
2731 !ieee80211_own_addr(rx->dev, hdr->addr1))
2732 return TXRX_DROP;
2733
2734 /* Drop disallowed frame classes based on STA auth/assoc state;
2735 * IEEE 802.11, Chap 5.5.
2736 *
2737 * 80211.o does filtering only based on association state, i.e., it
2738 * drops Class 3 frames from not associated stations. hostapd sends
2739 * deauth/disassoc frames when needed. In addition, hostapd is
2740 * responsible for filtering on both auth and assoc states.
2741 */
2742 if (unlikely((WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA ||
2743 (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_CTRL &&
2744 WLAN_FC_GET_STYPE(rx->fc) == WLAN_FC_STYPE_PSPOLL)) &&
2745 rx->local->conf.mode != IW_MODE_ADHOC &&
2746 (!rx->sta || !(rx->sta->flags & WLAN_STA_ASSOC)))) {
2747 if (!(rx->fc & WLAN_FC_FROMDS) && !(rx->fc & WLAN_FC_TODS)) {
2748 /* Drop IBSS frames silently. */
2749 return TXRX_DROP;
2750 }
2751
2752 ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
2753 ieee80211_msg_sta_not_assoc);
2754 return TXRX_QUEUED;
2755 }
2756
2757 if (rx->local->conf.mode == IW_MODE_INFRA)
2758 always_sta_key = 0;
2759 else
2760 always_sta_key = 1;
2761
2762 if (rx->sta && rx->sta->key && always_sta_key) {
2763 rx->key = rx->sta->key;
2764 } else {
2765 if (!rx->sdata) {
2766 printk(KERN_DEBUG "%s: sdata was null in packet!!\n",
2767 rx->dev->name);
2768 printk(KERN_DEBUG "%s: Addr1: " MACSTR "\n",
2769 rx->dev->name, MAC2STR(hdr->addr1));
2770 printk(KERN_DEBUG "%s: Addr2: " MACSTR "\n",
2771 rx->dev->name, MAC2STR(hdr->addr2));
2772 printk(KERN_DEBUG "%s: Addr3: " MACSTR "\n",
2773 rx->dev->name, MAC2STR(hdr->addr3));
2774 return TXRX_DROP;
2775 }
2776 if (rx->sta && rx->sta->key)
2777 rx->key = rx->sta->key;
2778 else
2779 rx->key = rx->sdata->default_key;
2780
2781 if (rx->local->hw->wep_include_iv &&
2782 rx->fc & WLAN_FC_ISWEP) {
2783 int keyidx = ieee80211_wep_get_keyidx(rx->skb);
2784
2785 if (keyidx >= 0 && keyidx < NUM_DEFAULT_KEYS &&
2786 (rx->sta == NULL || rx->sta->key == NULL ||
2787 keyidx > 0)) {
2788 rx->key = rx->sdata->keys[keyidx];
2789 }
2790 if (!rx->key) {
2791 printk(KERN_DEBUG "%s: RX WEP frame with "
2792 "unknown keyidx %d (A1=" MACSTR " A2="
2793 MACSTR " A3=" MACSTR ")\n",
2794 rx->dev->name, keyidx,
2795 MAC2STR(hdr->addr1),
2796 MAC2STR(hdr->addr2),
2797 MAC2STR(hdr->addr3));
2798 ieee80211_rx_mgmt(
2799 rx->dev, rx->skb, rx->u.rx.status,
2800 ieee80211_msg_wep_frame_unknown_key);
2801 return TXRX_QUEUED;
2802 }
2803 }
2804 }
2805
2806 if (rx->fc & WLAN_FC_ISWEP && rx->key) {
2807 rx->key->tx_rx_count++;
2808 if (unlikely(rx->local->key_tx_rx_threshold &&
2809 rx->key->tx_rx_count >
2810 rx->local->key_tx_rx_threshold)) {
2811 ieee80211_key_threshold_notify(rx->dev, rx->key,
2812 rx->sta);
2813 }
2814 }
2815
2816 return TXRX_CONTINUE;
2817 }
2818
2819
2820 static ieee80211_txrx_result
2821 ieee80211_rx_h_sta_process(struct ieee80211_txrx_data *rx)
2822 {
2823 struct sta_info *sta = rx->sta;
2824 struct net_device *dev = rx->dev;
2825 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) rx->skb->data;
2826
2827 if (!sta)
2828 return TXRX_CONTINUE;
2829
2830 /* Update last_rx only for IBSS packets which are for the current
2831 * BSSID to avoid keeping the current IBSS network alive in cases where
2832 * other STAs are using different BSSID. */
2833 if (rx->local->conf.mode == IW_MODE_ADHOC) {
2834 u8 *bssid = ieee80211_get_bssid(hdr, rx->skb->len);
2835 if (memcmp(bssid, rx->local->bssid, ETH_ALEN) == 0)
2836 sta->last_rx = jiffies;
2837 } else
2838 if (!MULTICAST_ADDR(hdr->addr1) ||
2839 rx->local->conf.mode == IW_MODE_INFRA) {
2840 /* Update last_rx only for unicast frames in order to prevent
2841 * the Probe Request frames (the only broadcast frames from a
2842 * STA in infrastructure mode) from keeping a connection alive.
2843 */
2844 sta->last_rx = jiffies;
2845 }
2846 sta->rx_fragments++;
2847 sta->rx_bytes += rx->skb->len;
2848 sta->last_rssi = rx->u.rx.status->ssi;
2849
2850 if (!(rx->fc & WLAN_FC_MOREFRAG)) {
2851 /* Change STA power saving mode only in the end of a frame
2852 * exchange sequence */
2853 if ((sta->flags & WLAN_STA_PS) && !(rx->fc & WLAN_FC_PWRMGT))
2854 rx->u.rx.sent_ps_buffered += ap_sta_ps_end(dev, sta);
2855 else if (!(sta->flags & WLAN_STA_PS) &&
2856 (rx->fc & WLAN_FC_PWRMGT))
2857 ap_sta_ps_start(dev, sta);
2858 }
2859
2860 /* Drop data::nullfunc frames silently, since they are used only to
2861 * control station power saving mode. */
2862 if (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA &&
2863 WLAN_FC_GET_STYPE(rx->fc) == WLAN_FC_STYPE_NULLFUNC) {
2864 I802_DEBUG_INC(rx->local->rx_handlers_drop_nullfunc);
2865 /* Update counter and free packet here to avoid counting this
2866 * as a dropped packed. */
2867 sta->rx_packets++;
2868 dev_kfree_skb(rx->skb);
2869 return TXRX_QUEUED;
2870 }
2871
2872 return TXRX_CONTINUE;
2873 }
2874
2875
2876 static ieee80211_txrx_result
2877 ieee80211_rx_h_wep_weak_iv_detection(struct ieee80211_txrx_data *rx)
2878 {
2879 if (!rx->sta || !(rx->fc & WLAN_FC_ISWEP) ||
2880 WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA || !rx->key ||
2881 rx->key->alg != ALG_WEP)
2882 return TXRX_CONTINUE;
2883
2884 /* Check for weak IVs, if hwaccel did not remove IV from the frame */
2885 if (rx->local->hw->wep_include_iv ||
2886 rx->key->force_sw_encrypt || rx->local->conf.sw_decrypt) {
2887 u8 *iv = ieee80211_wep_is_weak_iv(rx->skb, rx->key);
2888 if (iv) {
2889 rx->sta->wep_weak_iv_count++;
2890 }
2891 }
2892
2893 return TXRX_CONTINUE;
2894 }
2895
2896
2897 static ieee80211_txrx_result
2898 ieee80211_rx_h_wep_decrypt(struct ieee80211_txrx_data *rx)
2899 {
2900 /* If the device handles decryption totally, skip this test */
2901 if (rx->local->hw->device_hides_wep)
2902 return TXRX_CONTINUE;
2903
2904 if ((rx->key && rx->key->alg != ALG_WEP) ||
2905 !(rx->fc & WLAN_FC_ISWEP) ||
2906 (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA &&
2907 (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_MGMT ||
2908 WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_AUTH)))
2909 return TXRX_CONTINUE;
2910
2911 if (!rx->key) {
2912 printk(KERN_DEBUG "%s: RX WEP frame, but no key set\n",
2913 rx->dev->name);
2914 return TXRX_DROP;
2915 }
2916
2917 if (!(rx->u.rx.status->flag & RX_FLAG_DECRYPTED) ||
2918 rx->key->force_sw_encrypt || rx->local->conf.sw_decrypt) {
2919 if (ieee80211_wep_decrypt(rx->local, rx->skb, rx->key)) {
2920 printk(KERN_DEBUG "%s: RX WEP frame, decrypt "
2921 "failed\n", rx->dev->name);
2922 return TXRX_DROP;
2923 }
2924 } else if (rx->local->hw->wep_include_iv) {
2925 ieee80211_wep_remove_iv(rx->local, rx->skb, rx->key);
2926 /* remove ICV */
2927 skb_trim(rx->skb, rx->skb->len - 4);
2928 }
2929
2930 return TXRX_CONTINUE;
2931 }
2932
2933
2934 static ieee80211_txrx_result
2935 ieee80211_rx_h_802_1x_pae(struct ieee80211_txrx_data *rx)
2936 {
2937 if (rx->sdata->eapol && ieee80211_is_eapol(rx->skb) &&
2938 rx->local->conf.mode != IW_MODE_INFRA) {
2939 /* Pass both encrypted and unencrypted EAPOL frames to user
2940 * space for processing. */
2941 ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
2942 ieee80211_msg_normal);
2943 return TXRX_QUEUED;
2944 }
2945
2946 if (unlikely(rx->sdata->ieee802_1x &&
2947 WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA &&
2948 WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_NULLFUNC &&
2949 (!rx->sta || !(rx->sta->flags & WLAN_STA_AUTHORIZED)) &&
2950 !ieee80211_is_eapol(rx->skb))) {
2951 #ifdef CONFIG_IEEE80211_DEBUG
2952 struct ieee80211_hdr *hdr =
2953 (struct ieee80211_hdr *) rx->skb->data;
2954 printk(KERN_DEBUG "%s: dropped frame from " MACSTR
2955 " (unauthorized port)\n", rx->dev->name,
2956 MAC2STR(hdr->addr2));
2957 #endif /* CONFIG_IEEE80211_DEBUG */
2958 return TXRX_DROP;
2959 }
2960
2961 return TXRX_CONTINUE;
2962 }
2963
2964
2965 static ieee80211_txrx_result
2966 ieee80211_rx_h_drop_unencrypted(struct ieee80211_txrx_data *rx)
2967 {
2968 /* If the device handles decryption totally, skip this test */
2969 if (rx->local->hw->device_hides_wep)
2970 return TXRX_CONTINUE;
2971
2972 /* Drop unencrypted frames if key is set. */
2973 if (unlikely(!(rx->fc & WLAN_FC_ISWEP) &&
2974 WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA &&
2975 WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_NULLFUNC &&
2976 (rx->key || rx->sdata->drop_unencrypted) &&
2977 (rx->sdata->eapol == 0 ||
2978 !ieee80211_is_eapol(rx->skb)))) {
2979 printk(KERN_DEBUG "%s: RX non-WEP frame, but expected "
2980 "encryption\n", rx->dev->name);
2981 return TXRX_DROP;
2982 }
2983 return TXRX_CONTINUE;
2984 }
2985
2986
2987 static ieee80211_txrx_result
2988 ieee80211_rx_h_mgmt(struct ieee80211_txrx_data *rx)
2989 {
2990 struct ieee80211_sub_if_data *sdata;
2991 sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
2992 if (sdata->type == IEEE80211_SUB_IF_TYPE_STA) {
2993 ieee80211_sta_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status);
2994 } else {
2995 /* Management frames are sent to hostapd for processing */
2996 ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
2997 ieee80211_msg_normal);
2998 }
2999 return TXRX_QUEUED;
3000 }
3001
3002
3003 static ieee80211_txrx_result
3004 ieee80211_rx_h_passive_scan(struct ieee80211_txrx_data *rx)
3005 {
3006 struct ieee80211_local *local = rx->local;
3007 struct sk_buff *skb = rx->skb;
3008
3009 if (unlikely(local->sta_scanning != 0)) {
3010 ieee80211_sta_rx_scan(rx->dev, skb, rx->u.rx.status);
3011 return TXRX_QUEUED;
3012 }
3013
3014 if (WLAN_FC_GET_TYPE(rx->fc) == WLAN_FC_TYPE_DATA)
3015 local->scan.txrx_count++;
3016 if (unlikely(local->scan.in_scan != 0 &&
3017 rx->u.rx.status->freq == local->scan.freq)) {
3018 struct ieee80211_hdr *hdr;
3019 u16 fc;
3020
3021 local->scan.rx_packets++;
3022
3023 hdr = (struct ieee80211_hdr *) skb->data;
3024 fc = le16_to_cpu(hdr->frame_control);
3025
3026 if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_MGMT &&
3027 WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_BEACON) {
3028 local->scan.rx_beacon++;
3029 /* Need to trim FCS here because it is normally
3030 * removed only after this passive scan handler. */
3031 if (rx->local->hw->rx_includes_fcs &&
3032 rx->skb->len > FCS_LEN)
3033 skb_trim(rx->skb, rx->skb->len - FCS_LEN);
3034
3035 ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
3036 ieee80211_msg_passive_scan);
3037 return TXRX_QUEUED;
3038 } else {
3039 I802_DEBUG_INC(local->rx_handlers_drop_passive_scan);
3040 return TXRX_DROP;
3041 }
3042 }
3043
3044 return TXRX_CONTINUE;
3045 }
3046
3047
3048 static u8 * ieee80211_get_bssid(struct ieee80211_hdr *hdr, size_t len)
3049 {
3050 u16 fc;
3051
3052 if (len < 24)
3053 return NULL;
3054
3055 fc = le16_to_cpu(hdr->frame_control);
3056
3057 switch (WLAN_FC_GET_TYPE(fc)) {
3058 case WLAN_FC_TYPE_DATA:
3059 switch (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) {
3060 case WLAN_FC_TODS:
3061 return hdr->addr1;
3062 case (WLAN_FC_TODS | WLAN_FC_FROMDS):
3063 return NULL;
3064 case WLAN_FC_FROMDS:
3065 return hdr->addr2;
3066 case 0:
3067 return hdr->addr3;
3068 }
3069 break;
3070 case WLAN_FC_TYPE_MGMT:
3071 return hdr->addr3;
3072 case WLAN_FC_TYPE_CTRL:
3073 if (WLAN_FC_GET_STYPE(fc) == WLAN_FC_STYPE_PSPOLL)
3074 return hdr->addr1;
3075 else
3076 return NULL;
3077 }
3078
3079 return NULL;
3080 }
3081
3082
3083 static struct net_device * ieee80211_get_rx_dev(struct ieee80211_local *local,
3084 struct ieee80211_hdr *hdr,
3085 size_t len, int *sta_broadcast)
3086 {
3087 u8 *bssid;
3088 struct net_device *dev;
3089 u16 fc;
3090
3091 bssid = ieee80211_get_bssid(hdr, len);
3092 if (bssid) {
3093 dev = ieee80211_own_bssid(local, bssid);
3094 if (!dev && (local->conf.mode == IW_MODE_INFRA ||
3095 local->conf.mode == IW_MODE_ADHOC))
3096 dev = ieee80211_sta_bssid(local, bssid, hdr->addr1,
3097 sta_broadcast);
3098 if (dev)
3099 return dev;
3100 }
3101
3102 if (len >= 30) {
3103 fc = le16_to_cpu(hdr->frame_control);
3104 if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_DATA &&
3105 (fc & (WLAN_FC_TODS | WLAN_FC_FROMDS)) ==
3106 (WLAN_FC_TODS | WLAN_FC_FROMDS)) {
3107 dev = ieee80211_get_wds_dev(local, hdr->addr2);
3108 if (dev)
3109 return dev;
3110 }
3111 }
3112
3113 /* Default to default device if nothing else matches */
3114 return local->wdev;
3115 }
3116
3117
3118 static void ieee80211_rx_michael_mic_report(struct net_device *dev,
3119 struct ieee80211_hdr *hdr,
3120 struct sta_info *sta,
3121 struct ieee80211_txrx_data *rx)
3122 {
3123 int keyidx, hdrlen;
3124
3125 hdrlen = ieee80211_get_hdrlen_from_skb(rx->skb);
3126 if (rx->skb->len >= hdrlen + 4)
3127 keyidx = rx->skb->data[hdrlen + 3] >> 6;
3128 else
3129 keyidx = -1;
3130
3131 /* TODO: verify that this is not triggered by fragmented
3132 * frames (hw does not verify MIC for them). */
3133 printk(KERN_DEBUG "%s: TKIP hwaccel reported Michael MIC "
3134 "failure from " MACSTR " to " MACSTR " keyidx=%d\n",
3135 dev->name, MAC2STR(hdr->addr2), MAC2STR(hdr->addr1), keyidx);
3136
3137 if (sta == NULL) {
3138 /* Some hardware versions seem to generate incorrect
3139 * Michael MIC reports; ignore them to avoid triggering
3140 * countermeasures. */
3141 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
3142 "error for unknown address " MACSTR "\n",
3143 dev->name, MAC2STR(hdr->addr2));
3144 goto ignore;
3145 }
3146
3147 if (!(rx->fc & WLAN_FC_ISWEP)) {
3148 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
3149 "error for a frame with no ISWEP flag (src "
3150 MACSTR ")\n", dev->name, MAC2STR(hdr->addr2));
3151 goto ignore;
3152 }
3153
3154 if (rx->local->hw->wep_include_iv &&
3155 rx->local->conf.mode == IW_MODE_MASTER) {
3156 int keyidx = ieee80211_wep_get_keyidx(rx->skb);
3157 /* AP with Pairwise keys support should never receive Michael
3158 * MIC errors for non-zero keyidx because these are reserved
3159 * for group keys and only the AP is sending real multicast
3160 * frames in BSS. */
3161 if (keyidx) {
3162 printk(KERN_DEBUG "%s: ignored Michael MIC error for "
3163 "a frame with non-zero keyidx (%d) (src " MACSTR
3164 ")\n", dev->name, keyidx, MAC2STR(hdr->addr2));
3165 goto ignore;
3166 }
3167 }
3168
3169 if (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_DATA &&
3170 (WLAN_FC_GET_TYPE(rx->fc) != WLAN_FC_TYPE_MGMT ||
3171 WLAN_FC_GET_STYPE(rx->fc) != WLAN_FC_STYPE_AUTH)) {
3172 printk(KERN_DEBUG "%s: ignored spurious Michael MIC "
3173 "error for a frame that cannot be encrypted "
3174 "(fc=0x%04x) (src " MACSTR ")\n",
3175 dev->name, rx->fc, MAC2STR(hdr->addr2));
3176 goto ignore;
3177 }
3178
3179 do {
3180 union iwreq_data wrqu;
3181 char *buf = kmalloc(128, GFP_ATOMIC);
3182 if (buf == NULL)
3183 break;
3184
3185 /* TODO: needed parameters: count, key type, TSC */
3186 sprintf(buf, "MLME-MICHAELMICFAILURE.indication("
3187 "keyid=%d %scast addr=" MACSTR ")",
3188 keyidx, hdr->addr1[0] & 0x01 ? "broad" : "uni",
3189 MAC2STR(hdr->addr2));
3190 memset(&wrqu, 0, sizeof(wrqu));
3191 wrqu.data.length = strlen(buf);
3192 wireless_send_event(rx->dev, IWEVCUSTOM, &wrqu, buf);
3193 kfree(buf);
3194 } while (0);
3195
3196 /* TODO: consider verifying the MIC error report with software
3197 * implementation if we get too many spurious reports from the
3198 * hardware. */
3199 ieee80211_rx_mgmt(rx->dev, rx->skb, rx->u.rx.status,
3200 ieee80211_msg_michael_mic_failure);
3201 return;
3202
3203 ignore:
3204 dev_kfree_skb(rx->skb);
3205 rx->skb = NULL;
3206 }
3207
3208
3209 static void ieee80211_sta_rx_broadcast(struct ieee80211_txrx_data *rx)
3210 {
3211 struct ieee80211_local *local = rx->dev->priv;
3212 u8 *_bssid, bssid[ETH_ALEN];
3213 struct sk_buff *orig_skb = rx->skb, *skb;
3214 struct ieee80211_hdr *hdr;
3215 ieee80211_rx_handler *handler;
3216 ieee80211_txrx_result res;
3217 struct list_head *ptr;
3218
3219 hdr = (struct ieee80211_hdr *) orig_skb->data;
3220 _bssid = ieee80211_get_bssid(hdr, orig_skb->len);
3221 if (_bssid == NULL) {
3222 dev_kfree_skb(orig_skb);
3223 return;
3224 }
3225 memcpy(bssid, _bssid, ETH_ALEN);
3226
3227 list_for_each(ptr, &local->sub_if_list) {
3228 struct ieee80211_sub_if_data *sdata =
3229 list_entry(ptr, struct ieee80211_sub_if_data, list);
3230 if (sdata->type != IEEE80211_SUB_IF_TYPE_STA ||
3231 (memcmp(bssid, sdata->u.sta.bssid, ETH_ALEN) != 0 &&
3232 !(bssid[0] & 0x01)))
3233 continue;
3234
3235 skb = skb_copy(orig_skb, GFP_ATOMIC);
3236 if (skb == NULL) {
3237 if (net_ratelimit()) {
3238 printk(KERN_DEBUG "%s: failed to copy "
3239 "multicast frame for %s",
3240 rx->dev->name, sdata->dev->name);
3241 }
3242 continue;
3243 }
3244
3245 hdr = (struct ieee80211_hdr *) skb->data;
3246 rx->skb = skb;
3247 rx->dev = sdata->dev;
3248 rx->sdata = IEEE80211_DEV_TO_SUB_IF(rx->dev);
3249
3250 res = TXRX_DROP;
3251 for (handler = local->rx_handlers; *handler != NULL; handler++)
3252 {
3253 res = (*handler)(rx);
3254 if (res == TXRX_DROP || res == TXRX_QUEUED)
3255 break;
3256 }
3257
3258 if (res == TXRX_DROP || *handler == NULL)
3259 dev_kfree_skb(skb);
3260 }
3261
3262 dev_kfree_skb(orig_skb);
3263 }
3264
3265
3266 /*
3267 * This is the receive path handler. It is called by a low level driver when an
3268 * 802.11 MPDU is received from the hardware.
3269 */
3270 void ieee80211_rx(struct net_device *dev, struct sk_buff *skb,
3271 struct ieee80211_rx_status *status)
3272 {
3273 struct ieee80211_local *local = dev->priv;
3274 struct sta_info *sta;
3275 struct ieee80211_hdr *hdr;
3276 ieee80211_rx_handler *handler;
3277 struct ieee80211_txrx_data rx;
3278 ieee80211_txrx_result res = TXRX_DROP;
3279 u16 type;
3280 int sta_broadcast = 0;
3281
3282 hdr = (struct ieee80211_hdr *) skb->data;
3283 memset(&rx, 0, sizeof(rx));
3284 rx.skb = skb;
3285 rx.local = local;
3286 if (skb->len >= 16) {
3287 sta = rx.sta = sta_info_get(local, hdr->addr2);
3288 if (unlikely(sta == NULL &&
3289 local->conf.mode == IW_MODE_ADHOC)) {
3290 u8 *bssid = ieee80211_get_bssid(hdr, skb->len);
3291 if (bssid &&
3292 memcmp(bssid, local->bssid, ETH_ALEN) == 0)
3293 sta = rx.sta =
3294 ieee80211_ibss_add_sta(dev, skb, bssid,
3295 hdr->addr2);
3296 }
3297 } else
3298 sta = rx.sta = NULL;
3299 if (sta && !sta->assoc_ap && !(sta->flags & WLAN_STA_WDS))
3300 rx.dev = sta->dev;
3301 else
3302 rx.dev = ieee80211_get_rx_dev(local, hdr, skb->len,
3303 &sta_broadcast);
3304
3305 rx.sdata = IEEE80211_DEV_TO_SUB_IF(rx.dev);
3306 rx.u.rx.status = status;
3307 rx.fc = skb->len >= 2 ? le16_to_cpu(hdr->frame_control) : 0;
3308 type = WLAN_FC_GET_TYPE(rx.fc);
3309 if (type == WLAN_FC_TYPE_DATA || type == WLAN_FC_TYPE_MGMT)
3310 local->dot11ReceivedFragmentCount++;
3311 if (sta_broadcast) {
3312 ieee80211_sta_rx_broadcast(&rx);
3313 goto end;
3314 }
3315
3316 if ((status->flag & RX_FLAG_MMIC_ERROR)) {
3317 ieee80211_rx_michael_mic_report(dev, hdr, sta, &rx);
3318 goto end;
3319 }
3320
3321 for (handler = local->rx_handlers; *handler != NULL; handler++) {
3322 res = (*handler)(&rx);
3323 if (res != TXRX_CONTINUE) {
3324 if (res == TXRX_DROP) {
3325 I802_DEBUG_INC(local->rx_handlers_drop);
3326 if (sta)
3327 sta->rx_dropped++;
3328 }
3329 if (res == TXRX_QUEUED)
3330 I802_DEBUG_INC(local->rx_handlers_queued);
3331 break;
3332 }
3333 }
3334
3335 if (res == TXRX_DROP || *handler == NULL)
3336 dev_kfree_skb(skb);
3337
3338 end:
3339 if (sta)
3340 sta_info_release(local, sta);
3341 }
3342
3343
3344 static ieee80211_txrx_result
3345 ieee80211_tx_h_load_stats(struct ieee80211_txrx_data *tx)
3346 {
3347 struct ieee80211_local *local = tx->local;
3348 struct sk_buff *skb = tx->skb;
3349 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
3350 u32 load = 0, hdrtime;
3351
3352 /* TODO: this could be part of tx_status handling, so that the number
3353 * of retries would be known; TX rate should in that case be stored
3354 * somewhere with the packet */
3355
3356 /* Estimate total channel use caused by this frame */
3357
3358 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
3359 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
3360
3361 if (local->conf.phymode == MODE_IEEE80211A ||
3362 local->conf.phymode == MODE_ATHEROS_TURBO ||
3363 local->conf.phymode == MODE_ATHEROS_TURBOG ||
3364 (local->conf.phymode == MODE_IEEE80211G &&
3365 tx->u.tx.rate->flags & IEEE80211_RATE_ERP))
3366 hdrtime = CHAN_UTIL_HDR_SHORT;
3367 else
3368 hdrtime = CHAN_UTIL_HDR_LONG;
3369
3370 load = hdrtime;
3371 if (!MULTICAST_ADDR(hdr->addr1))
3372 load += hdrtime;
3373
3374 if (tx->u.tx.control->use_rts_cts)
3375 load += 2 * hdrtime;
3376 else if (tx->u.tx.control->use_cts_protect)
3377 load += hdrtime;
3378
3379 load += skb->len * tx->u.tx.rate->rate_inv;
3380
3381 if (tx->u.tx.extra_frag) {
3382 int i;
3383 for (i = 0; i < tx->u.tx.num_extra_frag; i++) {
3384 load += 2 * hdrtime;
3385 load += tx->u.tx.extra_frag[i]->len *
3386 tx->u.tx.rate->rate;
3387 }
3388 }
3389
3390 /* Divide channel_use by 8 to avoid wrapping around the counter */
3391 load >>= CHAN_UTIL_SHIFT;
3392 local->channel_use_raw += load;
3393 if (tx->sta)
3394 tx->sta->channel_use_raw += load;
3395 tx->sdata->channel_use_raw += load;
3396
3397 return TXRX_CONTINUE;
3398 }
3399
3400
3401 static ieee80211_txrx_result
3402 ieee80211_rx_h_load_stats(struct ieee80211_txrx_data *rx)
3403 {
3404 struct ieee80211_local *local = rx->local;
3405 struct sk_buff *skb = rx->skb;
3406 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
3407 u32 load = 0, hdrtime;
3408 struct ieee80211_rate *rate;
3409 int i;
3410
3411 /* Estimate total channel use caused by this frame */
3412
3413 if (unlikely(local->num_curr_rates < 0))
3414 return TXRX_CONTINUE;
3415
3416 rate = &local->curr_rates[0];
3417 for (i = 0; i < local->num_curr_rates; i++) {
3418 if (local->curr_rates[i].val == rx->u.rx.status->rate) {
3419 rate = &local->curr_rates[i];
3420 break;
3421 }
3422 }
3423
3424 /* 1 bit at 1 Mbit/s takes 1 usec; in channel_use values,
3425 * 1 usec = 1/8 * (1080 / 10) = 13.5 */
3426
3427 if (local->conf.phymode == MODE_IEEE80211A ||
3428 local->conf.phymode == MODE_ATHEROS_TURBO ||
3429 local->conf.phymode == MODE_ATHEROS_TURBOG ||
3430 (local->conf.phymode == MODE_IEEE80211G &&
3431 rate->flags & IEEE80211_RATE_ERP))
3432 hdrtime = CHAN_UTIL_HDR_SHORT;
3433 else
3434 hdrtime = CHAN_UTIL_HDR_LONG;
3435
3436 load = hdrtime;
3437 if (!MULTICAST_ADDR(hdr->addr1))
3438 load += hdrtime;
3439
3440 load += skb->len * rate->rate_inv;
3441
3442 /* Divide channel_use by 8 to avoid wrapping around the counter */
3443 load >>= CHAN_UTIL_SHIFT;
3444 local->channel_use_raw += load;
3445 if (rx->sta)
3446 rx->sta->channel_use_raw += load;
3447 rx->sdata->channel_use_raw += load;
3448
3449 return TXRX_CONTINUE;
3450 }
3451
3452
3453 static void ieee80211_stat_refresh(unsigned long data)
3454 {
3455 struct ieee80211_local *local = (struct ieee80211_local *) data;
3456 struct list_head *ptr, *n;
3457
3458 if (!local->stat_time)
3459 return;
3460
3461 /* go through all stations */
3462 spin_lock_bh(&local->sta_lock);
3463 list_for_each(ptr, &local->sta_list) {
3464 struct sta_info *sta =
3465 list_entry(ptr, struct sta_info, list);
3466 sta->channel_use = (sta->channel_use_raw / local->stat_time) /
3467 CHAN_UTIL_PER_10MS;
3468 sta->channel_use_raw = 0;
3469 }
3470 spin_unlock_bh(&local->sta_lock);
3471
3472 /* go through all subinterfaces */
3473 list_for_each_safe(ptr, n, &local->sub_if_list) {
3474 struct ieee80211_sub_if_data *sdata =
3475 list_entry(ptr, struct ieee80211_sub_if_data, list);
3476 sdata->channel_use = (sdata->channel_use_raw /
3477 local->stat_time) / CHAN_UTIL_PER_10MS;
3478 sdata->channel_use_raw = 0;
3479
3480 }
3481
3482 /* hardware interface */
3483 local->channel_use = (local->channel_use_raw /
3484 local->stat_time) / CHAN_UTIL_PER_10MS;
3485 local->channel_use_raw = 0;
3486
3487 local->stat_timer.expires = jiffies + HZ * local->stat_time / 100;
3488 add_timer(&local->stat_timer);
3489 }
3490
3491
3492 /* This is a version of the rx handler that can be called from hard irq
3493 * context. Post the skb on the queue and schedule the tasklet */
3494 void ieee80211_rx_irqsafe(struct net_device *dev, struct sk_buff *skb,
3495 struct ieee80211_rx_status *status)
3496 {
3497 struct ieee80211_local *local = dev->priv;
3498
3499 skb->dev = dev;
3500 memcpy(skb->cb, status, sizeof(struct ieee80211_rx_status));
3501 skb->pkt_type = ieee80211_rx_msg;
3502 skb_queue_tail(&local->skb_queue, skb);
3503 tasklet_schedule(&local->tasklet);
3504 }
3505
3506
3507 void ieee80211_tx_status_irqsafe(struct net_device *dev, struct sk_buff *skb,
3508 struct ieee80211_tx_status *status)
3509 {
3510 struct ieee80211_local *local = dev->priv;
3511 int tmp;
3512
3513 if (status->tx_filtered || status->excessive_retries) {
3514 /* Need to save a copy of skb->cb somewhere. Storing it in the
3515 * end of the data might not be the most efficient way of doing
3516 * this (since it may require reallocation of packet data), but
3517 * should be good enough for now since tx_filtered or
3518 * excessive_retries should not be triggered that often. */
3519 if (skb_is_nonlinear(skb)) {
3520 if (skb_linearize(skb, GFP_ATOMIC)) {
3521 printk(KERN_DEBUG "%s: Failed to linearize "
3522 "skb\n", dev->name);
3523 dev_kfree_skb_irq(skb);
3524 return;
3525 }
3526 }
3527 if (skb_tailroom(skb) < sizeof(skb->cb) &&
3528 pskb_expand_head(skb, 0, sizeof(skb->cb), GFP_ATOMIC)) {
3529 printk(KERN_DEBUG "%s: Failed to store skb->cb "
3530 "in skb->data for TX filtered frame\n",
3531 dev->name);
3532 dev_kfree_skb_irq(skb);
3533 return;
3534 }
3535 memcpy(skb_put(skb, sizeof(skb->cb)), skb->cb,
3536 sizeof(skb->cb));
3537 }
3538
3539 skb->dev = dev;
3540 memcpy(skb->cb, status, sizeof(struct ieee80211_tx_status));
3541 skb->pkt_type = ieee80211_tx_status_msg;
3542 skb_queue_tail(status->req_tx_status ?
3543 &local->skb_queue : &local->skb_queue_unreliable, skb);
3544 tmp = skb_queue_len(&local->skb_queue) +
3545 skb_queue_len(&local->skb_queue_unreliable);
3546 while (tmp > IEEE80211_IRQSAFE_QUEUE_LIMIT &&
3547 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
3548 dev_kfree_skb_irq(skb);
3549 tmp--;
3550 I802_DEBUG_INC(local->tx_status_drop);
3551 }
3552 tasklet_schedule(&local->tasklet);
3553 }
3554
3555
3556 static void ieee80211_tasklet_handler(unsigned long data)
3557 {
3558 struct ieee80211_local *local = (struct ieee80211_local *) data;
3559 struct sk_buff *skb;
3560 struct ieee80211_rx_status rx_status;
3561 struct ieee80211_tx_status tx_status;
3562
3563 while ((skb = skb_dequeue(&local->skb_queue)) ||
3564 (skb = skb_dequeue(&local->skb_queue_unreliable))) {
3565 switch (skb->pkt_type) {
3566 case ieee80211_rx_msg:
3567 /* Make a copy of the RX status because the original
3568 * skb may be freed during processing. Clear skb->type
3569 * in order to not confuse kernel netstack. */
3570 memcpy(&rx_status, skb->cb, sizeof(rx_status));
3571 skb->pkt_type = 0;
3572 ieee80211_rx(skb->dev, skb, &rx_status);
3573 break;
3574 case ieee80211_tx_status_msg:
3575 /* Make a copy of the TX status because the original
3576 * skb may be freed during processing. */
3577 memcpy(&tx_status, skb->cb, sizeof(tx_status));
3578 skb->pkt_type = 0;
3579 if ((tx_status.tx_filtered ||
3580 tx_status.excessive_retries) &&
3581 skb->len >= sizeof(skb->cb)) {
3582 /* Restore skb->cb from the copy that was made
3583 * in ieee80211_tx_status_irqsafe() */
3584 memcpy(skb->cb,
3585 skb->data + skb->len - sizeof(skb->cb),
3586 sizeof(skb->cb));
3587 skb_trim(skb, skb->len - sizeof(skb->cb));
3588 }
3589 ieee80211_tx_status(skb->dev, skb, &tx_status);
3590 break;
3591 default: /* should never get here! */
3592 printk(KERN_ERR "%s: Unknown message type (%d)\n",
3593 local->wdev->name, skb->pkt_type);
3594 dev_kfree_skb(skb);
3595 break;
3596 }
3597 }
3598 }
3599
3600
3601 /* Remove added headers (e.g., QoS control), encryption header/MIC, etc. to
3602 * make a prepared TX frame (one that has been given to hw) to look like brand
3603 * new IEEE 802.11 frame that is ready to go through TX processing again. */
3604 static void ieee80211_remove_tx_extra(struct ieee80211_local *local,
3605 struct ieee80211_key *key,
3606 struct sk_buff *skb)
3607 {
3608 int hdrlen, iv_len, mic_len;
3609
3610 if (key == NULL)
3611 return;
3612
3613 hdrlen = ieee80211_get_hdrlen_from_skb(skb);
3614
3615 switch (key->alg) {
3616 case ALG_WEP:
3617 iv_len = WEP_IV_LEN;
3618 mic_len = WEP_ICV_LEN;
3619 break;
3620 case ALG_TKIP:
3621 iv_len = TKIP_IV_LEN;
3622 mic_len = TKIP_ICV_LEN;
3623 break;
3624 case ALG_CCMP:
3625 iv_len = CCMP_HDR_LEN;
3626 mic_len = CCMP_MIC_LEN;
3627 break;
3628 default:
3629 return;
3630 }
3631
3632 if (skb->len >= mic_len && key->force_sw_encrypt)
3633 skb_trim(skb, skb->len - mic_len);
3634 if (skb->len >= iv_len && skb->len > hdrlen) {
3635 memmove(skb->data + iv_len, skb->data, hdrlen);
3636 skb_pull(skb, iv_len);
3637 }
3638
3639 {
3640 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
3641 u16 fc = le16_to_cpu(hdr->frame_control);
3642 if ((fc & 0x8C) == 0x88) /* QoS Control Field */ {
3643 fc &= ~(WLAN_FC_STYPE_QOS_DATA << 4);
3644 hdr->frame_control = cpu_to_le16(fc);
3645 memmove(skb->data + 2, skb->data, hdrlen - 2);
3646 skb_pull(skb, 2);
3647 }
3648 }
3649 }
3650
3651
3652 void ieee80211_tx_status(struct net_device *dev, struct sk_buff *skb,
3653 struct ieee80211_tx_status *status)
3654 {
3655 struct sk_buff *skb2;
3656 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
3657 struct ieee80211_local *local = dev->priv;
3658 struct ieee80211_tx_packet_data *pkt_data =
3659 (struct ieee80211_tx_packet_data *) skb->cb;
3660 u16 frag, type;
3661 u32 msg_type;
3662
3663 if (!status) {
3664 printk(KERN_ERR
3665 "%s: ieee80211_tx_status called with NULL status\n",
3666 dev->name);
3667 dev_kfree_skb(skb);
3668 return;
3669 }
3670
3671 if (status->excessive_retries) {
3672 struct sta_info *sta;
3673
3674
3675 sta = sta_info_get(local, hdr->addr1);
3676 if (sta) {
3677 if (sta->flags & WLAN_STA_PS) {
3678 /* The STA is in power save mode, so assume
3679 * that this TX packet failed because of that.
3680 */
3681 status->excessive_retries = 0;
3682 status->tx_filtered = 1;
3683 }
3684 sta_info_release(local, sta);
3685 }
3686 }
3687
3688 if (status->tx_filtered) {
3689 struct sta_info *sta;
3690 sta = sta_info_get(local, hdr->addr1);
3691 if (sta) {
3692
3693 sta->tx_filtered_count++;
3694
3695 /* Clear the TX filter mask for this STA when sending
3696 * the next packet. If the STA went to power save mode,
3697 * this will happen when it is waking up for the next
3698 * time. */
3699 sta->clear_dst_mask = 1;
3700
3701 /* TODO: Is the WLAN_STA_PS flag always set here or is
3702 * the race between RX and TX status causing some
3703 * packets to be filtered out before 80211.o gets an
3704 * update for PS status? This seems to be the case, so
3705 * no changes are likely to be needed. */
3706 if (sta->flags & WLAN_STA_PS &&
3707 skb_queue_len(&sta->tx_filtered) <
3708 STA_MAX_TX_BUFFER) {
3709 ieee80211_remove_tx_extra(local, sta->key,
3710 skb);
3711 skb_queue_tail(&sta->tx_filtered, skb);
3712 } else if (!(sta->flags & WLAN_STA_PS) &&
3713 !pkt_data->control.requeue) {
3714 /* Software retry the packet once */
3715 pkt_data->control.requeue = 1;
3716 ieee80211_remove_tx_extra(local, sta->key,
3717 skb);
3718 dev_queue_xmit(skb);
3719 } else {
3720 if (net_ratelimit()) {
3721 printk(KERN_DEBUG "%s: dropped TX "
3722 "filtered frame queue_len=%d "
3723 "PS=%d @%lu\n",
3724 dev->name,
3725 skb_queue_len(
3726 &sta->tx_filtered),
3727 !!(sta->flags & WLAN_STA_PS),
3728 jiffies);
3729 }
3730 dev_kfree_skb(skb);
3731 }
3732 sta_info_release(local, sta);
3733 return;
3734 }
3735 } else {
3736 rate_control_tx_status(dev, skb, status);
3737 }
3738
3739 #ifdef IEEE80211_LEDS
3740 if (local->tx_led_counter && (local->tx_led_counter-- == 1)) {
3741 ieee80211_tx_led(0, dev);
3742 }
3743 #endif /* IEEE80211_LEDS */
3744 /* SNMP counters
3745 * Fragments are passed to low-level drivers as separate skbs, so these
3746 * are actually fragments, not frames. Update frame counters only for
3747 * the first fragment of the frame. */
3748
3749 frag = WLAN_GET_SEQ_FRAG(le16_to_cpu(hdr->seq_ctrl));
3750 type = WLAN_FC_GET_TYPE(le16_to_cpu(hdr->frame_control));
3751
3752 if (status->ack) {
3753 if (frag == 0) {
3754 local->dot11TransmittedFrameCount++;
3755 if (MULTICAST_ADDR(hdr->addr1))
3756 local->dot11MulticastTransmittedFrameCount++;
3757 if (status->retry_count > 0)
3758 local->dot11RetryCount++;
3759 if (status->retry_count > 1)
3760 local->dot11MultipleRetryCount++;
3761 }
3762
3763 /* This counter shall be incremented for an acknowledged MPDU
3764 * with an individual address in the address 1 field or an MPDU
3765 * with a multicast address in the address 1 field of type Data
3766 * or Management. */
3767 if (!MULTICAST_ADDR(hdr->addr1) || type == WLAN_FC_TYPE_DATA ||
3768 type == WLAN_FC_TYPE_MGMT)
3769 local->dot11TransmittedFragmentCount++;
3770 } else {
3771 if (frag == 0)
3772 local->dot11FailedCount++;
3773 }
3774
3775 if (!status->req_tx_status) {
3776 dev_kfree_skb(skb);
3777 return;
3778 }
3779
3780 msg_type = status->ack ? ieee80211_msg_tx_callback_ack :
3781 ieee80211_msg_tx_callback_fail;
3782
3783 /* skb was the original skb used for TX. Clone it and give the clone
3784 * to netif_rx(). Free original skb. */
3785 skb2 = skb_copy(skb, GFP_ATOMIC);
3786 if (!skb2) {
3787 dev_kfree_skb(skb);
3788 return;
3789 }
3790 dev_kfree_skb(skb);
3791 skb = skb2;
3792
3793 /* Send frame to hostapd */
3794 ieee80211_rx_mgmt(dev, skb, NULL, msg_type);
3795 }
3796
3797
3798 /* TODO: implement register/unregister functions for adding TX/RX handlers
3799 * into ordered list */
3800
3801 static ieee80211_rx_handler ieee80211_rx_handlers[] =
3802 {
3803 ieee80211_rx_h_parse_qos,
3804 ieee80211_rx_h_load_stats,
3805 ieee80211_rx_h_monitor,
3806 ieee80211_rx_h_passive_scan,
3807 ieee80211_rx_h_check,
3808 ieee80211_rx_h_sta_process,
3809 ieee80211_rx_h_ccmp_decrypt,
3810 ieee80211_rx_h_tkip_decrypt,
3811 ieee80211_rx_h_wep_weak_iv_detection,
3812 ieee80211_rx_h_wep_decrypt,
3813 ieee80211_rx_h_defragment,
3814 ieee80211_rx_h_ieee80211_rx_h_ps_poll,
3815 ieee80211_rx_h_michael_mic_verify,
3816 /* this must be after decryption - so header is counted in MPDU mic
3817 * must be before pae and data, so QOS_DATA format frames
3818 * are not passed to user space by these functions
3819 */
3820 ieee80211_rx_h_remove_qos_control,
3821 ieee80211_rx_h_802_1x_pae,
3822 ieee80211_rx_h_drop_unencrypted,
3823 ieee80211_rx_h_data,
3824 ieee80211_rx_h_mgmt,
3825 NULL
3826 };
3827
3828 static ieee80211_tx_handler ieee80211_tx_handlers[] =
3829 {
3830 ieee80211_tx_h_rate_limit,
3831 ieee80211_tx_h_check_assoc,
3832 ieee80211_tx_h_ps_buf,
3833 ieee80211_tx_h_select_key,
3834 ieee80211_tx_h_michael_mic_add,
3835 ieee80211_tx_h_fragment,
3836 ieee80211_tx_h_tkip_encrypt,
3837 ieee80211_tx_h_ccmp_encrypt,
3838 ieee80211_tx_h_wep_encrypt,
3839 ieee80211_tx_h_rate_ctrl,
3840 ieee80211_tx_h_misc,
3841 ieee80211_tx_h_load_stats,
3842 NULL
3843 };
3844
3845
3846 static void ieee80211_if_sdata_init(struct ieee80211_sub_if_data *sdata)
3847 {
3848 /* Default values for sub-interface parameters */
3849 sdata->drop_unencrypted = 0;
3850 sdata->eapol = 1;
3851 }
3852
3853
3854 static struct net_device *ieee80211_if_add(struct net_device *dev,
3855 char *name, int locked)
3856 {
3857 struct net_device *wds_dev = NULL, *tmp_dev;
3858 struct ieee80211_local *local = dev->priv;
3859 struct ieee80211_sub_if_data *sdata = NULL, *sdata_parent;
3860 int alloc_size;
3861 int ret;
3862 int i;
3863
3864 /* ensure 32-bit alignment of our private data and hw private data */
3865 alloc_size = sizeof(struct net_device) + 3 +
3866 sizeof(struct ieee80211_sub_if_data) + 3;
3867
3868 wds_dev = (struct net_device *) kmalloc(alloc_size, GFP_KERNEL);
3869 if (wds_dev == NULL)
3870 return NULL;
3871
3872 memset(wds_dev, 0, alloc_size);
3873 wds_dev->priv = local;
3874 ether_setup(wds_dev);
3875 if (strlen(name) == 0) {
3876 i = 0;
3877 do {
3878 sprintf(wds_dev->name, "%s.%d", dev->name, i++);
3879 tmp_dev = dev_get_by_name(wds_dev->name);
3880 if (tmp_dev == NULL)
3881 break;
3882 dev_put(tmp_dev);
3883 } while (i < 10000);
3884 } else {
3885 snprintf(wds_dev->name, IFNAMSIZ, "%s", name);
3886 }
3887
3888 memcpy(wds_dev->dev_addr, dev->dev_addr, ETH_ALEN);
3889 wds_dev->hard_start_xmit = ieee80211_subif_start_xmit;
3890 wds_dev->do_ioctl = ieee80211_ioctl;
3891 wds_dev->change_mtu = ieee80211_change_mtu;
3892 wds_dev->tx_timeout = ieee80211_tx_timeout;
3893 wds_dev->get_stats = ieee80211_get_stats;
3894 wds_dev->open = ieee80211_open;
3895 wds_dev->stop = ieee80211_stop;
3896 wds_dev->base_addr = dev->base_addr;
3897 wds_dev->irq = dev->irq;
3898 wds_dev->mem_start = dev->mem_start;
3899 wds_dev->mem_end = dev->mem_end;
3900 wds_dev->tx_queue_len = 0;
3901
3902 sdata = IEEE80211_DEV_TO_SUB_IF(wds_dev);
3903 sdata->type = IEEE80211_SUB_IF_TYPE_NORM;
3904 sdata->master = local->mdev;
3905 sdata->dev = wds_dev;
3906 sdata->local = local;
3907 memset(&sdata->stats, 0, sizeof(struct net_device_stats));
3908 sdata_parent = IEEE80211_DEV_TO_SUB_IF(dev);
3909 if (sdata_parent->type == IEEE80211_SUB_IF_TYPE_NORM)
3910 sdata->bss = &sdata_parent->u.norm;
3911 else {
3912 printk(KERN_DEBUG "%s: could not set BSS pointer for new "
3913 "interface %s\n", dev->name, wds_dev->name);
3914 }
3915 ieee80211_if_sdata_init(sdata);
3916
3917 if (locked)
3918 ret = register_netdevice(wds_dev);
3919 else
3920 ret = register_netdev(wds_dev);
3921 if (ret) {
3922 kfree(wds_dev);
3923 return NULL;
3924 }
3925
3926 list_add(&sdata->list, &local->sub_if_list);
3927
3928 strcpy(name, wds_dev->name);
3929
3930 return wds_dev;
3931 }
3932
3933
3934 int ieee80211_if_add_wds(struct net_device *dev, char *name,
3935 struct ieee80211_if_wds *wds, int locked)
3936 {
3937 struct net_device *wds_dev = NULL;
3938 struct ieee80211_sub_if_data *sdata = NULL;
3939
3940 if (strlen(name) != 0) {
3941 wds_dev = dev_get_by_name(name);
3942 if (wds_dev) {
3943 dev_put(wds_dev);
3944 return -EEXIST;
3945 }
3946 }
3947
3948 wds_dev = ieee80211_if_add(dev, name, locked);
3949 if (wds_dev == NULL)
3950 return -ENOANO;
3951
3952 sdata = IEEE80211_DEV_TO_SUB_IF(wds_dev);
3953 sdata->type = IEEE80211_SUB_IF_TYPE_WDS;
3954 memcpy(&sdata->u.wds, wds, sizeof(struct ieee80211_if_wds));
3955
3956 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
3957 printk(KERN_DEBUG
3958 "%s: Added WDS Link to " MACSTR "\n",
3959 wds_dev->name, MAC2STR(sdata->u.wds.remote_addr));
3960 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
3961
3962
3963 ieee80211_proc_init_virtual(wds_dev);
3964
3965 return 0;
3966 }
3967
3968
3969 int ieee80211_if_update_wds(struct net_device *dev, char *name,
3970 struct ieee80211_if_wds *wds, int locked)
3971 {
3972 struct net_device *wds_dev = NULL;
3973 struct ieee80211_local *local = dev->priv;
3974 struct ieee80211_sub_if_data *sdata = NULL;
3975 struct sta_info *sta;
3976 struct list_head *ptr;
3977
3978 list_for_each(ptr, &local->sub_if_list) {
3979 sdata = list_entry(ptr, struct ieee80211_sub_if_data, list);
3980 if (strcmp(name, sdata->dev->name) == 0) {
3981 wds_dev = sdata->dev;
3982 break;
3983 }
3984 }
3985
3986 if (wds_dev == NULL || sdata->type != IEEE80211_SUB_IF_TYPE_WDS)
3987 return -ENODEV;
3988
3989 /* Remove STA entry for the old peer */
3990 sta = sta_info_get(local, sdata->u.wds.remote_addr);
3991 if (sta) {
3992 sta_info_release(local, sta);
3993 sta_info_free(local, sta, 0);
3994 } else {
3995 printk(KERN_DEBUG "%s: could not find STA entry for WDS link "
3996 "%s peer " MACSTR "\n",
3997 dev->name, wds_dev->name,
3998 MAC2STR(sdata->u.wds.remote_addr));
3999 }
4000
4001 /* Update WDS link data */
4002 memcpy(&sdata->u.wds, wds, sizeof(struct ieee80211_if_wds));
4003
4004
4005 return 0;
4006 }
4007
4008
4009 static void ieee80211_if_init(struct net_device *dev)
4010 {
4011 struct ieee80211_local *local = dev->priv;
4012
4013 spin_lock_init(&local->sub_if_lock);
4014 INIT_LIST_HEAD(&local->sub_if_list);
4015
4016 }
4017
4018
4019 int ieee80211_if_add_vlan(struct net_device *dev,
4020 char *name,
4021 struct ieee80211_if_vlan *vlan,
4022 int locked)
4023 {
4024 struct net_device *vlan_dev = NULL;
4025 struct ieee80211_sub_if_data *sdata = NULL;
4026
4027 if (strlen(name) != 0) {
4028 vlan_dev = dev_get_by_name(name);
4029 if (vlan_dev) {
4030 dev_put(vlan_dev);
4031 return -EEXIST;
4032 }
4033 }
4034
4035 vlan_dev = ieee80211_if_add(dev, name, locked);
4036 if (vlan_dev == NULL)
4037 return -ENOANO;
4038
4039 sdata = IEEE80211_DEV_TO_SUB_IF(vlan_dev);
4040 sdata->type = IEEE80211_SUB_IF_TYPE_VLAN;
4041 ieee80211_proc_init_virtual(vlan_dev);
4042 return 0;
4043 }
4044
4045
4046 static void ieee80211_if_norm_init(struct ieee80211_sub_if_data *sdata)
4047 {
4048 sdata->type = IEEE80211_SUB_IF_TYPE_NORM;
4049 sdata->u.norm.dtim_period = 2;
4050 sdata->u.norm.force_unicast_rateidx = -1;
4051 sdata->u.norm.max_ratectrl_rateidx = -1;
4052 skb_queue_head_init(&sdata->u.norm.ps_bc_buf);
4053 sdata->bss = &sdata->u.norm;
4054 }
4055
4056
4057 int ieee80211_if_add_norm(struct net_device *dev, char *name, u8 *bssid,
4058 int locked)
4059 {
4060 struct ieee80211_local *local = dev->priv;
4061 struct net_device *norm_dev = NULL;
4062 struct ieee80211_sub_if_data *sdata = NULL;
4063
4064 if (local->bss_dev_count >= local->conf.bss_count)
4065 return -ENOBUFS;
4066
4067 if (strlen(name) != 0) {
4068 norm_dev = dev_get_by_name(name);
4069 if (norm_dev) {
4070 dev_put(norm_dev);
4071 return -EEXIST;
4072 }
4073 }
4074
4075 norm_dev = ieee80211_if_add(dev, name, locked);
4076 if (norm_dev == NULL)
4077 return -ENOANO;
4078
4079 memcpy(norm_dev->dev_addr, bssid, ETH_ALEN);
4080 sdata = IEEE80211_DEV_TO_SUB_IF(norm_dev);
4081 ieee80211_if_norm_init(sdata);
4082 ieee80211_proc_init_virtual(norm_dev);
4083 spin_lock_bh(&local->sub_if_lock);
4084 local->bss_devs[local->bss_dev_count] = norm_dev;
4085 local->bss_dev_count++;
4086 spin_unlock_bh(&local->sub_if_lock);
4087
4088 return 0;
4089 }
4090
4091
4092 static void ieee80211_addr_inc(u8 *addr)
4093 {
4094 int pos = 5;
4095 while (pos >= 0) {
4096 addr[pos]++;
4097 if (addr[pos] != 0)
4098 break;
4099 pos--;
4100 }
4101 }
4102
4103
4104 int ieee80211_if_add_sta(struct net_device *dev, char *name, int locked)
4105 {
4106 struct ieee80211_local *local = dev->priv;
4107 struct net_device *sta_dev;
4108 struct ieee80211_sub_if_data *sdata;
4109 struct ieee80211_if_sta *ifsta;
4110 int i;
4111
4112 if (local->sta_dev_count >= local->conf.bss_count)
4113 return -ENOBUFS;
4114
4115 if (strlen(name) != 0) {
4116 sta_dev = dev_get_by_name(name);
4117 if (sta_dev) {
4118 dev_put(sta_dev);
4119 return -EEXIST;
4120 }
4121 }
4122
4123 sta_dev = ieee80211_if_add(dev, name, locked);
4124 if (sta_dev == NULL)
4125 return -ENOANO;
4126
4127 sdata = IEEE80211_DEV_TO_SUB_IF(sta_dev);
4128 ifsta = &sdata->u.sta;
4129 sdata->type = IEEE80211_SUB_IF_TYPE_STA;
4130 ieee80211_proc_init_virtual(sta_dev);
4131
4132 spin_lock_bh(&local->sub_if_lock);
4133 for (i = 0; i < local->conf.bss_count; i++) {
4134 if (local->sta_devs[i] == NULL) {
4135 local->sta_devs[i] = sta_dev;
4136 local->sta_dev_count++;
4137 printk(KERN_DEBUG "%s: using STA entry %d\n",
4138 sta_dev->name, i);
4139 while (i > 0) {
4140 ieee80211_addr_inc(sta_dev->dev_addr);
4141 i--;
4142 }
4143 printk(KERN_DEBUG "%s: MAC address " MACSTR "\n",
4144 sta_dev->name, MAC2STR(sta_dev->dev_addr));
4145 break;
4146 }
4147 }
4148 spin_unlock_bh(&local->sub_if_lock);
4149
4150 init_timer(&ifsta->timer);
4151 ifsta->timer.data = (unsigned long) sta_dev;
4152 ifsta->timer.function = ieee80211_sta_timer;
4153
4154 ifsta->capab = WLAN_CAPABILITY_ESS;
4155 ifsta->auth_algs = IEEE80211_AUTH_ALG_OPEN |
4156 IEEE80211_AUTH_ALG_SHARED_KEY;
4157 ifsta->create_ibss = 1;
4158 ifsta->wmm_enabled = 1;
4159
4160 return 0;
4161 }
4162
4163
4164 static void ieee80211_if_del(struct ieee80211_local *local,
4165 struct ieee80211_sub_if_data *sdata, int locked)
4166 {
4167 struct sta_info *sta;
4168 u8 addr[ETH_ALEN];
4169 int i, j;
4170 struct list_head *ptr, *n;
4171
4172 memset(addr, 0xff, ETH_ALEN);
4173 for (i = 0; i < NUM_DEFAULT_KEYS; i++) {
4174 if (!sdata->keys[i])
4175 continue;
4176 #if 0
4177 /* Low-level driver has probably disabled hw
4178 * already, so there is not really much point
4179 * in disabling the keys at this point. */
4180 if (local->hw->set_key)
4181 local->hw->set_key(dev, DISABLE_KEY, addr,
4182 local->keys[i], 0);
4183 #endif
4184 kfree(sdata->keys[i]);
4185 }
4186
4187 switch (sdata->type) {
4188 case IEEE80211_SUB_IF_TYPE_NORM:
4189 /* Remove all virtual interfaces that use this BSS
4190 * as their sdata->bss */
4191 list_for_each_safe(ptr, n, &local->sub_if_list) {
4192 struct ieee80211_sub_if_data *tsdata =
4193 list_entry(ptr, struct ieee80211_sub_if_data,
4194 list);
4195
4196 if (tsdata != sdata && tsdata->bss == &sdata->u.norm) {
4197 printk(KERN_DEBUG "%s: removing virtual "
4198 "interface %s because its BSS interface"
4199 " is being removed\n",
4200 sdata->dev->name, tsdata->dev->name);
4201 ieee80211_if_del(local, tsdata, locked);
4202 }
4203 }
4204
4205 kfree(sdata->u.norm.beacon_head);
4206 kfree(sdata->u.norm.beacon_tail);
4207 spin_lock_bh(&local->sub_if_lock);
4208 for (j = 0; j < local->bss_dev_count; j++) {
4209 if (sdata->dev == local->bss_devs[j]) {
4210 if (j + 1 < local->bss_dev_count) {
4211 memcpy(&local->bss_devs[j],
4212 &local->bss_devs[j + 1],
4213 (local->bss_dev_count - j - 1) *
4214 sizeof(local->bss_devs[0]));
4215 local->bss_devs[local->bss_dev_count -
4216 1] = NULL;
4217 } else
4218 local->bss_devs[j] = NULL;
4219 local->bss_dev_count--;
4220 break;
4221 }
4222 }
4223 spin_unlock_bh(&local->sub_if_lock);
4224
4225 if (sdata->dev != local->mdev) {
4226 struct sk_buff *skb;
4227 while ((skb = skb_dequeue(&sdata->u.norm.ps_bc_buf))) {
4228 local->total_ps_buffered--;
4229 dev_kfree_skb(skb);
4230 }
4231 }
4232
4233 break;
4234 case IEEE80211_SUB_IF_TYPE_WDS:
4235 sta = sta_info_get(local, sdata->u.wds.remote_addr);
4236 if (sta) {
4237 sta_info_release(local, sta);
4238 sta_info_free(local, sta, 0);
4239 } else {
4240 #ifdef CONFIG_IEEE80211_VERBOSE_DEBUG
4241 printk(KERN_DEBUG "%s: Someone had deleted my STA "
4242 "entry for the WDS link\n", sdata->dev->name);
4243 #endif /* CONFIG_IEEE80211_VERBOSE_DEBUG */
4244 }
4245 break;
4246 case IEEE80211_SUB_IF_TYPE_STA:
4247 del_timer_sync(&sdata->u.sta.timer);
4248 if (local->scan_timer.data == (unsigned long) sdata->dev)
4249 del_timer_sync(&local->scan_timer);
4250 kfree(sdata->u.sta.extra_ie);
4251 sdata->u.sta.extra_ie = NULL;
4252 kfree(sdata->u.sta.assocreq_ies);
4253 sdata->u.sta.assocreq_ies = NULL;
4254 kfree(sdata->u.sta.assocresp_ies);
4255 sdata->u.sta.assocresp_ies = NULL;
4256 if (sdata->u.sta.probe_resp) {
4257 dev_kfree_skb(sdata->u.sta.probe_resp);
4258 sdata->u.sta.probe_resp = NULL;
4259 }
4260 for (i = 0; i < local->conf.bss_count; i++) {
4261 if (local->sta_devs[i] == sdata->dev) {
4262 local->sta_devs[i] = NULL;
4263 local->sta_dev_count--;
4264 break;
4265 }
4266 }
4267
4268 break;
4269 }
4270
4271 /* remove all STAs that are bound to this virtual interface */
4272 sta_info_flush(local, sdata->dev);
4273
4274 list_del(&sdata->list);
4275 ieee80211_proc_deinit_virtual(sdata->dev);
4276 if (locked)
4277 unregister_netdevice(sdata->dev);
4278 else
4279 unregister_netdev(sdata->dev);
4280 /* Default data device and management device are allocated with the
4281 * master device. All other devices are separately allocated and will
4282 * be freed here. */
4283 if (sdata->dev != local->mdev && sdata->dev != local->wdev &&
4284 sdata->dev != local->apdev)
4285 kfree(sdata->dev);
4286 }
4287
4288
4289 static int ieee80211_if_remove(struct net_device *dev, char *name, int id,
4290 int locked)
4291 {
4292 struct ieee80211_local *local = dev->priv;
4293 struct list_head *ptr, *n;
4294
4295 /* Make sure not to touch sdata->master since it may
4296 * have already been deleted, etc. */
4297
4298 list_for_each_safe(ptr, n, &local->sub_if_list) {
4299 struct ieee80211_sub_if_data *sdata =
4300 list_entry(ptr, struct ieee80211_sub_if_data, list);
4301
4302 if (sdata->type == id && strcmp(name, sdata->dev->name) == 0) {
4303 ieee80211_if_del(local, sdata, locked);
4304 break;
4305 }
4306 }
4307
4308 return 0;
4309 }
4310
4311
4312 int ieee80211_if_remove_wds(struct net_device *dev, char *name, int locked)
4313 {
4314 return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_WDS,
4315 locked);
4316 }
4317
4318
4319 int ieee80211_if_remove_vlan(struct net_device *dev, char *name, int locked)
4320 {
4321 return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_VLAN,
4322 locked);
4323 }
4324
4325
4326 int ieee80211_if_remove_norm(struct net_device *dev, char *name, int locked)
4327 {
4328 return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_NORM,
4329 locked);
4330 }
4331
4332
4333 int ieee80211_if_remove_sta(struct net_device *dev, char *name, int locked)
4334 {
4335 return ieee80211_if_remove(dev, name, IEEE80211_SUB_IF_TYPE_STA,
4336 locked);
4337 }
4338
4339
4340 int ieee80211_if_flush(struct net_device *dev, int locked)
4341 {
4342 struct ieee80211_local *local = dev->priv;
4343 struct list_head *ptr, *n;
4344
4345 list_for_each_safe(ptr, n, &local->sub_if_list) {
4346 struct ieee80211_sub_if_data *sdata =
4347 list_entry(ptr, struct ieee80211_sub_if_data, list);
4348
4349 if (sdata->dev != local->mdev &&
4350 sdata->dev != local->wdev &&
4351 sdata->dev != local->apdev)
4352 ieee80211_if_del(local, sdata, locked);
4353 }
4354
4355 return 0;
4356 }
4357
4358
4359 static void ieee80211_precalc_rates(struct ieee80211_hw *hw)
4360 {
4361 struct ieee80211_hw_modes *mode;
4362 struct ieee80211_rate *rate;
4363 int m, r;
4364
4365 for (m = 0; m < hw->num_modes; m++) {
4366 mode = &hw->modes[m];
4367 for (r = 0; r < mode->num_rates; r++) {
4368 rate = &mode->rates[r];
4369 rate->rate_inv = CHAN_UTIL_RATE_LCM / rate->rate;
4370 }
4371 }
4372 }
4373
4374
4375 struct net_device *ieee80211_alloc_hw(size_t priv_data_len,
4376 void (*setup)(struct net_device *))
4377 {
4378 struct net_device *dev, *apdev, *mdev;
4379 struct ieee80211_local *local;
4380 struct ieee80211_sub_if_data *sdata;
4381 int alloc_size;
4382
4383 /* Ensure 32-bit alignment of our private data and hw private data.
4384 * Each net_device is followed by a sub_if_data which which is used
4385 * for wds/vlan information; it is aligned as well.
4386 *
4387 * Sample memory map looks something like:
4388 *
4389 * 0000 *****************
4390 * * net_dev *
4391 * 015c *****************
4392 * * sub_if *
4393 * 017c *****************
4394 * * local *
4395 * 0b84 *****************
4396 * * hw_priv *
4397 * 1664 *****************
4398 * * ap net_dev *
4399 * 17c0 *****************
4400 * * sub_if *
4401 * *****************
4402 * * master net_dev*
4403 * *****************
4404 * * sub_if *
4405 * *****************
4406 */
4407 alloc_size = sizeof(struct net_device) +
4408 sizeof(struct ieee80211_sub_if_data) + 3 +
4409 sizeof(struct ieee80211_local) + 3 +
4410 priv_data_len + 3 +
4411 sizeof(struct net_device) + 3 +
4412 sizeof(struct ieee80211_sub_if_data) + 3 +
4413 sizeof(struct net_device) + 3 +
4414 sizeof(struct ieee80211_sub_if_data) + 3 +
4415 4096;
4416 mdev = (struct net_device *) kzalloc(alloc_size, GFP_KERNEL);
4417 if (mdev == NULL)
4418 return NULL;
4419
4420 mdev->priv = (struct net_device *)
4421 (((long) mdev +
4422 sizeof(struct net_device) +
4423 sizeof(struct ieee80211_sub_if_data) + 3)
4424 & ~3);
4425 local = mdev->priv;
4426 local->hw_priv = (void *)
4427 (((long) local + sizeof(struct ieee80211_local) + 3) & ~3);
4428 apdev = (struct net_device *)
4429 (((long) local->hw_priv + priv_data_len + 3) & ~3);
4430 dev = (struct net_device *)
4431 (((long) apdev +
4432 sizeof(struct net_device) +
4433 sizeof(struct ieee80211_sub_if_data) + 3)
4434 & ~3);
4435 dev->priv = local;
4436
4437 ether_setup(dev);
4438 memcpy(dev->name, "wlan%d", 7);
4439
4440 dev->hard_start_xmit = ieee80211_subif_start_xmit;
4441 dev->do_ioctl = ieee80211_ioctl;
4442 dev->change_mtu = ieee80211_change_mtu;
4443 dev->tx_timeout = ieee80211_tx_timeout;
4444 dev->get_stats = ieee80211_get_stats;
4445 dev->open = ieee80211_open;
4446 dev->stop = ieee80211_stop;
4447 dev->tx_queue_len = 0;
4448 dev->set_mac_address = ieee80211_set_mac_address;
4449
4450 local->wdev = dev;
4451 local->mdev = mdev;
4452 local->rx_handlers = ieee80211_rx_handlers;
4453 local->tx_handlers = ieee80211_tx_handlers;
4454
4455 local->bridge_packets = 1;
4456
4457 local->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
4458 local->fragmentation_threshold = IEEE80211_MAX_FRAG_THRESHOLD;
4459 local->short_retry_limit = 7;
4460 local->long_retry_limit = 4;
4461 local->conf.calib_int = 60;
4462 local->rate_ctrl_num_up = RATE_CONTROL_NUM_UP;
4463 local->rate_ctrl_num_down = RATE_CONTROL_NUM_DOWN;
4464 local->conf.bss_count = 1;
4465 memset(local->conf.bssid_mask, 0xff, ETH_ALEN);
4466 local->bss_devs = kmalloc(sizeof(struct net_device *), GFP_KERNEL);
4467 if (local->bss_devs == NULL)
4468 goto fail;
4469 local->bss_devs[0] = local->wdev;
4470 local->bss_dev_count = 1;
4471 local->sta_devs = kmalloc(sizeof(struct net_device *), GFP_KERNEL);
4472 if (local->sta_devs == NULL)
4473 goto fail;
4474 local->sta_devs[0] = NULL;
4475
4476 local->scan.in_scan = 0;
4477 local->hw_modes = (unsigned int) -1;
4478
4479 init_timer(&local->scan.timer); /* clear it out */
4480
4481 spin_lock_init(&local->generic_lock);
4482 init_timer(&local->rate_limit_timer);
4483 local->rate_limit_timer.function = ieee80211_rate_limit;
4484 local->rate_limit_timer.data = (unsigned long) local;
4485 init_timer(&local->stat_timer);
4486 local->stat_timer.function = ieee80211_stat_refresh;
4487 local->stat_timer.data = (unsigned long) local;
4488 ieee80211_rx_bss_list_init(dev);
4489
4490 sta_info_init(local);
4491
4492 ieee80211_if_init(dev);
4493
4494 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
4495 sdata->dev = dev;
4496 sdata->master = mdev;
4497 sdata->local = local;
4498 ieee80211_if_sdata_init(sdata);
4499 ieee80211_if_norm_init(sdata);
4500 list_add_tail(&sdata->list, &local->sub_if_list);
4501
4502 if (strlen(dev->name) + 2 >= sizeof(dev->name))
4503 goto fail;
4504
4505 apdev = (struct net_device *)
4506 (((long) local->hw_priv + priv_data_len + 3) & ~3);
4507 local->apdev = apdev;
4508 ether_setup(apdev);
4509 apdev->priv = local;
4510 apdev->hard_start_xmit = ieee80211_mgmt_start_xmit;
4511 apdev->change_mtu = ieee80211_change_mtu_apdev;
4512 apdev->get_stats = ieee80211_get_stats;
4513 apdev->open = ieee80211_open;
4514 apdev->stop = ieee80211_stop;
4515 apdev->type = ARPHRD_IEEE80211_PRISM;
4516 apdev->hard_header_parse = header_parse_80211;
4517 apdev->tx_queue_len = 0;
4518 sprintf(apdev->name, "%sap", dev->name);
4519
4520 sdata = IEEE80211_DEV_TO_SUB_IF(apdev);
4521 sdata->type = IEEE80211_SUB_IF_TYPE_MGMT;
4522 sdata->dev = apdev;
4523 sdata->master = mdev;
4524 sdata->local = local;
4525 list_add_tail(&sdata->list, &local->sub_if_list);
4526
4527 ether_setup(mdev);
4528 mdev->hard_start_xmit = ieee80211_master_start_xmit;
4529 mdev->do_ioctl = ieee80211_ioctl;
4530 mdev->change_mtu = ieee80211_change_mtu;
4531 mdev->tx_timeout = ieee80211_tx_timeout;
4532 mdev->get_stats = ieee80211_get_stats;
4533 mdev->open = ieee80211_open;
4534 mdev->stop = ieee80211_stop;
4535 mdev->type = ARPHRD_IEEE80211;
4536 mdev->hard_header_parse = header_parse_80211;
4537 sprintf(mdev->name, "%s.11", dev->name);
4538
4539 sdata = IEEE80211_DEV_TO_SUB_IF(mdev);
4540 sdata->type = IEEE80211_SUB_IF_TYPE_NORM;
4541 sdata->dev = mdev;
4542 sdata->master = mdev;
4543 sdata->local = local;
4544 list_add_tail(&sdata->list, &local->sub_if_list);
4545
4546 tasklet_init(&local->tasklet,
4547 ieee80211_tasklet_handler,
4548 (unsigned long) local);
4549 skb_queue_head_init(&local->skb_queue);
4550 skb_queue_head_init(&local->skb_queue_unreliable);
4551
4552 if (setup)
4553 setup(mdev);
4554
4555 return mdev;
4556
4557 fail:
4558 ieee80211_free_hw(mdev);
4559 return NULL;
4560 }
4561
4562 int ieee80211_register_hw(struct net_device *dev, struct ieee80211_hw *hw)
4563 {
4564 struct ieee80211_local *local = dev->priv;
4565 int result;
4566
4567 if (!hw)
4568 return -1;
4569
4570 if (hw->version != IEEE80211_VERSION) {
4571 printk("ieee80211_register_hw - version mismatch: 80211.o "
4572 "version %d, low-level driver version %d\n",
4573 IEEE80211_VERSION, hw->version);
4574 return -1;
4575 }
4576
4577 local->conf.mode = IW_MODE_MASTER;
4578 local->conf.beacon_int = 1000;
4579
4580 ieee80211_update_hw(dev, hw); /* Don't care about the result. */
4581
4582 sta_info_start(local);
4583
4584 result = register_netdev(local->wdev);
4585 if (result < 0)
4586 return -1;
4587
4588 result = register_netdev(local->apdev);
4589 if (result < 0)
4590 goto fail_2nd_dev;
4591
4592 if (hw->fraglist)
4593 dev->features |= NETIF_F_FRAGLIST;
4594 result = register_netdev(dev);
4595 if (result < 0)
4596 goto fail_3rd_dev;
4597
4598 if (rate_control_initialize(local) < 0) {
4599 printk(KERN_DEBUG "%s: Failed to initialize rate control "
4600 "algorithm\n", dev->name);
4601 goto fail_rate;
4602 }
4603
4604 /* TODO: add rtnl locking around device creation and qdisc install */
4605 ieee80211_install_qdisc(dev);
4606
4607 ieee80211_wep_init(local);
4608 ieee80211_proc_init_interface(local);
4609 return 0;
4610
4611 fail_rate:
4612 unregister_netdev(dev);
4613 fail_3rd_dev:
4614 unregister_netdev(local->apdev);
4615 fail_2nd_dev:
4616 unregister_netdev(local->wdev);
4617 sta_info_stop(local);
4618 return result;
4619 }
4620
4621 int ieee80211_update_hw(struct net_device *dev, struct ieee80211_hw *hw)
4622 {
4623 struct ieee80211_local *local = dev->priv;
4624
4625 local->hw = hw;
4626
4627 /* Backwards compatibility for low-level drivers that do not set number
4628 * of TX queues. */
4629 if (hw->queues == 0)
4630 hw->queues = 1;
4631
4632 memcpy(local->apdev->dev_addr, dev->dev_addr, ETH_ALEN);
4633 local->apdev->base_addr = dev->base_addr;
4634 local->apdev->irq = dev->irq;
4635 local->apdev->mem_start = dev->mem_start;
4636 local->apdev->mem_end = dev->mem_end;
4637
4638 memcpy(local->wdev->dev_addr, dev->dev_addr, ETH_ALEN);
4639 local->wdev->base_addr = dev->base_addr;
4640 local->wdev->irq = dev->irq;
4641 local->wdev->mem_start = dev->mem_start;
4642 local->wdev->mem_end = dev->mem_end;
4643
4644 if (!hw->modes || !hw->modes->channels || !hw->modes->rates ||
4645 !hw->modes->num_channels || !hw->modes->num_rates)
4646 return -1;
4647
4648 ieee80211_precalc_rates(hw);
4649 local->conf.phymode = hw->modes[0].mode;
4650 local->curr_rates = hw->modes[0].rates;
4651 local->num_curr_rates = hw->modes[0].num_rates;
4652 ieee80211_prepare_rates(dev);
4653
4654 local->conf.freq = local->hw->modes[0].channels[0].freq;
4655 local->conf.channel = local->hw->modes[0].channels[0].chan;
4656 local->conf.channel_val = local->hw->modes[0].channels[0].val;
4657 /* FIXME: Invoke config to allow driver to set the channel. */
4658
4659 return 0;
4660 }
4661
4662 void ieee80211_unregister_hw(struct net_device *dev)
4663 {
4664 struct ieee80211_local *local = dev->priv;
4665 struct list_head *ptr, *n;
4666 int i;
4667
4668 tasklet_disable(&local->tasklet);
4669 /* TODO: skb_queue should be empty here, no need to do anything? */
4670
4671 if (local->rate_limit)
4672 del_timer_sync(&local->rate_limit_timer);
4673 if (local->stat_time)
4674 del_timer_sync(&local->stat_timer);
4675 if (local->scan_timer.data)
4676 del_timer_sync(&local->scan_timer);
4677 ieee80211_rx_bss_list_deinit(dev);
4678
4679 list_for_each_safe(ptr, n, &local->sub_if_list) {
4680 struct ieee80211_sub_if_data *sdata =
4681 list_entry(ptr, struct ieee80211_sub_if_data, list);
4682 ieee80211_if_del(local, sdata, 0);
4683 }
4684
4685 sta_info_stop(local);
4686
4687 for (i = 0; i < IEEE80211_FRAGMENT_MAX; i++)
4688 if (local->fragments[i].skb)
4689 dev_kfree_skb(local->fragments[i].skb);
4690
4691 for (i = 0; i < NUM_IEEE80211_MODES; i++) {
4692 kfree(local->supp_rates[i]);
4693 kfree(local->basic_rates[i]);
4694 }
4695
4696 kfree(local->conf.ssid);
4697 kfree(local->conf.generic_elem);
4698
4699 ieee80211_proc_deinit_interface(local);
4700
4701 skb_queue_purge(&local->skb_queue);
4702 skb_queue_purge(&local->skb_queue_unreliable);
4703
4704 rate_control_free(local);
4705 }
4706
4707 void ieee80211_free_hw(struct net_device *dev)
4708 {
4709 struct ieee80211_local *local = dev->priv;
4710
4711 kfree(local->sta_devs);
4712 kfree(local->bss_devs);
4713 kfree(dev);
4714 }
4715
4716 /* Perform netif operations on all configured interfaces */
4717 int ieee80211_netif_oper(struct net_device *sdev, Netif_Oper op)
4718 {
4719 struct ieee80211_local *local = sdev->priv;
4720 struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(sdev);
4721 struct net_device *dev = sdata->master;
4722
4723 switch (op) {
4724 case NETIF_ATTACH:
4725 netif_device_attach(dev);
4726 break;
4727 case NETIF_DETACH:
4728 netif_device_detach(dev);
4729 break;
4730 case NETIF_START:
4731 netif_start_queue(dev);
4732 break;
4733 case NETIF_STOP:
4734 break;
4735 case NETIF_WAKE:
4736 if (local->scan.in_scan == 0) {
4737 netif_wake_queue(dev);
4738 #if 1
4739 if (/* FIX: 802.11 qdisc in use */ 1)
4740 __netif_schedule(dev);
4741 #endif
4742 }
4743 break;
4744 case NETIF_IS_STOPPED:
4745 if (netif_queue_stopped(dev))
4746 return 1;
4747 break;
4748 case NETIF_UPDATE_TX_START:
4749 dev->trans_start = jiffies;
4750 break;
4751 }
4752
4753 return 0;
4754 }
4755
4756
4757 void * ieee80211_dev_hw_data(struct net_device *dev)
4758 {
4759 struct ieee80211_local *local = dev->priv;
4760 return local->hw_priv;
4761 }
4762
4763
4764 void * ieee80211_dev_stats(struct net_device *dev)
4765 {
4766 struct ieee80211_sub_if_data *sdata;
4767 sdata = IEEE80211_DEV_TO_SUB_IF(dev);
4768 return &(sdata->stats);
4769 }
4770
4771
4772 int ieee80211_rate_control_register(struct rate_control_ops *ops)
4773 {
4774 struct rate_control_algs *alg;
4775
4776 alg = kmalloc(sizeof(*alg), GFP_KERNEL);
4777 if (alg == NULL) {
4778 return -1;
4779 }
4780 memset(alg, 0, sizeof(*alg));
4781 alg->next = ieee80211_rate_ctrl_algs;
4782 alg->ops = ops;
4783 ieee80211_rate_ctrl_algs = alg;
4784
4785 return 0;
4786 }
4787
4788
4789 void ieee80211_rate_control_unregister(struct rate_control_ops *ops)
4790 {
4791 struct rate_control_algs *alg, *prev;
4792
4793 prev = NULL;
4794 alg = ieee80211_rate_ctrl_algs;
4795 while (alg) {
4796 if (alg->ops == ops) {
4797 if (prev)
4798 prev->next = alg->next;
4799 else
4800 ieee80211_rate_ctrl_algs = alg->next;
4801 kfree(alg);
4802 break;
4803 }
4804 prev = alg;
4805 alg = alg->next;
4806 }
4807 }
4808
4809
4810 static int rate_control_initialize(struct ieee80211_local *local)
4811 {
4812 struct rate_control_algs *algs;
4813 for (algs = ieee80211_rate_ctrl_algs; algs; algs = algs->next) {
4814 local->rate_ctrl = algs->ops;
4815 local->rate_ctrl_priv = rate_control_alloc(local);
4816 if (local->rate_ctrl_priv) {
4817 printk(KERN_DEBUG "%s: Selected rate control "
4818 "algorithm '%s'\n", local->wdev->name,
4819 local->rate_ctrl->name);
4820 return 0;
4821 }
4822 }
4823
4824 printk(KERN_WARNING "%s: Failed to select rate control algorithm\n",
4825 local->wdev->name);
4826 return -1;
4827 }
4828
4829
4830 static int __init ieee80211_init(void)
4831 {
4832 struct sk_buff *skb;
4833 if (sizeof(struct ieee80211_tx_packet_data) > (sizeof(skb->cb))) {
4834 printk("80211: ieee80211_tx_packet_data is bigger "
4835 "than the skb->cb (%d > %d)\n",
4836 (int) sizeof(struct ieee80211_tx_packet_data),
4837 (int) sizeof(skb->cb));
4838 return -EINVAL;
4839 }
4840 if (sizeof(struct ieee80211_rx_status) > sizeof(skb->cb)) {
4841 printk("80211: ieee80211_rx_status is bigger "
4842 "than the skb->cb (%d > %d)\n",
4843 (int) sizeof(struct ieee80211_rx_status),
4844 (int) sizeof(skb->cb));
4845 return -EINVAL;
4846 }
4847
4848 ieee80211_proc_init();
4849 {
4850 int ret = ieee80211_wme_register();
4851 if (ret) {
4852 printk(KERN_DEBUG "ieee80211_init: failed to "
4853 "initialize WME (err=%d)\n", ret);
4854 ieee80211_proc_deinit();
4855 return ret;
4856 }
4857 }
4858
4859 return 0;
4860 }
4861
4862
4863 static void __exit ieee80211_exit(void)
4864 {
4865 ieee80211_wme_unregister();
4866 ieee80211_proc_deinit();
4867 }
4868
4869
4870 EXPORT_SYMBOL(ieee80211_alloc_hw);
4871 EXPORT_SYMBOL(ieee80211_register_hw);
4872 EXPORT_SYMBOL(ieee80211_update_hw);
4873 EXPORT_SYMBOL(ieee80211_unregister_hw);
4874 EXPORT_SYMBOL(ieee80211_free_hw);
4875 EXPORT_SYMBOL(ieee80211_rx);
4876 EXPORT_SYMBOL(ieee80211_tx_status);
4877 EXPORT_SYMBOL(ieee80211_beacon_get);
4878 EXPORT_SYMBOL(ieee80211_get_buffered_bc);
4879 EXPORT_SYMBOL(ieee80211_netif_oper);
4880 EXPORT_SYMBOL(ieee80211_dev_hw_data);
4881 EXPORT_SYMBOL(ieee80211_dev_stats);
4882 EXPORT_SYMBOL(ieee80211_get_hw_conf);
4883 EXPORT_SYMBOL(ieee80211_set_aid_for_sta);
4884 EXPORT_SYMBOL(ieee80211_rx_irqsafe);
4885 EXPORT_SYMBOL(ieee80211_tx_status_irqsafe);
4886 EXPORT_SYMBOL(ieee80211_get_hdrlen);
4887 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
4888 EXPORT_SYMBOL(ieee80211_rate_control_register);
4889 EXPORT_SYMBOL(ieee80211_rate_control_unregister);
4890 EXPORT_SYMBOL(sta_info_get);
4891 EXPORT_SYMBOL(sta_info_release);
4892 EXPORT_SYMBOL(ieee80211_radar_status);
4893
4894 module_init(ieee80211_init);
4895 module_exit(ieee80211_exit);