[lantiq]
[openwrt/svn-archive/archive.git] / package / ltq-dsl / src / ifxmips_atm_core.c
1 /******************************************************************************
2 **
3 ** FILE NAME : ifxmips_atm_core.c
4 ** PROJECT : UEIP
5 ** MODULES : ATM
6 **
7 ** DATE : 7 Jul 2009
8 ** AUTHOR : Xu Liang
9 ** DESCRIPTION : ATM driver common source file (core functions)
10 ** COPYRIGHT : Copyright (c) 2006
11 ** Infineon Technologies AG
12 ** Am Campeon 1-12, 85579 Neubiberg, Germany
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 **
19 ** HISTORY
20 ** $Date $Author $Comment
21 ** 07 JUL 2009 Xu Liang Init Version
22 *******************************************************************************/
23
24
25
26 /*
27 * ####################################
28 * Version No.
29 * ####################################
30 */
31
32 #define IFX_ATM_VER_MAJOR 1
33 #define IFX_ATM_VER_MID 0
34 #define IFX_ATM_VER_MINOR 8
35
36
37
38 /*
39 * ####################################
40 * Head File
41 * ####################################
42 */
43
44 /*
45 * Common Head File
46 */
47 #include <linux/kernel.h>
48 #include <linux/module.h>
49 #include <linux/version.h>
50 #include <linux/types.h>
51 #include <linux/errno.h>
52 #include <linux/proc_fs.h>
53 #include <linux/init.h>
54 #include <linux/ioctl.h>
55 #include <linux/atmdev.h>
56 #include <linux/atm.h>
57 #include <linux/clk.h>
58
59 /*
60 * Chip Specific Head File
61 */
62 #include <lantiq_soc.h>
63 #include "ifxmips_atm_core.h"
64
65
66
67 /*
68 * ####################################
69 * Kernel Version Adaption
70 * ####################################
71 */
72 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,11)
73 #define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
74 #define MODULE_PARM(a, b) module_param(a, int, 0)
75 #else
76 #define MODULE_PARM_ARRAY(a, b) MODULE_PARM(a, b)
77 #endif
78
79
80
81 /*!
82 \addtogroup IFXMIPS_ATM_MODULE_PARAMS
83 */
84 /*@{*/
85 /*
86 * ####################################
87 * Parameters to Configure PPE
88 * ####################################
89 */
90 /*!
91 \brief QSB cell delay variation due to concurrency
92 */
93 static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
94 /*!
95 \brief QSB scheduler burst length
96 */
97 static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
98 /*!
99 \brief QSB time step, all legal values are 1, 2, 4
100 */
101 static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
102
103 /*!
104 \brief Write descriptor delay
105 */
106 static int write_descriptor_delay = 0x20; /* Write descriptor delay */
107
108 /*!
109 \brief AAL5 padding byte ('~')
110 */
111 static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
112 /*!
113 \brief Max frame size for RX
114 */
115 static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
116 /*!
117 \brief Min frame size for RX
118 */
119 static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
120 /*!
121 \brief Max frame size for TX
122 */
123 static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
124 /*!
125 \brief Min frame size for TX
126 */
127 static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
128 /*!
129 \brief Drop error packet in RX path
130 */
131 static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
132
133 /*!
134 \brief Number of descriptors per DMA RX channel
135 */
136 static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
137 /*!
138 \brief Number of descriptors per DMA TX channel
139 */
140 static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
141 /*!
142 \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
143 */
144 static int dma_rx_clp1_descriptor_threshold = 38;
145 /*@}*/
146
147 MODULE_PARM(qsb_tau, "i");
148 MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
149 MODULE_PARM(qsb_srvm, "i");
150 MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
151 MODULE_PARM(qsb_tstep, "i");
152 MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
153
154 MODULE_PARM(write_descriptor_delay, "i");
155 MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
156
157 MODULE_PARM(aal5_fill_pattern, "i");
158 MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
159 MODULE_PARM(aal5r_max_packet_size, "i");
160 MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
161 MODULE_PARM(aal5r_min_packet_size, "i");
162 MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
163 MODULE_PARM(aal5s_max_packet_size, "i");
164 MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
165 MODULE_PARM(aal5s_min_packet_size, "i");
166 MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
167 MODULE_PARM(aal5r_drop_error_packet, "i");
168 MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
169
170 MODULE_PARM(dma_rx_descriptor_length, "i");
171 MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
172 MODULE_PARM(dma_tx_descriptor_length, "i");
173 MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
174 MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
175 MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
176
177
178
179 /*
180 * ####################################
181 * Definition
182 * ####################################
183 */
184
185 #define DUMP_SKB_LEN ~0
186
187
188
189 /*
190 * ####################################
191 * Declaration
192 * ####################################
193 */
194
195 /*
196 * Network Operations
197 */
198 static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
199 static int ppe_open(struct atm_vcc *);
200 static void ppe_close(struct atm_vcc *);
201 static int ppe_send(struct atm_vcc *, struct sk_buff *);
202 static int ppe_send_oam(struct atm_vcc *, void *, int);
203 static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
204
205 /*
206 * ADSL LED
207 */
208 static INLINE int adsl_led_flash(void);
209
210 /*
211 * 64-bit operation used by MIB calculation
212 */
213 static INLINE void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
214
215 /*
216 * buffer manage functions
217 */
218 static INLINE struct sk_buff* alloc_skb_rx(void);
219 static INLINE struct sk_buff* alloc_skb_tx(unsigned int);
220 struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
221 static INLINE void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
222 static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int);
223 static INLINE int get_tx_desc(unsigned int);
224
225 /*
226 * mailbox handler and signal function
227 */
228 static INLINE void mailbox_oam_rx_handler(void);
229 static INLINE void mailbox_aal_rx_handler(void);
230 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
231 static void do_ppe_tasklet(unsigned long);
232 #endif
233 static irqreturn_t mailbox_irq_handler(int, void *);
234 static INLINE void mailbox_signal(unsigned int, int);
235
236 /*
237 * QSB & HTU setting functions
238 */
239 static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
240 static void qsb_global_set(void);
241 static INLINE void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
242 static INLINE void clear_htu_entry(unsigned int);
243 static void validate_oam_htu_entry(void);
244 static void invalidate_oam_htu_entry(void);
245
246 /*
247 * look up for connection ID
248 */
249 static INLINE int find_vpi(unsigned int);
250 static INLINE int find_vpivci(unsigned int, unsigned int);
251 static INLINE int find_vcc(struct atm_vcc *);
252
253 /*
254 * Debug Functions
255 */
256 #if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
257 static void dump_skb(struct sk_buff *, u32, char *, int, int, int);
258 #else
259 #define dump_skb(skb, len, title, port, ch, is_tx) do {} while (0)
260 #endif
261
262 /*
263 * Proc File Functions
264 */
265 static INLINE void proc_file_create(void);
266 static INLINE void proc_file_delete(void);
267 static int proc_read_version(char *, char **, off_t, int, int *, void *);
268 static int proc_read_mib(char *, char **, off_t, int, int *, void *);
269 static int proc_write_mib(struct file *, const char *, unsigned long, void *);
270 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
271 static int proc_read_dbg(char *, char **, off_t, int, int *, void *);
272 static int proc_write_dbg(struct file *, const char *, unsigned long, void *);
273 #endif
274 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
275 static int proc_read_htu(char *, char **, off_t, int, int *, void *);
276 static int proc_read_txq(char *, char **, off_t, int, int *, void *);
277 #endif
278
279 /*
280 * Proc Help Functions
281 */
282 static int stricmp(const char *, const char *);
283 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
284 static int strincmp(const char *, const char *, int);
285 #endif
286 static INLINE int ifx_atm_version(char *);
287 //static INLINE int print_reset_domain(char *, int);
288 //static INLINE int print_reset_handler(char *, int, ifx_rcu_handler_t *);
289
290 /*
291 * Init & clean-up functions
292 */
293 #ifdef MODULE
294 static INLINE void reset_ppe(void);
295 #endif
296 static INLINE void check_parameters(void);
297 static INLINE int init_priv_data(void);
298 static INLINE void clear_priv_data(void);
299 static INLINE void init_rx_tables(void);
300 static INLINE void init_tx_tables(void);
301
302 /*
303 * Exteranl Function
304 */
305 #if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
306 extern void ifx_push_oam(unsigned char *);
307 #else
308 static inline void ifx_push_oam(unsigned char *dummy) {}
309 #endif
310 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
311 extern int ifx_mei_atm_led_blink(void);
312 extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
313 #else
314 static inline int ifx_mei_atm_led_blink(void) { return IFX_SUCCESS; }
315 static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
316 {
317 if ( is_showtime != NULL )
318 *is_showtime = 0;
319 return IFX_SUCCESS;
320 }
321 #endif
322
323 /*
324 * External variable
325 */
326 extern struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int);
327 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
328 extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
329 extern int (*ifx_mei_atm_showtime_exit)(void);
330 #else
331 int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
332 EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
333 int (*ifx_mei_atm_showtime_exit)(void) = NULL;
334 EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
335 #endif
336
337
338
339 /*
340 * ####################################
341 * Local Variable
342 * ####################################
343 */
344
345 static struct atm_priv_data g_atm_priv_data;
346
347 static struct atmdev_ops g_ifx_atm_ops = {
348 .open = ppe_open,
349 .close = ppe_close,
350 .ioctl = ppe_ioctl,
351 .send = ppe_send,
352 .send_oam = ppe_send_oam,
353 .change_qos = ppe_change_qos,
354 .owner = THIS_MODULE,
355 };
356
357 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
358 DECLARE_TASKLET(g_dma_tasklet, do_ppe_tasklet, 0);
359 #endif
360
361 static int g_showtime = 0;
362 static void *g_xdata_addr = NULL;
363
364 unsigned int ifx_atm_dbg_enable = 0;
365
366 static struct proc_dir_entry* g_atm_dir = NULL;
367
368
369
370 /*
371 * ####################################
372 * Local Function
373 * ####################################
374 */
375
376 static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
377 {
378 int ret = 0;
379 atm_cell_ifEntry_t mib_cell;
380 atm_aal5_ifEntry_t mib_aal5;
381 atm_aal5_vcc_x_t mib_vcc;
382 unsigned int value;
383 int conn;
384
385 if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
386 || _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
387 return -ENOTTY;
388
389 if ( _IOC_DIR(cmd) & _IOC_READ )
390 ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
391 else if ( _IOC_DIR(cmd) & _IOC_WRITE )
392 ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
393 if ( ret )
394 return -EFAULT;
395
396 switch ( cmd )
397 {
398 case PPE_ATM_MIB_CELL: /* cell level MIB */
399 /* These MIB should be read at ARC side, now put zero only. */
400 mib_cell.ifHCInOctets_h = 0;
401 mib_cell.ifHCInOctets_l = 0;
402 mib_cell.ifHCOutOctets_h = 0;
403 mib_cell.ifHCOutOctets_l = 0;
404 mib_cell.ifInErrors = 0;
405 mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
406 mib_cell.ifOutErrors = 0;
407
408 ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
409 break;
410
411 case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
412 value = WAN_MIB_TABLE->wrx_total_byte;
413 u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
414 g_atm_priv_data.prev_wrx_total_byte = value;
415 mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
416 mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
417
418 value = WAN_MIB_TABLE->wtx_total_byte;
419 u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
420 g_atm_priv_data.prev_wtx_total_byte = value;
421 mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
422 mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
423
424 mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
425 mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
426 mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
427 mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
428 mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
429 mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
430
431 ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
432 break;
433
434 case PPE_ATM_MIB_VCC: /* VCC related MIB */
435 copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
436 conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
437 if ( conn >= 0 )
438 {
439 mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
440 mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
441 mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
442 ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
443 }
444 else
445 ret = -EINVAL;
446 break;
447
448 default:
449 ret = -ENOIOCTLCMD;
450 }
451
452 return ret;
453 }
454
455 static int ppe_open(struct atm_vcc *vcc)
456 {
457 int ret;
458 short vpi = vcc->vpi;
459 int vci = vcc->vci;
460 struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
461 int conn;
462 int f_enable_irq = 0;
463 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
464 int sys_flag;
465 #endif
466
467 if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
468 return -EPROTONOSUPPORT;
469
470 /* check bandwidth */
471 if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
472 || (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
473 || (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
474 || (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
475 {
476 ret = -EINVAL;
477 goto PPE_OPEN_EXIT;
478 }
479
480 /* check existing vpi,vci */
481 conn = find_vpivci(vpi, vci);
482 if ( conn >= 0 ) {
483 ret = -EADDRINUSE;
484 goto PPE_OPEN_EXIT;
485 }
486
487 /* check whether it need to enable irq */
488 if ( g_atm_priv_data.conn_table == 0 )
489 f_enable_irq = 1;
490
491 /* allocate connection */
492 for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
493 if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
494 g_atm_priv_data.conn[conn].vcc = vcc;
495 break;
496 }
497 }
498 if ( conn == MAX_PVC_NUMBER )
499 {
500 ret = -EINVAL;
501 goto PPE_OPEN_EXIT;
502 }
503
504 /* reserve bandwidth */
505 switch ( vcc->qos.txtp.traffic_class ) {
506 case ATM_CBR:
507 case ATM_VBR_RT:
508 port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
509 break;
510 case ATM_VBR_NRT:
511 port->tx_current_cell_rate += vcc->qos.txtp.scr;
512 break;
513 case ATM_UBR_PLUS:
514 port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
515 break;
516 }
517
518 /* set qsb */
519 set_qsb(vcc, &vcc->qos, conn);
520
521 /* update atm_vcc structure */
522 vcc->itf = (int)vcc->dev->dev_data;
523 vcc->vpi = vpi;
524 vcc->vci = vci;
525 set_bit(ATM_VF_READY, &vcc->flags);
526
527 /* enable irq */
528 if (f_enable_irq ) {
529 ifx_atm_alloc_tx = atm_alloc_tx;
530
531 *MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
532 *MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
533
534 enable_irq(PPE_MAILBOX_IGU1_INT);
535 }
536
537 /* set port */
538 WTX_QUEUE_CONFIG(conn)->sbid = (int)vcc->dev->dev_data;
539
540 /* set htu entry */
541 set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
542
543 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
544 // ReTX: occupy second QID
545 local_irq_save(sys_flag);
546 if ( g_retx_htu && vcc->qos.aal == ATM_AAL5 )
547 {
548 int retx_conn = (conn + 8) % 16; // ReTX queue
549
550 if ( retx_conn < MAX_PVC_NUMBER && test_and_set_bit(retx_conn, &g_atm_priv_data.conn_table) == 0 ) {
551 g_atm_priv_data.conn[retx_conn].vcc = vcc;
552 set_htu_entry(vpi, vci, retx_conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 1);
553 }
554 }
555 local_irq_restore(sys_flag);
556 #endif
557
558 ret = 0;
559
560 PPE_OPEN_EXIT:
561 return ret;
562 }
563
564 static void ppe_close(struct atm_vcc *vcc)
565 {
566 int conn;
567 struct port *port;
568 struct connection *connection;
569
570 if ( vcc == NULL )
571 return;
572
573 /* get connection id */
574 conn = find_vcc(vcc);
575 if ( conn < 0 ) {
576 err("can't find vcc");
577 goto PPE_CLOSE_EXIT;
578 }
579 connection = &g_atm_priv_data.conn[conn];
580 port = &g_atm_priv_data.port[connection->port];
581
582 /* clear htu */
583 clear_htu_entry(conn);
584
585 /* release connection */
586 clear_bit(conn, &g_atm_priv_data.conn_table);
587 connection->vcc = NULL;
588 connection->aal5_vcc_crc_err = 0;
589 connection->aal5_vcc_oversize_sdu = 0;
590
591 /* disable irq */
592 if ( g_atm_priv_data.conn_table == 0 ) {
593 disable_irq(PPE_MAILBOX_IGU1_INT);
594 ifx_atm_alloc_tx = NULL;
595 }
596
597 /* release bandwidth */
598 switch ( vcc->qos.txtp.traffic_class )
599 {
600 case ATM_CBR:
601 case ATM_VBR_RT:
602 port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
603 break;
604 case ATM_VBR_NRT:
605 port->tx_current_cell_rate -= vcc->qos.txtp.scr;
606 break;
607 case ATM_UBR_PLUS:
608 port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
609 break;
610 }
611
612 PPE_CLOSE_EXIT:
613 return;
614 }
615
616 static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
617 {
618 int ret;
619 int conn;
620 int desc_base;
621 struct tx_descriptor reg_desc = {0};
622
623 if ( vcc == NULL || skb == NULL )
624 return -EINVAL;
625
626 skb_get(skb);
627 atm_free_tx_skb_vcc(skb, vcc);
628
629 conn = find_vcc(vcc);
630 if ( conn < 0 ) {
631 ret = -EINVAL;
632 goto FIND_VCC_FAIL;
633 }
634
635 if ( !g_showtime ) {
636 err("not in showtime");
637 ret = -EIO;
638 goto PPE_SEND_FAIL;
639 }
640
641 if ( vcc->qos.aal == ATM_AAL5 ) {
642 int byteoff;
643 int datalen;
644 struct tx_inband_header *header;
645
646 datalen = skb->len;
647 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
648
649 if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH ) {
650 struct sk_buff *new_skb;
651
652 new_skb = alloc_skb_tx(datalen);
653 if ( new_skb == NULL ) {
654 err("ALLOC_SKB_TX_FAIL");
655 ret = -ENOMEM;
656 goto PPE_SEND_FAIL;
657 }
658 skb_put(new_skb, datalen);
659 memcpy(new_skb->data, skb->data, datalen);
660 dev_kfree_skb_any(skb);
661 skb = new_skb;
662 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
663 }
664
665 skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
666
667 header = (struct tx_inband_header *)skb->data;
668
669 /* setup inband trailer */
670 header->uu = 0;
671 header->cpi = 0;
672 header->pad = aal5_fill_pattern;
673 header->res1 = 0;
674
675 /* setup cell header */
676 header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
677 header->pti = ATM_PTI_US0;
678 header->vci = vcc->vci;
679 header->vpi = vcc->vpi;
680 header->gfc = 0;
681
682 /* setup descriptor */
683 reg_desc.dataptr = (unsigned int)skb->data >> 2;
684 reg_desc.datalen = datalen;
685 reg_desc.byteoff = byteoff;
686 reg_desc.iscell = 0;
687 }
688 else {
689 /* if data pointer is not aligned, allocate new sk_buff */
690 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
691 struct sk_buff *new_skb;
692
693 err("skb->data not aligned");
694
695 new_skb = alloc_skb_tx(skb->len);
696 if ( new_skb == NULL ) {
697 err("ALLOC_SKB_TX_FAIL");
698 ret = -ENOMEM;
699 goto PPE_SEND_FAIL;
700 }
701 skb_put(new_skb, skb->len);
702 memcpy(new_skb->data, skb->data, skb->len);
703 dev_kfree_skb_any(skb);
704 skb = new_skb;
705 }
706
707 reg_desc.dataptr = (unsigned int)skb->data >> 2;
708 reg_desc.datalen = skb->len;
709 reg_desc.byteoff = 0;
710 reg_desc.iscell = 1;
711 }
712
713 reg_desc.own = 1;
714 reg_desc.c = 1;
715 reg_desc.sop = reg_desc.eop = 1;
716
717 desc_base = get_tx_desc(conn);
718 if ( desc_base < 0 ) {
719 err("ALLOC_TX_CONNECTION_FAIL");
720 ret = -EIO;
721 goto PPE_SEND_FAIL;
722 }
723
724 if ( vcc->stats )
725 atomic_inc(&vcc->stats->tx);
726 if ( vcc->qos.aal == ATM_AAL5 )
727 g_atm_priv_data.wtx_pdu++;
728
729 /* update descriptor send pointer */
730 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
731 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
732 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
733
734 /* write discriptor to memory and write back cache */
735 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
736 dma_cache_wback((unsigned long)skb->data, skb->len);
737
738 dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
739
740 mailbox_signal(conn, 1);
741
742 adsl_led_flash();
743
744 return 0;
745
746 FIND_VCC_FAIL:
747 err("FIND_VCC_FAIL");
748 g_atm_priv_data.wtx_err_pdu++;
749 dev_kfree_skb_any(skb);
750 return ret;
751
752 PPE_SEND_FAIL:
753 if ( vcc->qos.aal == ATM_AAL5 )
754 g_atm_priv_data.wtx_drop_pdu++;
755 if ( vcc->stats )
756 atomic_inc(&vcc->stats->tx_err);
757 dev_kfree_skb_any(skb);
758 return ret;
759 }
760
761 static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
762 {
763 int conn;
764 struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
765 int desc_base;
766 struct sk_buff *skb;
767 struct tx_descriptor reg_desc = {0};
768
769 if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
770 && find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
771 || ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
772 && find_vpi(uni_cell_header->vpi) < 0) )
773 return -EINVAL;
774
775 if ( !g_showtime ) {
776 err("not in showtime");
777 return -EIO;
778 }
779
780 conn = find_vcc(vcc);
781 if ( conn < 0 ) {
782 err("FIND_VCC_FAIL");
783 return -EINVAL;
784 }
785
786 skb = alloc_skb_tx(CELL_SIZE);
787 if ( skb == NULL ) {
788 err("ALLOC_SKB_TX_FAIL");
789 return -ENOMEM;
790 }
791 memcpy(skb->data, cell, CELL_SIZE);
792
793 reg_desc.dataptr = (unsigned int)skb->data >> 2;
794 reg_desc.datalen = CELL_SIZE;
795 reg_desc.byteoff = 0;
796 reg_desc.iscell = 1;
797
798 reg_desc.own = 1;
799 reg_desc.c = 1;
800 reg_desc.sop = reg_desc.eop = 1;
801
802 desc_base = get_tx_desc(conn);
803 if ( desc_base < 0 ) {
804 dev_kfree_skb_any(skb);
805 err("ALLOC_TX_CONNECTION_FAIL");
806 return -EIO;
807 }
808
809 if ( vcc->stats )
810 atomic_inc(&vcc->stats->tx);
811
812 /* update descriptor send pointer */
813 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
814 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
815 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
816
817 /* write discriptor to memory and write back cache */
818 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
819 dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
820
821 dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 1);
822
823 mailbox_signal(conn, 1);
824
825 adsl_led_flash();
826
827 return 0;
828 }
829
830 static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
831 {
832 int conn;
833
834 if ( vcc == NULL || qos == NULL )
835 return -EINVAL;
836
837 conn = find_vcc(vcc);
838 if ( conn < 0 )
839 return -EINVAL;
840
841 set_qsb(vcc, qos, conn);
842
843 return 0;
844 }
845
846 static INLINE int adsl_led_flash(void)
847 {
848 return ifx_mei_atm_led_blink();
849 }
850
851 /*
852 * Description:
853 * Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
854 * Input:
855 * opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
856 * opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
857 * ret --- ppe_u64_t, pointer to a variable to hold result
858 * Output:
859 * none
860 */
861 static INLINE void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
862 {
863 ret->l = opt1.l + opt2;
864 if ( ret->l < opt1.l || ret->l < opt2 )
865 ret->h++;
866 }
867
868 static INLINE struct sk_buff* alloc_skb_rx(void)
869 {
870 struct sk_buff *skb;
871
872 skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
873 if ( skb != NULL ) {
874 /* must be burst length alignment */
875 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
876 skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
877 /* pub skb in reserved area "skb->data - 4" */
878 *((struct sk_buff **)skb->data - 1) = skb;
879 /* write back and invalidate cache */
880 dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
881 /* invalidate cache */
882 dma_cache_inv((unsigned long)skb->data, (unsigned int)skb->end - (unsigned int)skb->data);
883 }
884
885 return skb;
886 }
887
888 static INLINE struct sk_buff* alloc_skb_tx(unsigned int size)
889 {
890 struct sk_buff *skb;
891
892 /* allocate memory including header and padding */
893 size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
894 size &= ~(DATA_BUFFER_ALIGNMENT - 1);
895 skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
896 /* must be burst length alignment */
897 if ( skb != NULL )
898 skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
899 return skb;
900 }
901
902 struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
903 {
904 int conn;
905 struct sk_buff *skb;
906
907 /* oversize packet */
908 if ( size > aal5s_max_packet_size ) {
909 err("atm_alloc_tx: oversize packet");
910 return NULL;
911 }
912 /* send buffer overflow */
913 if ( atomic_read(&sk_atm(vcc)->sk_wmem_alloc) && !atm_may_send(vcc, size) ) {
914 err("atm_alloc_tx: send buffer overflow");
915 return NULL;
916 }
917 conn = find_vcc(vcc);
918 if ( conn < 0 ) {
919 err("atm_alloc_tx: unknown VCC");
920 return NULL;
921 }
922
923 skb = dev_alloc_skb(size);
924 if ( skb == NULL ) {
925 err("atm_alloc_tx: sk buffer is used up");
926 return NULL;
927 }
928
929 atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
930
931 return skb;
932 }
933
934 static INLINE void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
935 {
936 if ( vcc->pop != NULL )
937 vcc->pop(vcc, skb);
938 else
939 dev_kfree_skb_any(skb);
940 }
941
942 static INLINE struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
943 {
944 unsigned int skb_dataptr;
945 struct sk_buff *skb;
946
947 skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
948 skb = *(struct sk_buff **)skb_dataptr;
949
950 ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
951 ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
952
953 return skb;
954 }
955
956 static INLINE int get_tx_desc(unsigned int conn)
957 {
958 int desc_base = -1;
959 struct connection *p_conn = &g_atm_priv_data.conn[conn];
960
961 if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
962 desc_base = p_conn->tx_desc_pos;
963 if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
964 p_conn->tx_desc_pos = 0;
965 }
966
967 return desc_base;
968 }
969
970 static INLINE void mailbox_oam_rx_handler(void)
971 {
972 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
973 struct rx_descriptor reg_desc;
974 struct uni_cell_header *header;
975 int conn;
976 struct atm_vcc *vcc;
977 unsigned int i;
978
979 for ( i = 0; i < vlddes; i++ ) {
980 do {
981 reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
982 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
983
984 header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
985
986 if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
987 conn = find_vpivci(header->vpi, header->vci);
988 else if ( header->vci == 0x03 || header->vci == 0x04 )
989 conn = find_vpi(header->vpi);
990 else
991 conn = -1;
992
993 if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
994 vcc = g_atm_priv_data.conn[conn].vcc;
995
996 if ( vcc->push_oam != NULL )
997 vcc->push_oam(vcc, header);
998 else
999 ifx_push_oam((unsigned char *)header);
1000
1001 adsl_led_flash();
1002 }
1003
1004 reg_desc.byteoff = 0;
1005 reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
1006 reg_desc.own = 1;
1007 reg_desc.c = 0;
1008
1009 g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
1010 if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
1011 g_atm_priv_data.oam_desc_pos = 0;
1012
1013 mailbox_signal(RX_DMA_CH_OAM, 0);
1014 }
1015 }
1016
1017 static INLINE void mailbox_aal_rx_handler(void)
1018 {
1019 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
1020 struct rx_descriptor reg_desc;
1021 int conn;
1022 struct atm_vcc *vcc;
1023 struct sk_buff *skb, *new_skb;
1024 struct rx_inband_trailer *trailer;
1025 unsigned int i;
1026
1027 for ( i = 0; i < vlddes; i++ ) {
1028 do {
1029 reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
1030 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
1031
1032 conn = reg_desc.id;
1033
1034 if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
1035 vcc = g_atm_priv_data.conn[conn].vcc;
1036
1037 skb = get_skb_rx_pointer(reg_desc.dataptr);
1038
1039 if ( reg_desc.err ) {
1040 if ( vcc->qos.aal == ATM_AAL5 ) {
1041 trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
1042 if ( trailer->stw_crc )
1043 g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
1044 if ( trailer->stw_ovz )
1045 g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
1046 g_atm_priv_data.wrx_drop_pdu++;
1047 }
1048 if ( vcc->stats ) {
1049 atomic_inc(&vcc->stats->rx_drop);
1050 atomic_inc(&vcc->stats->rx_err);
1051 }
1052 }
1053 else if ( atm_charge(vcc, skb->truesize) ) {
1054 new_skb = alloc_skb_rx();
1055 if ( new_skb != NULL ) {
1056 skb_reserve(skb, reg_desc.byteoff);
1057 skb_put(skb, reg_desc.datalen);
1058 ATM_SKB(skb)->vcc = vcc;
1059
1060 dump_skb(skb, DUMP_SKB_LEN, (char *)__func__, 0, conn, 0);
1061
1062 vcc->push(vcc, skb);
1063
1064 if ( vcc->qos.aal == ATM_AAL5 )
1065 g_atm_priv_data.wrx_pdu++;
1066 if ( vcc->stats )
1067 atomic_inc(&vcc->stats->rx);
1068 adsl_led_flash();
1069
1070 reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
1071 }
1072 else {
1073 atm_return(vcc, skb->truesize);
1074 if ( vcc->qos.aal == ATM_AAL5 )
1075 g_atm_priv_data.wrx_drop_pdu++;
1076 if ( vcc->stats )
1077 atomic_inc(&vcc->stats->rx_drop);
1078 }
1079 }
1080 else {
1081 if ( vcc->qos.aal == ATM_AAL5 )
1082 g_atm_priv_data.wrx_drop_pdu++;
1083 if ( vcc->stats )
1084 atomic_inc(&vcc->stats->rx_drop);
1085 }
1086 }
1087 else {
1088 g_atm_priv_data.wrx_drop_pdu++;
1089 }
1090
1091 reg_desc.byteoff = 0;
1092 reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1093 reg_desc.own = 1;
1094 reg_desc.c = 0;
1095
1096 g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
1097 if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
1098 g_atm_priv_data.aal_desc_pos = 0;
1099
1100 mailbox_signal(RX_DMA_CH_AAL, 0);
1101 }
1102 }
1103
1104 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
1105 static void do_ppe_tasklet(unsigned long arg)
1106 {
1107 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1108 mailbox_oam_rx_handler();
1109 mailbox_aal_rx_handler();
1110 if ( (*MBOX_IGU1_ISR & ((1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM))) != 0 )
1111 tasklet_schedule(&g_dma_tasklet);
1112 else
1113 enable_irq(PPE_MAILBOX_IGU1_INT);
1114 }
1115 #endif
1116
1117 static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
1118 {
1119 if ( !*MBOX_IGU1_ISR )
1120 return IRQ_HANDLED;
1121
1122 #if defined(ENABLE_TASKLET) && ENABLE_TASKLET
1123 disable_irq(PPE_MAILBOX_IGU1_INT);
1124 tasklet_schedule(&g_dma_tasklet);
1125 #else
1126 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1127 mailbox_oam_rx_handler();
1128 mailbox_aal_rx_handler();
1129 #endif
1130
1131 return IRQ_HANDLED;
1132 }
1133
1134 static INLINE void mailbox_signal(unsigned int queue, int is_tx)
1135 {
1136 if ( is_tx ) {
1137 while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) );
1138 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
1139 }
1140 else {
1141 while ( MBOX_IGU3_ISR_ISR(queue) );
1142 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
1143 }
1144 }
1145
1146 static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
1147 {
1148 struct clk *clk = clk_get(0, "fpi");
1149 unsigned int qsb_clk = clk_get_rate(clk);
1150 unsigned int qsb_qid = queue + FIRST_QSB_QID;
1151 union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
1152 union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
1153 unsigned int tmp;
1154
1155 #if defined(DEBUG_QOS) && DEBUG_QOS
1156 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
1157 static char *str_traffic_class[9] = {
1158 "ATM_NONE",
1159 "ATM_UBR",
1160 "ATM_CBR",
1161 "ATM_VBR",
1162 "ATM_ABR",
1163 "ATM_ANYCLASS",
1164 "ATM_VBR_RT",
1165 "ATM_UBR_PLUS",
1166 "ATM_MAX_PCR"
1167 };
1168 printk(KERN_INFO "QoS Parameters:\n");
1169 printk(KERN_INFO "\tAAL : %d\n", qos->aal);
1170 printk(KERN_INFO "\tTX Traffic Class: %s\n", str_traffic_class[qos->txtp.traffic_class]);
1171 printk(KERN_INFO "\tTX Max PCR : %d\n", qos->txtp.max_pcr);
1172 printk(KERN_INFO "\tTX Min PCR : %d\n", qos->txtp.min_pcr);
1173 printk(KERN_INFO "\tTX PCR : %d\n", qos->txtp.pcr);
1174 printk(KERN_INFO "\tTX Max CDV : %d\n", qos->txtp.max_cdv);
1175 printk(KERN_INFO "\tTX Max SDU : %d\n", qos->txtp.max_sdu);
1176 printk(KERN_INFO "\tTX SCR : %d\n", qos->txtp.scr);
1177 printk(KERN_INFO "\tTX MBS : %d\n", qos->txtp.mbs);
1178 printk(KERN_INFO "\tTX CDV : %d\n", qos->txtp.cdv);
1179 printk(KERN_INFO "\tRX Traffic Class: %s\n", str_traffic_class[qos->rxtp.traffic_class]);
1180 printk(KERN_INFO "\tRX Max PCR : %d\n", qos->rxtp.max_pcr);
1181 printk(KERN_INFO "\tRX Min PCR : %d\n", qos->rxtp.min_pcr);
1182 printk(KERN_INFO "\tRX PCR : %d\n", qos->rxtp.pcr);
1183 printk(KERN_INFO "\tRX Max CDV : %d\n", qos->rxtp.max_cdv);
1184 printk(KERN_INFO "\tRX Max SDU : %d\n", qos->rxtp.max_sdu);
1185 printk(KERN_INFO "\tRX SCR : %d\n", qos->rxtp.scr);
1186 printk(KERN_INFO "\tRX MBS : %d\n", qos->rxtp.mbs);
1187 printk(KERN_INFO "\tRX CDV : %d\n", qos->rxtp.cdv);
1188 }
1189 #endif // defined(DEBUG_QOS) && DEBUG_QOS
1190
1191 /*
1192 * Peak Cell Rate (PCR) Limiter
1193 */
1194 if ( qos->txtp.max_pcr == 0 )
1195 qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
1196 else {
1197 /* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
1198 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
1199 /* check if overflow takes place */
1200 qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1201 }
1202
1203 // A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
1204 // Send packets to these two PVCs at same time, it trigger strange behavior.
1205 // In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
1206 // In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
1207 // To work around, create UBR always with max_pcr.
1208 // If user want to create UBR without max_pcr, we give a default one larger than line-rate.
1209 if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
1210 int port = g_atm_priv_data.conn[queue].port;
1211 unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
1212
1213 tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
1214 if ( tmp > QSB_TP_TS_MAX )
1215 tmp = QSB_TP_TS_MAX;
1216 else if ( tmp < 1 )
1217 tmp = 1;
1218 qsb_queue_parameter_table.bit.tp = tmp;
1219 }
1220
1221 /*
1222 * Weighted Fair Queueing Factor (WFQF)
1223 */
1224 switch ( qos->txtp.traffic_class ) {
1225 case ATM_CBR:
1226 case ATM_VBR_RT:
1227 /* real time queue gets weighted fair queueing bypass */
1228 qsb_queue_parameter_table.bit.wfqf = 0;
1229 break;
1230 case ATM_VBR_NRT:
1231 case ATM_UBR_PLUS:
1232 /* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
1233 /* WFQF is maximum cell rate / garenteed cell rate */
1234 /* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
1235 if ( qos->txtp.min_pcr == 0 )
1236 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1237 else
1238 {
1239 tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
1240 if ( tmp == 0 )
1241 qsb_queue_parameter_table.bit.wfqf = 1;
1242 else if ( tmp > QSB_WFQ_NONUBR_MAX )
1243 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1244 else
1245 qsb_queue_parameter_table.bit.wfqf = tmp;
1246 }
1247 break;
1248 default:
1249 case ATM_UBR:
1250 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
1251 }
1252
1253 /*
1254 * Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
1255 */
1256 if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
1257 if ( qos->txtp.scr == 0 ) {
1258 /* disable shaper */
1259 qsb_queue_vbr_parameter_table.bit.taus = 0;
1260 qsb_queue_vbr_parameter_table.bit.ts = 0;
1261 }
1262 else {
1263 /* Cell Loss Priority (CLP) */
1264 if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
1265 /* CLP1 */
1266 qsb_queue_parameter_table.bit.vbr = 1;
1267 else
1268 /* CLP0 */
1269 qsb_queue_parameter_table.bit.vbr = 0;
1270 /* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
1271 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
1272 qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1273 tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
1274 if ( tmp == 0 )
1275 qsb_queue_vbr_parameter_table.bit.taus = 1;
1276 else if ( tmp > QSB_TAUS_MAX )
1277 qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
1278 else
1279 qsb_queue_vbr_parameter_table.bit.taus = tmp;
1280 }
1281 }
1282 else {
1283 qsb_queue_vbr_parameter_table.bit.taus = 0;
1284 qsb_queue_vbr_parameter_table.bit.ts = 0;
1285 }
1286
1287 /* Queue Parameter Table (QPT) */
1288 *QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
1289 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
1290 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1291 #if defined(DEBUG_QOS) && DEBUG_QOS
1292 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1293 printk("QPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1294 #endif
1295 /* Queue VBR Paramter Table (QVPT) */
1296 *QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
1297 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
1298 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1299 #if defined(DEBUG_QOS) && DEBUG_QOS
1300 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1301 printk("QVPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1302 #endif
1303
1304 #if defined(DEBUG_QOS) && DEBUG_QOS
1305 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
1306 printk("set_qsb\n");
1307 printk(" qsb_clk = %lu\n", (unsigned long)qsb_clk);
1308 printk(" qsb_queue_parameter_table.bit.tp = %d\n", (int)qsb_queue_parameter_table.bit.tp);
1309 printk(" qsb_queue_parameter_table.bit.wfqf = %d (0x%08X)\n", (int)qsb_queue_parameter_table.bit.wfqf, (int)qsb_queue_parameter_table.bit.wfqf);
1310 printk(" qsb_queue_parameter_table.bit.vbr = %d\n", (int)qsb_queue_parameter_table.bit.vbr);
1311 printk(" qsb_queue_parameter_table.dword = 0x%08X\n", (int)qsb_queue_parameter_table.dword);
1312 printk(" qsb_queue_vbr_parameter_table.bit.ts = %d\n", (int)qsb_queue_vbr_parameter_table.bit.ts);
1313 printk(" qsb_queue_vbr_parameter_table.bit.taus = %d\n", (int)qsb_queue_vbr_parameter_table.bit.taus);
1314 printk(" qsb_queue_vbr_parameter_table.dword = 0x%08X\n", (int)qsb_queue_vbr_parameter_table.dword);
1315 }
1316 #endif
1317 }
1318
1319 static void qsb_global_set(void)
1320 {
1321 struct clk *clk = clk_get(0, "fpi");
1322 unsigned int qsb_clk = clk_get_rate(clk);
1323 int i;
1324 unsigned int tmp1, tmp2, tmp3;
1325
1326 *QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
1327 *QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
1328 *QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
1329 #if defined(DEBUG_QOS) && DEBUG_QOS
1330 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ) {
1331 printk("qsb_clk = %u\n", qsb_clk);
1332 printk("QSB_ICDV (%08X) = %d (%d), QSB_SBL (%08X) = %d (%d), QSB_CFG (%08X) = %d (%d)\n", (unsigned int)QSB_ICDV, *QSB_ICDV, QSB_ICDV_TAU_SET(qsb_tau), (unsigned int)QSB_SBL, *QSB_SBL, QSB_SBL_SBL_SET(qsb_srvm), (unsigned int)QSB_CFG, *QSB_CFG, QSB_CFG_TSTEPC_SET(qsb_tstep >> 1));
1333 }
1334 #endif
1335
1336 /*
1337 * set SCT and SPT per port
1338 */
1339 for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
1340 if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
1341 tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
1342 tmp2 = tmp1 >> 6; /* integer value of Tsb */
1343 tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
1344 /* carry over to integer part (?) */
1345 if ( tmp3 == (1 << 6) )
1346 {
1347 tmp3 = 0;
1348 tmp2++;
1349 }
1350 if ( tmp2 == 0 )
1351 tmp2 = tmp3 = 1;
1352 /* 1. set mask */
1353 /* 2. write value to data transfer register */
1354 /* 3. start the tranfer */
1355 /* SCT (FracRate) */
1356 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
1357 *QSB_RTD = QSB_RTD_TTV_SET(tmp3);
1358 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
1359 #if defined(DEBUG_QOS) && DEBUG_QOS
1360 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1361 printk("SCT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1362 #endif
1363 /* SPT (SBV + PN + IntRage) */
1364 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
1365 *QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
1366 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(i & 0x01);
1367 #if defined(DEBUG_QOS) && DEBUG_QOS
1368 if ( (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) )
1369 printk("SPT: QSB_RTM (%08X) = 0x%08X, QSB_RTD (%08X) = 0x%08X, QSB_RAMAC (%08X) = 0x%08X\n", (unsigned int)QSB_RTM, *QSB_RTM, (unsigned int)QSB_RTD, *QSB_RTD, (unsigned int)QSB_RAMAC, *QSB_RAMAC);
1370 #endif
1371 }
1372 }
1373 }
1374
1375 static INLINE void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
1376 {
1377 struct htu_entry htu_entry = { res1: 0x00,
1378 clp: is_retx ? 0x01 : 0x00,
1379 pid: g_atm_priv_data.conn[queue].port & 0x01,
1380 vpi: vpi,
1381 vci: vci,
1382 pti: 0x00,
1383 vld: 0x01};
1384
1385 struct htu_mask htu_mask = { set: 0x01,
1386 #if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
1387 clp: 0x01,
1388 pid_mask: 0x02,
1389 #else
1390 clp: g_retx_htu ? 0x00 : 0x01,
1391 pid_mask: RETX_MODE_CFG->retx_en ? 0x03 : 0x02,
1392 #endif
1393 vpi_mask: 0x00,
1394 #if !defined(ENABLE_ATM_RETX) || !ENABLE_ATM_RETX
1395 vci_mask: 0x0000,
1396 #else
1397 vci_mask: RETX_MODE_CFG->retx_en ? 0xFF00 : 0x0000,
1398 #endif
1399 pti_mask: 0x03, // 0xx, user data
1400 clear: 0x00};
1401
1402 struct htu_result htu_result = {res1: 0x00,
1403 cellid: queue,
1404 res2: 0x00,
1405 type: aal5 ? 0x00 : 0x01,
1406 ven: 0x01,
1407 res3: 0x00,
1408 qid: queue};
1409
1410 *HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
1411 *HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1412 *HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1413 }
1414
1415 static INLINE void clear_htu_entry(unsigned int queue)
1416 {
1417 HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
1418 }
1419
1420 static void validate_oam_htu_entry(void)
1421 {
1422 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
1423 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
1424 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
1425 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
1426 HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 1;
1427 #endif
1428 }
1429
1430 static void invalidate_oam_htu_entry(void)
1431 {
1432 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
1433 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
1434 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
1435 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
1436 HTU_ENTRY(OAM_ARQ_HTU_ENTRY)->vld = 0;
1437 #endif
1438 }
1439
1440 static INLINE int find_vpi(unsigned int vpi)
1441 {
1442 int i;
1443 unsigned int bit;
1444
1445 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1446 if ( (g_atm_priv_data.conn_table & bit) != 0
1447 && g_atm_priv_data.conn[i].vcc != NULL
1448 && vpi == g_atm_priv_data.conn[i].vcc->vpi )
1449 return i;
1450 }
1451
1452 return -1;
1453 }
1454
1455 static INLINE int find_vpivci(unsigned int vpi, unsigned int vci)
1456 {
1457 int i;
1458 unsigned int bit;
1459
1460 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1461 if ( (g_atm_priv_data.conn_table & bit) != 0
1462 && g_atm_priv_data.conn[i].vcc != NULL
1463 && vpi == g_atm_priv_data.conn[i].vcc->vpi
1464 && vci == g_atm_priv_data.conn[i].vcc->vci )
1465 return i;
1466 }
1467
1468 return -1;
1469 }
1470
1471 static INLINE int find_vcc(struct atm_vcc *vcc)
1472 {
1473 int i;
1474 unsigned int bit;
1475
1476 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1477 if ( (g_atm_priv_data.conn_table & bit) != 0
1478 && g_atm_priv_data.conn[i].vcc == vcc )
1479 return i;
1480 }
1481
1482 return -1;
1483 }
1484
1485 #if defined(DEBUG_DUMP_SKB) && DEBUG_DUMP_SKB
1486 static void dump_skb(struct sk_buff *skb, u32 len, char *title, int port, int ch, int is_tx)
1487 {
1488 int i;
1489
1490 if ( !(ifx_atm_dbg_enable & (is_tx ? DBG_ENABLE_MASK_DUMP_SKB_TX : DBG_ENABLE_MASK_DUMP_SKB_RX)) )
1491 return;
1492
1493 if ( skb->len < len )
1494 len = skb->len;
1495
1496 if ( len > RX_DMA_CH_AAL_BUF_SIZE ) {
1497 printk("too big data length: skb = %08x, skb->data = %08x, skb->len = %d\n", (u32)skb, (u32)skb->data, skb->len);
1498 return;
1499 }
1500
1501 if ( ch >= 0 )
1502 printk("%s (port %d, ch %d)\n", title, port, ch);
1503 else
1504 printk("%s\n", title);
1505 printk(" skb->data = %08X, skb->tail = %08X, skb->len = %d\n", (u32)skb->data, (u32)skb->tail, (int)skb->len);
1506 for ( i = 1; i <= len; i++ ) {
1507 if ( i % 16 == 1 )
1508 printk(" %4d:", i - 1);
1509 printk(" %02X", (int)(*((char*)skb->data + i - 1) & 0xFF));
1510 if ( i % 16 == 0 )
1511 printk("\n");
1512 }
1513 if ( (i - 1) % 16 != 0 )
1514 printk("\n");
1515 }
1516 #endif
1517
1518 static INLINE void proc_file_create(void)
1519 {
1520 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1521 struct proc_dir_entry *res;
1522 #endif
1523
1524 g_atm_dir = proc_mkdir("driver/ifx_atm", NULL);
1525
1526 create_proc_read_entry("version",
1527 0,
1528 g_atm_dir,
1529 proc_read_version,
1530 NULL);
1531
1532 res = create_proc_entry("mib",
1533 0,
1534 g_atm_dir);
1535 if ( res != NULL ) {
1536 res->read_proc = proc_read_mib;
1537 res->write_proc = proc_write_mib;
1538 }
1539
1540 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1541 res = create_proc_entry("dbg",
1542 0,
1543 g_atm_dir);
1544 if ( res != NULL ) {
1545 res->read_proc = proc_read_dbg;
1546 res->write_proc = proc_write_dbg;
1547 }
1548 #endif
1549
1550 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
1551 create_proc_read_entry("htu",
1552 0,
1553 g_atm_dir,
1554 proc_read_htu,
1555 NULL);
1556
1557 create_proc_read_entry("txq",
1558 0,
1559 g_atm_dir,
1560 proc_read_txq,
1561 NULL);
1562 #endif
1563 }
1564
1565 static INLINE void proc_file_delete(void)
1566 {
1567 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
1568 remove_proc_entry("txq", g_atm_dir);
1569
1570 remove_proc_entry("htu", g_atm_dir);
1571 #endif
1572
1573 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1574 remove_proc_entry("dbg", g_atm_dir);
1575 #endif
1576
1577 remove_proc_entry("version", g_atm_dir);
1578
1579 remove_proc_entry("driver/ifx_atm", NULL);
1580 }
1581
1582 static int proc_read_version(char *buf, char **start, off_t offset, int count, int *eof, void *data)
1583 {
1584 int len = 0;
1585
1586 len += ifx_atm_version(buf + len);
1587
1588 if ( offset >= len ) {
1589 *start = buf;
1590 *eof = 1;
1591 return 0;
1592 }
1593 *start = buf + offset;
1594 if ( (len -= offset) > count )
1595 return count;
1596 *eof = 1;
1597 return len;
1598 }
1599
1600 static int proc_read_mib(char *page, char **start, off_t off, int count, int *eof, void *data)
1601 {
1602 int len = 0;
1603
1604 len += sprintf(page + off + len, "Firmware\n");
1605 len += sprintf(page + off + len, " wrx_drophtu_cell = %u\n", WAN_MIB_TABLE->wrx_drophtu_cell);
1606 len += sprintf(page + off + len, " wrx_dropdes_pdu = %u\n", WAN_MIB_TABLE->wrx_dropdes_pdu);
1607 len += sprintf(page + off + len, " wrx_correct_pdu = %u\n", WAN_MIB_TABLE->wrx_correct_pdu);
1608 len += sprintf(page + off + len, " wrx_err_pdu = %u\n", WAN_MIB_TABLE->wrx_err_pdu);
1609 len += sprintf(page + off + len, " wrx_dropdes_cell = %u\n", WAN_MIB_TABLE->wrx_dropdes_cell);
1610 len += sprintf(page + off + len, " wrx_correct_cell = %u\n", WAN_MIB_TABLE->wrx_correct_cell);
1611 len += sprintf(page + off + len, " wrx_err_cell = %u\n", WAN_MIB_TABLE->wrx_err_cell);
1612 len += sprintf(page + off + len, " wrx_total_byte = %u\n", WAN_MIB_TABLE->wrx_total_byte);
1613 len += sprintf(page + off + len, " wtx_total_pdu = %u\n", WAN_MIB_TABLE->wtx_total_pdu);
1614 len += sprintf(page + off + len, " wtx_total_cell = %u\n", WAN_MIB_TABLE->wtx_total_cell);
1615 len += sprintf(page + off + len, " wtx_total_byte = %u\n", WAN_MIB_TABLE->wtx_total_byte);
1616 len += sprintf(page + off + len, "Driver\n");
1617 len += sprintf(page + off + len, " wrx_pdu = %u\n", g_atm_priv_data.wrx_pdu);
1618 len += sprintf(page + off + len, " wrx_drop_pdu = %u\n", g_atm_priv_data.wrx_drop_pdu);
1619 len += sprintf(page + off + len, " wtx_pdu = %u\n", g_atm_priv_data.wtx_pdu);
1620 len += sprintf(page + off + len, " wtx_err_pdu = %u\n", g_atm_priv_data.wtx_err_pdu);
1621 len += sprintf(page + off + len, " wtx_drop_pdu = %u\n", g_atm_priv_data.wtx_drop_pdu);
1622
1623 *eof = 1;
1624
1625 return len;
1626 }
1627
1628 static int proc_write_mib(struct file *file, const char *buf, unsigned long count, void *data)
1629 {
1630 char str[2048];
1631 char *p;
1632 int len, rlen;
1633
1634 len = count < sizeof(str) ? count : sizeof(str) - 1;
1635 rlen = len - copy_from_user(str, buf, len);
1636 while ( rlen && str[rlen - 1] <= ' ' )
1637 rlen--;
1638 str[rlen] = 0;
1639 for ( p = str; *p && *p <= ' '; p++, rlen-- );
1640 if ( !*p )
1641 return 0;
1642
1643 if ( stricmp(p, "clear") == 0 || stricmp(p, "clear all") == 0
1644 || stricmp(p, "clean") == 0 || stricmp(p, "clean all") == 0 ) {
1645 memset(WAN_MIB_TABLE, 0, sizeof(*WAN_MIB_TABLE));
1646 g_atm_priv_data.wrx_pdu = 0;
1647 g_atm_priv_data.wrx_drop_pdu = 0;
1648 g_atm_priv_data.wtx_pdu = 0;
1649 g_atm_priv_data.wtx_err_pdu = 0;
1650 g_atm_priv_data.wtx_drop_pdu = 0;
1651 }
1652
1653 return count;
1654 }
1655
1656 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1657
1658 static int proc_read_dbg(char *page, char **start, off_t off, int count, int *eof, void *data)
1659 {
1660 int len = 0;
1661
1662 len += sprintf(page + off + len, "error print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ERR) ? "enabled" : "disabled");
1663 len += sprintf(page + off + len, "debug print - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DEBUG_PRINT) ? "enabled" : "disabled");
1664 len += sprintf(page + off + len, "assert - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_ASSERT) ? "enabled" : "disabled");
1665 len += sprintf(page + off + len, "dump rx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_RX) ? "enabled" : "disabled");
1666 len += sprintf(page + off + len, "dump tx skb - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_SKB_TX) ? "enabled" : "disabled");
1667 len += sprintf(page + off + len, "qos - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_QOS) ? "enabled" : "disabled");
1668 len += sprintf(page + off + len, "dump init - %s\n", (ifx_atm_dbg_enable & DBG_ENABLE_MASK_DUMP_INIT) ? "enabled" : "disabled");
1669
1670 *eof = 1;
1671
1672 return len;
1673 }
1674
1675 static int proc_write_dbg(struct file *file, const char *buf, unsigned long count, void *data)
1676 {
1677 static const char *dbg_enable_mask_str[] = {
1678 " error print",
1679 " err",
1680 " debug print",
1681 " dbg",
1682 " assert",
1683 " assert",
1684 " dump rx skb",
1685 " rx",
1686 " dump tx skb",
1687 " tx",
1688 " dump qos",
1689 " qos",
1690 " dump init",
1691 " init",
1692 " all"
1693 };
1694 static const int dbg_enable_mask_str_len[] = {
1695 12, 4,
1696 12, 4,
1697 7, 7,
1698 12, 3,
1699 12, 3,
1700 9, 4,
1701 10, 5,
1702 4
1703 };
1704 u32 dbg_enable_mask[] = {
1705 DBG_ENABLE_MASK_ERR,
1706 DBG_ENABLE_MASK_DEBUG_PRINT,
1707 DBG_ENABLE_MASK_ASSERT,
1708 DBG_ENABLE_MASK_DUMP_SKB_RX,
1709 DBG_ENABLE_MASK_DUMP_SKB_TX,
1710 DBG_ENABLE_MASK_DUMP_QOS,
1711 DBG_ENABLE_MASK_DUMP_INIT,
1712 DBG_ENABLE_MASK_ALL
1713 };
1714
1715 char str[2048];
1716 char *p;
1717
1718 int len, rlen;
1719
1720 int f_enable = 0;
1721 int i;
1722
1723 len = count < sizeof(str) ? count : sizeof(str) - 1;
1724 rlen = len - copy_from_user(str, buf, len);
1725 while ( rlen && str[rlen - 1] <= ' ' )
1726 rlen--;
1727 str[rlen] = 0;
1728 for ( p = str; *p && *p <= ' '; p++, rlen-- );
1729 if ( !*p )
1730 return 0;
1731
1732 if ( strincmp(p, "enable", 6) == 0 ) {
1733 p += 6;
1734 f_enable = 1;
1735 }
1736 else if ( strincmp(p, "disable", 7) == 0 ) {
1737 p += 7;
1738 f_enable = -1;
1739 }
1740 else if ( strincmp(p, "help", 4) == 0 || *p == '?' ) {
1741 printk("echo <enable/disable> [err/dbg/assert/rx/tx/init/all] > /proc/eth/dbg\n");
1742 }
1743
1744 if ( f_enable ) {
1745 if ( *p == 0 ) {
1746 if ( f_enable > 0 )
1747 ifx_atm_dbg_enable |= DBG_ENABLE_MASK_ALL;
1748 else
1749 ifx_atm_dbg_enable &= ~DBG_ENABLE_MASK_ALL;
1750 }
1751 else {
1752 do {
1753 for ( i = 0; i < NUM_ENTITY(dbg_enable_mask_str); i++ )
1754 if ( strincmp(p, dbg_enable_mask_str[i], dbg_enable_mask_str_len[i]) == 0 ) {
1755 if ( f_enable > 0 )
1756 ifx_atm_dbg_enable |= dbg_enable_mask[i >> 1];
1757 else
1758 ifx_atm_dbg_enable &= ~dbg_enable_mask[i >> 1];
1759 p += dbg_enable_mask_str_len[i];
1760 break;
1761 }
1762 } while ( i < NUM_ENTITY(dbg_enable_mask_str) );
1763 }
1764 }
1765
1766 return count;
1767 }
1768
1769 #endif
1770
1771 #if defined(ENABLE_FW_PROC) && ENABLE_FW_PROC
1772
1773 static INLINE int print_htu(char *buf, int i)
1774 {
1775 int len = 0;
1776
1777 if ( HTU_ENTRY(i)->vld ) {
1778 len += sprintf(buf + len, "%2d. valid\n", i);
1779 len += sprintf(buf + len, " entry 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(u32*)HTU_ENTRY(i), HTU_ENTRY(i)->pid, HTU_ENTRY(i)->vpi, HTU_ENTRY(i)->vci, HTU_ENTRY(i)->pti);
1780 len += sprintf(buf + len, " mask 0x%08x - pid %01x vpi %02x vci %04x pti %01x\n", *(u32*)HTU_MASK(i), HTU_MASK(i)->pid_mask, HTU_MASK(i)->vpi_mask, HTU_MASK(i)->vci_mask, HTU_MASK(i)->pti_mask);
1781 len += sprintf(buf + len, " result 0x%08x - type: %s, qid: %d", *(u32*)HTU_RESULT(i), HTU_RESULT(i)->type ? "cell" : "AAL5", HTU_RESULT(i)->qid);
1782 if ( HTU_RESULT(i)->type )
1783 len += sprintf(buf + len, ", cell id: %d, verification: %s", HTU_RESULT(i)->cellid, HTU_RESULT(i)->ven ? "on" : "off");
1784 len += sprintf(buf + len, "\n");
1785 }
1786 else
1787 len += sprintf(buf + len, "%2d. invalid\n", i);
1788
1789 return len;
1790 }
1791
1792 static int proc_read_htu(char *page, char **start, off_t off, int count, int *eof, void *data)
1793 {
1794 int len = 0;
1795 int len_max = off + count;
1796 char *pstr;
1797 char str[1024];
1798 int llen;
1799
1800 int htuts = *CFG_WRX_HTUTS;
1801 int i;
1802
1803 pstr = *start = page;
1804
1805 llen = sprintf(pstr, "HTU Table (Max %d):\n", htuts);
1806 pstr += llen;
1807 len += llen;
1808
1809 for ( i = 0; i < htuts; i++ ) {
1810 llen = print_htu(str, i);
1811 if ( len <= off && len + llen > off ) {
1812 memcpy(pstr, str + off - len, len + llen - off);
1813 pstr += len + llen - off;
1814 }
1815 else if ( len > off ) {
1816 memcpy(pstr, str, llen);
1817 pstr += llen;
1818 }
1819 len += llen;
1820 if ( len >= len_max )
1821 goto PROC_READ_HTU_OVERRUN_END;
1822 }
1823
1824 *eof = 1;
1825
1826 return len - off;
1827
1828 PROC_READ_HTU_OVERRUN_END:
1829
1830 return len - llen - off;
1831 }
1832
1833 static INLINE int print_tx_queue(char *buf, int i)
1834 {
1835 int len = 0;
1836
1837 if ( (*WTX_DMACH_ON & (1 << i)) ) {
1838 len += sprintf(buf + len, "%2d. valid\n", i);
1839 len += sprintf(buf + len, " queue 0x%08x - sbid %u, qsb %s\n", *(u32*)WTX_QUEUE_CONFIG(i), (unsigned int)WTX_QUEUE_CONFIG(i)->sbid, WTX_QUEUE_CONFIG(i)->qsben ? "enable" : "disable");
1840 len += sprintf(buf + len, " dma 0x%08x - base %08x, len %u, vlddes %u\n", *(u32*)WTX_DMA_CHANNEL_CONFIG(i), WTX_DMA_CHANNEL_CONFIG(i)->desba, WTX_DMA_CHANNEL_CONFIG(i)->deslen, WTX_DMA_CHANNEL_CONFIG(i)->vlddes);
1841 }
1842 else
1843 len += sprintf(buf + len, "%2d. invalid\n", i);
1844
1845 return len;
1846 }
1847
1848 static int proc_read_txq(char *page, char **start, off_t off, int count, int *eof, void *data)
1849 {
1850 int len = 0;
1851 int len_max = off + count;
1852 char *pstr;
1853 char str[1024];
1854 int llen;
1855
1856 int i;
1857
1858 pstr = *start = page;
1859
1860 llen = sprintf(pstr, "TX Queue Config (Max %d):\n", *CFG_WTX_DCHNUM);
1861 pstr += llen;
1862 len += llen;
1863
1864 for ( i = 0; i < 16; i++ ) {
1865 llen = print_tx_queue(str, i);
1866 if ( len <= off && len + llen > off ) {
1867 memcpy(pstr, str + off - len, len + llen - off);
1868 pstr += len + llen - off;
1869 }
1870 else if ( len > off ) {
1871 memcpy(pstr, str, llen);
1872 pstr += llen;
1873 }
1874 len += llen;
1875 if ( len >= len_max )
1876 goto PROC_READ_HTU_OVERRUN_END;
1877 }
1878
1879 *eof = 1;
1880
1881 return len - off;
1882
1883 PROC_READ_HTU_OVERRUN_END:
1884
1885 return len - llen - off;
1886 }
1887
1888 #endif
1889
1890 static int stricmp(const char *p1, const char *p2)
1891 {
1892 int c1, c2;
1893
1894 while ( *p1 && *p2 )
1895 {
1896 c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
1897 c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
1898 if ( (c1 -= c2) )
1899 return c1;
1900 p1++;
1901 p2++;
1902 }
1903
1904 return *p1 - *p2;
1905 }
1906
1907 #if defined(ENABLE_DBG_PROC) && ENABLE_DBG_PROC
1908 static int strincmp(const char *p1, const char *p2, int n)
1909 {
1910 int c1 = 0, c2;
1911
1912 while ( n && *p1 && *p2 )
1913 {
1914 c1 = *p1 >= 'A' && *p1 <= 'Z' ? *p1 + 'a' - 'A' : *p1;
1915 c2 = *p2 >= 'A' && *p2 <= 'Z' ? *p2 + 'a' - 'A' : *p2;
1916 if ( (c1 -= c2) )
1917 return c1;
1918 p1++;
1919 p2++;
1920 n--;
1921 }
1922
1923 return n ? *p1 - *p2 : c1;
1924 }
1925 #endif
1926
1927 static INLINE int ifx_atm_version(char *buf)
1928 {
1929 int len = 0;
1930 unsigned int major, minor;
1931
1932 ifx_atm_get_fw_ver(&major, &minor);
1933
1934 len += sprintf(buf + len, "Infineon Technologies ATM driver version %d.%d.%d\n", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
1935 len += sprintf(buf + len, "Infineon Technologies ATM (A1) firmware version %d.%d\n", major, minor);
1936
1937 return len;
1938 }
1939
1940 #ifdef MODULE
1941 static INLINE void reset_ppe(void)
1942 {
1943 // TODO:
1944 }
1945 #endif
1946
1947 static INLINE void check_parameters(void)
1948 {
1949 /* Please refer to Amazon spec 15.4 for setting these values. */
1950 if ( qsb_tau < 1 )
1951 qsb_tau = 1;
1952 if ( qsb_tstep < 1 )
1953 qsb_tstep = 1;
1954 else if ( qsb_tstep > 4 )
1955 qsb_tstep = 4;
1956 else if ( qsb_tstep == 3 )
1957 qsb_tstep = 2;
1958
1959 /* There is a delay between PPE write descriptor and descriptor is */
1960 /* really stored in memory. Host also has this delay when writing */
1961 /* descriptor. So PPE will use this value to determine if the write */
1962 /* operation makes effect. */
1963 if ( write_descriptor_delay < 0 )
1964 write_descriptor_delay = 0;
1965
1966 if ( aal5_fill_pattern < 0 )
1967 aal5_fill_pattern = 0;
1968 else
1969 aal5_fill_pattern &= 0xFF;
1970
1971 /* Because of the limitation of length field in descriptors, the packet */
1972 /* size could not be larger than 64K minus overhead size. */
1973 if ( aal5r_max_packet_size < 0 )
1974 aal5r_max_packet_size = 0;
1975 else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
1976 aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
1977 if ( aal5r_min_packet_size < 0 )
1978 aal5r_min_packet_size = 0;
1979 else if ( aal5r_min_packet_size > aal5r_max_packet_size )
1980 aal5r_min_packet_size = aal5r_max_packet_size;
1981 if ( aal5s_max_packet_size < 0 )
1982 aal5s_max_packet_size = 0;
1983 else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
1984 aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
1985 if ( aal5s_min_packet_size < 0 )
1986 aal5s_min_packet_size = 0;
1987 else if ( aal5s_min_packet_size > aal5s_max_packet_size )
1988 aal5s_min_packet_size = aal5s_max_packet_size;
1989
1990 if ( dma_rx_descriptor_length < 2 )
1991 dma_rx_descriptor_length = 2;
1992 if ( dma_tx_descriptor_length < 2 )
1993 dma_tx_descriptor_length = 2;
1994 if ( dma_rx_clp1_descriptor_threshold < 0 )
1995 dma_rx_clp1_descriptor_threshold = 0;
1996 else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
1997 dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
1998
1999 if ( dma_tx_descriptor_length < 2 )
2000 dma_tx_descriptor_length = 2;
2001 }
2002
2003 static INLINE int init_priv_data(void)
2004 {
2005 void *p;
2006 int i;
2007 struct rx_descriptor rx_desc = {0};
2008 struct sk_buff *skb;
2009 volatile struct tx_descriptor *p_tx_desc;
2010 struct sk_buff **ppskb;
2011
2012 // clear atm private data structure
2013 memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
2014
2015 // allocate memory for RX (AAL) descriptors
2016 p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
2017 if ( p == NULL )
2018 return IFX_ERROR;
2019 dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
2020 g_atm_priv_data.aal_desc_base = p;
2021 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
2022 g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
2023
2024 // allocate memory for RX (OAM) descriptors
2025 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
2026 if ( p == NULL )
2027 return IFX_ERROR;
2028 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
2029 g_atm_priv_data.oam_desc_base = p;
2030 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
2031 g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
2032
2033 // allocate memory for RX (OAM) buffer
2034 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
2035 if ( p == NULL )
2036 return IFX_ERROR;
2037 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
2038 g_atm_priv_data.oam_buf_base = p;
2039 p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
2040 g_atm_priv_data.oam_buf = p;
2041
2042 // allocate memory for TX descriptors
2043 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
2044 if ( p == NULL )
2045 return IFX_ERROR;
2046 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
2047 g_atm_priv_data.tx_desc_base = p;
2048
2049 // allocate memory for TX skb pointers
2050 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
2051 if ( p == NULL )
2052 return IFX_ERROR;
2053 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
2054 g_atm_priv_data.tx_skb_base = p;
2055
2056 // setup RX (AAL) descriptors
2057 rx_desc.own = 1;
2058 rx_desc.c = 0;
2059 rx_desc.sop = 1;
2060 rx_desc.eop = 1;
2061 rx_desc.byteoff = 0;
2062 rx_desc.id = 0;
2063 rx_desc.err = 0;
2064 rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
2065 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
2066 skb = alloc_skb_rx();
2067 if ( skb == NULL )
2068 return IFX_ERROR;
2069 rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
2070 g_atm_priv_data.aal_desc[i] = rx_desc;
2071 }
2072
2073 // setup RX (OAM) descriptors
2074 p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
2075 rx_desc.own = 1;
2076 rx_desc.c = 0;
2077 rx_desc.sop = 1;
2078 rx_desc.eop = 1;
2079 rx_desc.byteoff = 0;
2080 rx_desc.id = 0;
2081 rx_desc.err = 0;
2082 rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
2083 for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
2084 rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
2085 g_atm_priv_data.oam_desc[i] = rx_desc;
2086 p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
2087 }
2088
2089 // setup TX descriptors and skb pointers
2090 p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
2091 ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
2092 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
2093 g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
2094 g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
2095 }
2096
2097 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
2098 g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
2099
2100 return IFX_SUCCESS;
2101 }
2102
2103 static INLINE void clear_priv_data(void)
2104 {
2105 int i, j;
2106 struct sk_buff *skb;
2107
2108 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
2109 if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
2110 for ( j = 0; j < dma_tx_descriptor_length; j++ )
2111 if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
2112 dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
2113 }
2114 }
2115
2116 if ( g_atm_priv_data.tx_skb_base != NULL )
2117 kfree(g_atm_priv_data.tx_skb_base);
2118
2119 if ( g_atm_priv_data.tx_desc_base != NULL )
2120 kfree(g_atm_priv_data.tx_desc_base);
2121
2122 if ( g_atm_priv_data.oam_buf_base != NULL )
2123 kfree(g_atm_priv_data.oam_buf_base);
2124
2125 if ( g_atm_priv_data.oam_desc_base != NULL )
2126 kfree(g_atm_priv_data.oam_desc_base);
2127
2128 if ( g_atm_priv_data.aal_desc_base != NULL ) {
2129 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
2130 if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
2131 skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
2132 dev_kfree_skb_any(skb);
2133 }
2134 }
2135 kfree(g_atm_priv_data.aal_desc_base);
2136 }
2137 }
2138
2139 static INLINE void init_rx_tables(void)
2140 {
2141 int i;
2142 struct wrx_queue_config wrx_queue_config = {0};
2143 struct wrx_dma_channel_config wrx_dma_channel_config = {0};
2144 struct htu_entry htu_entry = {0};
2145 struct htu_result htu_result = {0};
2146 struct htu_mask htu_mask = { set: 0x01,
2147 clp: 0x01,
2148 pid_mask: 0x00,
2149 vpi_mask: 0x00,
2150 vci_mask: 0x00,
2151 pti_mask: 0x00,
2152 clear: 0x00};
2153
2154 /*
2155 * General Registers
2156 */
2157 *CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
2158 *CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
2159 *CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
2160 *WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
2161 *WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
2162
2163 /*
2164 * WRX Queue Configuration Table
2165 */
2166 wrx_queue_config.uumask = 0;
2167 wrx_queue_config.cpimask = 0;
2168 wrx_queue_config.uuexp = 0;
2169 wrx_queue_config.cpiexp = 0;
2170 wrx_queue_config.mfs = aal5r_max_packet_size;
2171 wrx_queue_config.oversize = aal5r_max_packet_size;
2172 wrx_queue_config.undersize = aal5r_min_packet_size;
2173 wrx_queue_config.errdp = aal5r_drop_error_packet;
2174 wrx_queue_config.dmach = RX_DMA_CH_AAL;
2175 for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
2176 *WRX_QUEUE_CONFIG(i) = wrx_queue_config;
2177 WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
2178
2179 /*
2180 * WRX DMA Channel Configuration Table
2181 */
2182 wrx_dma_channel_config.chrl = 0;
2183 wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
2184 wrx_dma_channel_config.mode = 0;
2185 wrx_dma_channel_config.rlcfg = 0;
2186
2187 wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
2188 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
2189 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
2190
2191 wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
2192 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
2193 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
2194
2195 /*
2196 * HTU Tables
2197 */
2198 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
2199 {
2200 htu_result.qid = (unsigned int)i;
2201
2202 *HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
2203 *HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
2204 *HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
2205 }
2206 /* OAM HTU Entry */
2207 htu_entry.vci = 0x03;
2208 htu_mask.pid_mask = 0x03;
2209 htu_mask.vpi_mask = 0xFF;
2210 htu_mask.vci_mask = 0x0000;
2211 htu_mask.pti_mask = 0x07;
2212 htu_result.cellid = OAM_RX_QUEUE;
2213 htu_result.type = 1;
2214 htu_result.ven = 1;
2215 htu_result.qid = OAM_RX_QUEUE;
2216 *HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
2217 *HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
2218 *HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
2219 htu_entry.vci = 0x04;
2220 htu_result.cellid = OAM_RX_QUEUE;
2221 htu_result.type = 1;
2222 htu_result.ven = 1;
2223 htu_result.qid = OAM_RX_QUEUE;
2224 *HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
2225 *HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
2226 *HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
2227 htu_entry.vci = 0x00;
2228 htu_entry.pti = 0x04;
2229 htu_mask.vci_mask = 0xFFFF;
2230 htu_mask.pti_mask = 0x01;
2231 htu_result.cellid = OAM_RX_QUEUE;
2232 htu_result.type = 1;
2233 htu_result.ven = 1;
2234 htu_result.qid = OAM_RX_QUEUE;
2235 *HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
2236 *HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
2237 *HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
2238 #if defined(ENABLE_ATM_RETX) && ENABLE_ATM_RETX
2239 htu_entry.pid = 0x0;
2240 htu_entry.vpi = 0x01;
2241 htu_entry.vci = 0x0001;
2242 htu_entry.pti = 0x00;
2243 htu_mask.pid_mask = 0x0;
2244 htu_mask.vpi_mask = 0x00;
2245 htu_mask.vci_mask = 0x0000;
2246 htu_mask.pti_mask = 0x3;
2247 htu_result.cellid = OAM_RX_QUEUE;
2248 htu_result.type = 1;
2249 htu_result.ven = 1;
2250 htu_result.qid = OAM_RX_QUEUE;
2251 *HTU_RESULT(OAM_ARQ_HTU_ENTRY) = htu_result;
2252 *HTU_MASK(OAM_ARQ_HTU_ENTRY) = htu_mask;
2253 *HTU_ENTRY(OAM_ARQ_HTU_ENTRY) = htu_entry;
2254 #endif
2255 }
2256
2257 static INLINE void init_tx_tables(void)
2258 {
2259 int i;
2260 struct wtx_queue_config wtx_queue_config = {0};
2261 struct wtx_dma_channel_config wtx_dma_channel_config = {0};
2262 struct wtx_port_config wtx_port_config = { res1: 0,
2263 qid: 0,
2264 qsben: 1};
2265
2266 /*
2267 * General Registers
2268 */
2269 *CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
2270 *WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
2271 *CFG_WRDES_DELAY = write_descriptor_delay;
2272
2273 /*
2274 * WTX Port Configuration Table
2275 */
2276 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
2277 *WTX_PORT_CONFIG(i) = wtx_port_config;
2278
2279 /*
2280 * WTX Queue Configuration Table
2281 */
2282 wtx_queue_config.type = 0x0;
2283 wtx_queue_config.qsben = 1;
2284 wtx_queue_config.sbid = 0;
2285 for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ )
2286 *WTX_QUEUE_CONFIG(i) = wtx_queue_config;
2287
2288 /*
2289 * WTX DMA Channel Configuration Table
2290 */
2291 wtx_dma_channel_config.mode = 0;
2292 wtx_dma_channel_config.deslen = 0;
2293 wtx_dma_channel_config.desba = 0;
2294 for ( i = 0; i < FIRST_QSB_QID; i++ )
2295 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
2296 /* normal connection */
2297 wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
2298 for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
2299 wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
2300 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
2301 }
2302 }
2303
2304
2305
2306 /*
2307 * ####################################
2308 * Global Function
2309 * ####################################
2310 */
2311
2312 static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
2313 {
2314 int i, j;
2315
2316 ASSERT(port_cell != NULL, "port_cell is NULL");
2317 ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
2318
2319 for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
2320 if ( port_cell->tx_link_rate[j] > 0 )
2321 break;
2322 for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
2323 g_atm_priv_data.port[i].tx_max_cell_rate = port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
2324
2325 qsb_global_set();
2326
2327 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
2328 if ( g_atm_priv_data.conn[i].vcc != NULL )
2329 set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
2330
2331 // TODO: ReTX set xdata_addr
2332 g_xdata_addr = xdata_addr;
2333
2334 g_showtime = 1;
2335
2336 #if defined(CONFIG_VR9)
2337 IFX_REG_W32(0x0F, UTP_CFG);
2338 #endif
2339
2340 pr_debug("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n", g_atm_priv_data.port[0].tx_max_cell_rate, g_atm_priv_data.port[1].tx_max_cell_rate, (unsigned int)g_xdata_addr);
2341
2342 return IFX_SUCCESS;
2343 }
2344
2345 static int atm_showtime_exit(void)
2346 {
2347 #if defined(CONFIG_VR9)
2348 IFX_REG_W32(0x00, UTP_CFG);
2349 #endif
2350
2351 g_showtime = 0;
2352
2353 // TODO: ReTX clean state
2354 g_xdata_addr = NULL;
2355
2356 pr_debug("leave showtime\n");
2357
2358 return IFX_SUCCESS;
2359 }
2360
2361
2362
2363 /*
2364 * ####################################
2365 * Init/Cleanup API
2366 * ####################################
2367 */
2368
2369 /*
2370 * Description:
2371 * Initialize global variables, PP32, comunication structures, register IRQ
2372 * and register device.
2373 * Input:
2374 * none
2375 * Output:
2376 * 0 --- successful
2377 * else --- failure, usually it is negative value of error code
2378 */
2379 static int __devinit ifx_atm_init(void)
2380 {
2381 int ret;
2382 int port_num;
2383 struct port_cell_info port_cell = {0};
2384 int i, j;
2385 char ver_str[256];
2386
2387 #ifdef MODULE
2388 reset_ppe();
2389 #endif
2390
2391 check_parameters();
2392
2393 ret = init_priv_data();
2394 if ( ret != IFX_SUCCESS ) {
2395 err("INIT_PRIV_DATA_FAIL");
2396 goto INIT_PRIV_DATA_FAIL;
2397 }
2398
2399 ifx_atm_init_chip();
2400 init_rx_tables();
2401 init_tx_tables();
2402
2403 /* create devices */
2404 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
2405 #if (LINUX_VERSION_CODE < KERNEL_VERSION(2,6,33))
2406 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", &g_ifx_atm_ops, -1, NULL);
2407 #else
2408 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
2409 #endif
2410 if ( !g_atm_priv_data.port[port_num].dev ) {
2411 err("failed to register atm device %d!", port_num);
2412 ret = -EIO;
2413 goto ATM_DEV_REGISTER_FAIL;
2414 }
2415 else {
2416 g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
2417 g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
2418 g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
2419 g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
2420 }
2421 }
2422
2423 /* register interrupt handler */
2424 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
2425 if ( ret ) {
2426 if ( ret == -EBUSY ) {
2427 err("IRQ may be occupied by other driver, please reconfig to disable it.");
2428 }
2429 else {
2430 err("request_irq fail");
2431 }
2432 goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
2433 }
2434 disable_irq(PPE_MAILBOX_IGU1_INT);
2435
2436 ret = ifx_pp32_start(0);
2437 if ( ret ) {
2438 err("ifx_pp32_start fail!");
2439 goto PP32_START_FAIL;
2440 }
2441
2442 port_cell.port_num = ATM_PORT_NUMBER;
2443 ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
2444 if ( g_showtime ) {
2445 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
2446 if ( port_cell.tx_link_rate[i] != 0 )
2447 break;
2448 for ( j = 0; j < ATM_PORT_NUMBER; j++ )
2449 g_atm_priv_data.port[j].tx_max_cell_rate = port_cell.tx_link_rate[j] != 0 ? port_cell.tx_link_rate[j] : port_cell.tx_link_rate[i];
2450 }
2451
2452 qsb_global_set();
2453 validate_oam_htu_entry();
2454
2455 /* create proc file */
2456 proc_file_create();
2457
2458 ifx_mei_atm_showtime_enter = atm_showtime_enter;
2459 ifx_mei_atm_showtime_exit = atm_showtime_exit;
2460
2461 ifx_atm_version(ver_str);
2462 printk(KERN_INFO "%s", ver_str);
2463
2464 printk("ifxmips_atm: ATM init succeed\n");
2465
2466 return IFX_SUCCESS;
2467
2468 PP32_START_FAIL:
2469 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
2470 REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
2471 ATM_DEV_REGISTER_FAIL:
2472 while ( port_num-- > 0 )
2473 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
2474 INIT_PRIV_DATA_FAIL:
2475 clear_priv_data();
2476 printk("ifxmips_atm: ATM init failed\n");
2477 return ret;
2478 }
2479
2480 /*
2481 * Description:
2482 * Release memory, free IRQ, and deregister device.
2483 * Input:
2484 * none
2485 * Output:
2486 * none
2487 */
2488 static void __exit ifx_atm_exit(void)
2489 {
2490 int port_num;
2491
2492 ifx_mei_atm_showtime_enter = NULL;
2493 ifx_mei_atm_showtime_exit = NULL;
2494
2495 proc_file_delete();
2496
2497 invalidate_oam_htu_entry();
2498
2499 ifx_pp32_stop(0);
2500
2501 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
2502
2503 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
2504 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
2505
2506 ifx_atm_uninit_chip();
2507
2508 clear_priv_data();
2509 }
2510
2511 module_init(ifx_atm_init);
2512 module_exit(ifx_atm_exit);
2513 MODULE_LICENSE("Dual BSD/GPL");