[lantiq] move ltq-adsl
[openwrt/svn-archive/archive.git] / package / platform / lantiq / ltq-atm / src / ltq_atm.c
1 /******************************************************************************
2 **
3 ** FILE NAME : ifxmips_atm_core.c
4 ** PROJECT : UEIP
5 ** MODULES : ATM
6 **
7 ** DATE : 7 Jul 2009
8 ** AUTHOR : Xu Liang
9 ** DESCRIPTION : ATM driver common source file (core functions)
10 ** COPYRIGHT : Copyright (c) 2006
11 ** Infineon Technologies AG
12 ** Am Campeon 1-12, 85579 Neubiberg, Germany
13 **
14 ** This program is free software; you can redistribute it and/or modify
15 ** it under the terms of the GNU General Public License as published by
16 ** the Free Software Foundation; either version 2 of the License, or
17 ** (at your option) any later version.
18 **
19 ** HISTORY
20 ** $Date $Author $Comment
21 ** 07 JUL 2009 Xu Liang Init Version
22 *******************************************************************************/
23
24 #define IFX_ATM_VER_MAJOR 1
25 #define IFX_ATM_VER_MID 0
26 #define IFX_ATM_VER_MINOR 26
27
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/version.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/proc_fs.h>
34 #include <linux/init.h>
35 #include <linux/ioctl.h>
36 #include <linux/atmdev.h>
37 #include <linux/platform_device.h>
38 #include <linux/of_device.h>
39 #include <linux/atm.h>
40 #include <linux/clk.h>
41 #include <linux/interrupt.h>
42 #ifdef CONFIG_XFRM
43 #include <net/xfrm.h>
44 #endif
45
46 #include <lantiq_soc.h>
47
48 #include "ifxmips_atm_core.h"
49
50 #define MODULE_PARM_ARRAY(a, b) module_param_array(a, int, NULL, 0)
51 #define MODULE_PARM(a, b) module_param(a, int, 0)
52
53 /*!
54 \brief QSB cell delay variation due to concurrency
55 */
56 static int qsb_tau = 1; /* QSB cell delay variation due to concurrency */
57 /*!
58 \brief QSB scheduler burst length
59 */
60 static int qsb_srvm = 0x0F; /* QSB scheduler burst length */
61 /*!
62 \brief QSB time step, all legal values are 1, 2, 4
63 */
64 static int qsb_tstep = 4 ; /* QSB time step, all legal values are 1, 2, 4 */
65
66 /*!
67 \brief Write descriptor delay
68 */
69 static int write_descriptor_delay = 0x20; /* Write descriptor delay */
70
71 /*!
72 \brief AAL5 padding byte ('~')
73 */
74 static int aal5_fill_pattern = 0x007E; /* AAL5 padding byte ('~') */
75 /*!
76 \brief Max frame size for RX
77 */
78 static int aal5r_max_packet_size = 0x0700; /* Max frame size for RX */
79 /*!
80 \brief Min frame size for RX
81 */
82 static int aal5r_min_packet_size = 0x0000; /* Min frame size for RX */
83 /*!
84 \brief Max frame size for TX
85 */
86 static int aal5s_max_packet_size = 0x0700; /* Max frame size for TX */
87 /*!
88 \brief Min frame size for TX
89 */
90 static int aal5s_min_packet_size = 0x0000; /* Min frame size for TX */
91 /*!
92 \brief Drop error packet in RX path
93 */
94 static int aal5r_drop_error_packet = 1; /* Drop error packet in RX path */
95
96 /*!
97 \brief Number of descriptors per DMA RX channel
98 */
99 static int dma_rx_descriptor_length = 128; /* Number of descriptors per DMA RX channel */
100 /*!
101 \brief Number of descriptors per DMA TX channel
102 */
103 static int dma_tx_descriptor_length = 64; /* Number of descriptors per DMA TX channel */
104 /*!
105 \brief PPE core clock cycles between descriptor write and effectiveness in external RAM
106 */
107 static int dma_rx_clp1_descriptor_threshold = 38;
108 /*@}*/
109
110 MODULE_PARM(qsb_tau, "i");
111 MODULE_PARM_DESC(qsb_tau, "Cell delay variation. Value must be > 0");
112 MODULE_PARM(qsb_srvm, "i");
113 MODULE_PARM_DESC(qsb_srvm, "Maximum burst size");
114 MODULE_PARM(qsb_tstep, "i");
115 MODULE_PARM_DESC(qsb_tstep, "n*32 cycles per sbs cycles n=1,2,4");
116
117 MODULE_PARM(write_descriptor_delay, "i");
118 MODULE_PARM_DESC(write_descriptor_delay, "PPE core clock cycles between descriptor write and effectiveness in external RAM");
119
120 MODULE_PARM(aal5_fill_pattern, "i");
121 MODULE_PARM_DESC(aal5_fill_pattern, "Filling pattern (PAD) for AAL5 frames");
122 MODULE_PARM(aal5r_max_packet_size, "i");
123 MODULE_PARM_DESC(aal5r_max_packet_size, "Max packet size in byte for downstream AAL5 frames");
124 MODULE_PARM(aal5r_min_packet_size, "i");
125 MODULE_PARM_DESC(aal5r_min_packet_size, "Min packet size in byte for downstream AAL5 frames");
126 MODULE_PARM(aal5s_max_packet_size, "i");
127 MODULE_PARM_DESC(aal5s_max_packet_size, "Max packet size in byte for upstream AAL5 frames");
128 MODULE_PARM(aal5s_min_packet_size, "i");
129 MODULE_PARM_DESC(aal5s_min_packet_size, "Min packet size in byte for upstream AAL5 frames");
130 MODULE_PARM(aal5r_drop_error_packet, "i");
131 MODULE_PARM_DESC(aal5r_drop_error_packet, "Non-zero value to drop error packet for downstream");
132
133 MODULE_PARM(dma_rx_descriptor_length, "i");
134 MODULE_PARM_DESC(dma_rx_descriptor_length, "Number of descriptor assigned to DMA RX channel (>16)");
135 MODULE_PARM(dma_tx_descriptor_length, "i");
136 MODULE_PARM_DESC(dma_tx_descriptor_length, "Number of descriptor assigned to DMA TX channel (>16)");
137 MODULE_PARM(dma_rx_clp1_descriptor_threshold, "i");
138 MODULE_PARM_DESC(dma_rx_clp1_descriptor_threshold, "Descriptor threshold for cells with cell loss priority 1");
139
140
141
142 /*
143 * ####################################
144 * Definition
145 * ####################################
146 */
147
148 #ifdef CONFIG_AMAZON_SE
149 #define ENABLE_LESS_CACHE_INV 1
150 #define LESS_CACHE_INV_LEN 96
151 #endif
152
153 #define DUMP_SKB_LEN ~0
154
155
156
157 /*
158 * ####################################
159 * Declaration
160 * ####################################
161 */
162
163 /*
164 * Network Operations
165 */
166 static int ppe_ioctl(struct atm_dev *, unsigned int, void *);
167 static int ppe_open(struct atm_vcc *);
168 static void ppe_close(struct atm_vcc *);
169 static int ppe_send(struct atm_vcc *, struct sk_buff *);
170 static int ppe_send_oam(struct atm_vcc *, void *, int);
171 static int ppe_change_qos(struct atm_vcc *, struct atm_qos *, int);
172
173 /*
174 * ADSL LED
175 */
176 static inline void adsl_led_flash(void);
177
178 /*
179 * 64-bit operation used by MIB calculation
180 */
181 static inline void u64_add_u32(ppe_u64_t, unsigned int, ppe_u64_t *);
182
183 /*
184 * buffer manage functions
185 */
186 static inline struct sk_buff* alloc_skb_rx(void);
187 static inline struct sk_buff* alloc_skb_tx(unsigned int);
188 struct sk_buff* atm_alloc_tx(struct atm_vcc *, unsigned int);
189 static inline void atm_free_tx_skb_vcc(struct sk_buff *, struct atm_vcc *);
190 static inline struct sk_buff *get_skb_rx_pointer(unsigned int);
191 static inline int get_tx_desc(unsigned int);
192 static struct sk_buff* skb_duplicate(struct sk_buff *);
193 static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *);
194
195 /*
196 * mailbox handler and signal function
197 */
198 static inline void mailbox_oam_rx_handler(void);
199 static inline void mailbox_aal_rx_handler(void);
200 static irqreturn_t mailbox_irq_handler(int, void *);
201 static inline void mailbox_signal(unsigned int, int);
202
203 /*
204 * QSB & HTU setting functions
205 */
206 static void set_qsb(struct atm_vcc *, struct atm_qos *, unsigned int);
207 static void qsb_global_set(void);
208 static inline void set_htu_entry(unsigned int, unsigned int, unsigned int, int, int);
209 static inline void clear_htu_entry(unsigned int);
210 static void validate_oam_htu_entry(void);
211 static void invalidate_oam_htu_entry(void);
212
213 /*
214 * look up for connection ID
215 */
216 static inline int find_vpi(unsigned int);
217 static inline int find_vpivci(unsigned int, unsigned int);
218 static inline int find_vcc(struct atm_vcc *);
219
220 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *);
221
222 /*
223 * Init & clean-up functions
224 */
225 static inline void check_parameters(void);
226 static inline int init_priv_data(void);
227 static inline void clear_priv_data(void);
228 static inline void init_rx_tables(void);
229 static inline void init_tx_tables(void);
230
231 /*
232 * Exteranl Function
233 */
234 #if defined(CONFIG_IFX_OAM) || defined(CONFIG_IFX_OAM_MODULE)
235 extern void ifx_push_oam(unsigned char *);
236 #else
237 static inline void ifx_push_oam(unsigned char *dummy) {}
238 #endif
239
240 #if defined(CONFIG_IFXMIPS_DSL_CPE_MEI) || defined(CONFIG_IFXMIPS_DSL_CPE_MEI_MODULE)
241 extern int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr);
242 extern int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *);
243
244 extern int (*ifx_mei_atm_showtime_exit)(void);
245 extern int ifx_mei_atm_led_blink(void);
246 #else
247 static inline int ifx_mei_atm_led_blink(void) { return 0; }
248 static inline int ifx_mei_atm_showtime_check(int *is_showtime, struct port_cell_info *port_cell, void **xdata_addr)
249 {
250 if ( is_showtime != NULL )
251 *is_showtime = 0;
252 return 0;
253 }
254 int (*ifx_mei_atm_showtime_enter)(struct port_cell_info *, void *) = NULL;
255 EXPORT_SYMBOL(ifx_mei_atm_showtime_enter);
256
257 int (*ifx_mei_atm_showtime_exit)(void) = NULL;
258 EXPORT_SYMBOL(ifx_mei_atm_showtime_exit);
259
260 #endif
261
262 static struct sk_buff* (*ifx_atm_alloc_tx)(struct atm_vcc *, unsigned int) = NULL;
263
264 static struct atm_priv_data g_atm_priv_data;
265
266 static struct atmdev_ops g_ifx_atm_ops = {
267 .open = ppe_open,
268 .close = ppe_close,
269 .ioctl = ppe_ioctl,
270 .send = ppe_send,
271 .send_oam = ppe_send_oam,
272 .change_qos = ppe_change_qos,
273 .owner = THIS_MODULE,
274 };
275
276 static int g_showtime = 0;
277 static void *g_xdata_addr = NULL;
278
279 static int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
280 {
281 int ret = 0;
282 atm_cell_ifEntry_t mib_cell;
283 atm_aal5_ifEntry_t mib_aal5;
284 atm_aal5_vcc_x_t mib_vcc;
285 unsigned int value;
286 int conn;
287
288 if ( _IOC_TYPE(cmd) != PPE_ATM_IOC_MAGIC
289 || _IOC_NR(cmd) >= PPE_ATM_IOC_MAXNR )
290 return -ENOTTY;
291
292 if ( _IOC_DIR(cmd) & _IOC_READ )
293 ret = !access_ok(VERIFY_WRITE, arg, _IOC_SIZE(cmd));
294 else if ( _IOC_DIR(cmd) & _IOC_WRITE )
295 ret = !access_ok(VERIFY_READ, arg, _IOC_SIZE(cmd));
296 if ( ret )
297 return -EFAULT;
298
299 switch (cmd) {
300 case PPE_ATM_MIB_CELL: /* cell level MIB */
301 /* These MIB should be read at ARC side, now put zero only. */
302 mib_cell.ifHCInOctets_h = 0;
303 mib_cell.ifHCInOctets_l = 0;
304 mib_cell.ifHCOutOctets_h = 0;
305 mib_cell.ifHCOutOctets_l = 0;
306 mib_cell.ifInErrors = 0;
307 mib_cell.ifInUnknownProtos = WAN_MIB_TABLE->wrx_drophtu_cell;
308 mib_cell.ifOutErrors = 0;
309
310 ret = sizeof(mib_cell) - copy_to_user(arg, &mib_cell, sizeof(mib_cell));
311 break;
312
313 case PPE_ATM_MIB_AAL5: /* AAL5 MIB */
314 value = WAN_MIB_TABLE->wrx_total_byte;
315 u64_add_u32(g_atm_priv_data.wrx_total_byte, value - g_atm_priv_data.prev_wrx_total_byte, &g_atm_priv_data.wrx_total_byte);
316 g_atm_priv_data.prev_wrx_total_byte = value;
317 mib_aal5.ifHCInOctets_h = g_atm_priv_data.wrx_total_byte.h;
318 mib_aal5.ifHCInOctets_l = g_atm_priv_data.wrx_total_byte.l;
319
320 value = WAN_MIB_TABLE->wtx_total_byte;
321 u64_add_u32(g_atm_priv_data.wtx_total_byte, value - g_atm_priv_data.prev_wtx_total_byte, &g_atm_priv_data.wtx_total_byte);
322 g_atm_priv_data.prev_wtx_total_byte = value;
323 mib_aal5.ifHCOutOctets_h = g_atm_priv_data.wtx_total_byte.h;
324 mib_aal5.ifHCOutOctets_l = g_atm_priv_data.wtx_total_byte.l;
325
326 mib_aal5.ifInUcastPkts = g_atm_priv_data.wrx_pdu;
327 mib_aal5.ifOutUcastPkts = WAN_MIB_TABLE->wtx_total_pdu;
328 mib_aal5.ifInErrors = WAN_MIB_TABLE->wrx_err_pdu;
329 mib_aal5.ifInDiscards = WAN_MIB_TABLE->wrx_dropdes_pdu + g_atm_priv_data.wrx_drop_pdu;
330 mib_aal5.ifOutErros = g_atm_priv_data.wtx_err_pdu;
331 mib_aal5.ifOutDiscards = g_atm_priv_data.wtx_drop_pdu;
332
333 ret = sizeof(mib_aal5) - copy_to_user(arg, &mib_aal5, sizeof(mib_aal5));
334 break;
335
336 case PPE_ATM_MIB_VCC: /* VCC related MIB */
337 copy_from_user(&mib_vcc, arg, sizeof(mib_vcc));
338 conn = find_vpivci(mib_vcc.vpi, mib_vcc.vci);
339 if (conn >= 0) {
340 mib_vcc.mib_vcc.aal5VccCrcErrors = g_atm_priv_data.conn[conn].aal5_vcc_crc_err;
341 mib_vcc.mib_vcc.aal5VccOverSizedSDUs = g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu;
342 mib_vcc.mib_vcc.aal5VccSarTimeOuts = 0; /* no timer support */
343 ret = sizeof(mib_vcc) - copy_to_user(arg, &mib_vcc, sizeof(mib_vcc));
344 } else
345 ret = -EINVAL;
346 break;
347
348 default:
349 ret = -ENOIOCTLCMD;
350 }
351
352 return ret;
353 }
354
355 static int ppe_open(struct atm_vcc *vcc)
356 {
357 int ret;
358 short vpi = vcc->vpi;
359 int vci = vcc->vci;
360 struct port *port = &g_atm_priv_data.port[(int)vcc->dev->dev_data];
361 int conn;
362 int f_enable_irq = 0;
363
364 if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
365 return -EPROTONOSUPPORT;
366
367 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
368 /* check bandwidth */
369 if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
370 || (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
371 || (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.scr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
372 || (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
373 {
374 ret = -EINVAL;
375 goto PPE_OPEN_EXIT;
376 }
377 #endif
378
379 /* check existing vpi,vci */
380 conn = find_vpivci(vpi, vci);
381 if ( conn >= 0 ) {
382 ret = -EADDRINUSE;
383 goto PPE_OPEN_EXIT;
384 }
385
386 /* check whether it need to enable irq */
387 if ( g_atm_priv_data.conn_table == 0 )
388 f_enable_irq = 1;
389
390 /* allocate connection */
391 for ( conn = 0; conn < MAX_PVC_NUMBER; conn++ ) {
392 if ( test_and_set_bit(conn, &g_atm_priv_data.conn_table) == 0 ) {
393 g_atm_priv_data.conn[conn].vcc = vcc;
394 break;
395 }
396 }
397 if ( conn == MAX_PVC_NUMBER ) {
398 ret = -EINVAL;
399 goto PPE_OPEN_EXIT;
400 }
401
402 /* reserve bandwidth */
403 switch ( vcc->qos.txtp.traffic_class ) {
404 case ATM_CBR:
405 case ATM_VBR_RT:
406 port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
407 break;
408 case ATM_VBR_NRT:
409 port->tx_current_cell_rate += vcc->qos.txtp.scr;
410 break;
411 case ATM_UBR_PLUS:
412 port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
413 break;
414 }
415
416 /* set qsb */
417 set_qsb(vcc, &vcc->qos, conn);
418
419 /* update atm_vcc structure */
420 vcc->itf = (int)vcc->dev->dev_data;
421 vcc->vpi = vpi;
422 vcc->vci = vci;
423 set_bit(ATM_VF_READY, &vcc->flags);
424
425 /* enable irq */
426 if ( f_enable_irq ) {
427 ifx_atm_alloc_tx = atm_alloc_tx;
428
429 *MBOX_IGU1_ISRC = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
430 *MBOX_IGU1_IER = (1 << RX_DMA_CH_AAL) | (1 << RX_DMA_CH_OAM);
431
432 enable_irq(PPE_MAILBOX_IGU1_INT);
433 }
434
435 /* set port */
436 WTX_QUEUE_CONFIG(conn + FIRST_QSB_QID)->sbid = (int)vcc->dev->dev_data;
437
438 /* set htu entry */
439 set_htu_entry(vpi, vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0, 0);
440
441 ret = 0;
442
443 PPE_OPEN_EXIT:
444 return ret;
445 }
446
447 static void ppe_close(struct atm_vcc *vcc)
448 {
449 int conn;
450 struct port *port;
451 struct connection *connection;
452 if ( vcc == NULL )
453 return;
454
455 /* get connection id */
456 conn = find_vcc(vcc);
457 if ( conn < 0 ) {
458 pr_err("can't find vcc\n");
459 goto PPE_CLOSE_EXIT;
460 }
461 connection = &g_atm_priv_data.conn[conn];
462 port = &g_atm_priv_data.port[connection->port];
463
464 /* clear htu */
465 clear_htu_entry(conn);
466
467 /* release connection */
468 connection->vcc = NULL;
469 connection->aal5_vcc_crc_err = 0;
470 connection->aal5_vcc_oversize_sdu = 0;
471 clear_bit(conn, &g_atm_priv_data.conn_table);
472
473 /* disable irq */
474 if ( g_atm_priv_data.conn_table == 0 ) {
475 disable_irq(PPE_MAILBOX_IGU1_INT);
476 ifx_atm_alloc_tx = NULL;
477 }
478
479 /* release bandwidth */
480 switch ( vcc->qos.txtp.traffic_class )
481 {
482 case ATM_CBR:
483 case ATM_VBR_RT:
484 port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
485 break;
486 case ATM_VBR_NRT:
487 port->tx_current_cell_rate -= vcc->qos.txtp.scr;
488 break;
489 case ATM_UBR_PLUS:
490 port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
491 break;
492 }
493
494 PPE_CLOSE_EXIT:
495 return;
496 }
497
498 static int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
499 {
500 int ret;
501 int conn;
502 int desc_base;
503 struct tx_descriptor reg_desc = {0};
504 struct sk_buff *new_skb;
505
506 if ( vcc == NULL || skb == NULL )
507 return -EINVAL;
508
509 skb_get(skb);
510 atm_free_tx_skb_vcc(skb, vcc);
511
512 conn = find_vcc(vcc);
513 if ( conn < 0 ) {
514 ret = -EINVAL;
515 goto FIND_VCC_FAIL;
516 }
517
518 if ( !g_showtime ) {
519 pr_debug("not in showtime\n");
520 ret = -EIO;
521 goto PPE_SEND_FAIL;
522 }
523
524 if ( vcc->qos.aal == ATM_AAL5 ) {
525 int byteoff;
526 int datalen;
527 struct tx_inband_header *header;
528
529 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
530 if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH )
531 new_skb = skb_duplicate(skb);
532 else
533 new_skb = skb_break_away_from_protocol(skb);
534 if ( new_skb == NULL ) {
535 pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
536 ret = -ENOMEM;
537 goto PPE_SEND_FAIL;
538 }
539 dev_kfree_skb_any(skb);
540 skb = new_skb;
541
542 datalen = skb->len;
543 byteoff = (unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1);
544
545 skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
546
547 header = (struct tx_inband_header *)skb->data;
548
549 /* setup inband trailer */
550 header->uu = 0;
551 header->cpi = 0;
552 header->pad = aal5_fill_pattern;
553 header->res1 = 0;
554
555 /* setup cell header */
556 header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
557 header->pti = ATM_PTI_US0;
558 header->vci = vcc->vci;
559 header->vpi = vcc->vpi;
560 header->gfc = 0;
561
562 /* setup descriptor */
563 reg_desc.dataptr = (unsigned int)skb->data >> 2;
564 reg_desc.datalen = datalen;
565 reg_desc.byteoff = byteoff;
566 reg_desc.iscell = 0;
567 } else {
568 /* if data pointer is not aligned, allocate new sk_buff */
569 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 ) {
570 pr_err("skb->data not aligned\n");
571 new_skb = skb_duplicate(skb);
572 } else
573 new_skb = skb_break_away_from_protocol(skb);
574 if ( new_skb == NULL ) {
575 pr_err("either skb_duplicate or skb_break_away_from_protocol fail\n");
576 ret = -ENOMEM;
577 goto PPE_SEND_FAIL;
578 }
579 dev_kfree_skb_any(skb);
580 skb = new_skb;
581
582 reg_desc.dataptr = (unsigned int)skb->data >> 2;
583 reg_desc.datalen = skb->len;
584 reg_desc.byteoff = 0;
585 reg_desc.iscell = 1;
586 }
587
588 reg_desc.own = 1;
589 reg_desc.c = 1;
590 reg_desc.sop = reg_desc.eop = 1;
591
592 desc_base = get_tx_desc(conn);
593 if ( desc_base < 0 ) {
594 pr_debug("ALLOC_TX_CONNECTION_FAIL\n");
595 ret = -EIO;
596 goto PPE_SEND_FAIL;
597 }
598
599 if ( vcc->stats )
600 atomic_inc(&vcc->stats->tx);
601 if ( vcc->qos.aal == ATM_AAL5 )
602 g_atm_priv_data.wtx_pdu++;
603
604 /* update descriptor send pointer */
605 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
606 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
607 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
608
609 /* write discriptor to memory and write back cache */
610 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
611 dma_cache_wback((unsigned long)skb->data, skb->len);
612
613 mailbox_signal(conn, 1);
614
615 adsl_led_flash();
616
617 return 0;
618
619 FIND_VCC_FAIL:
620 pr_err("FIND_VCC_FAIL\n");
621 g_atm_priv_data.wtx_err_pdu++;
622 dev_kfree_skb_any(skb);
623 return ret;
624
625 PPE_SEND_FAIL:
626 if ( vcc->qos.aal == ATM_AAL5 )
627 g_atm_priv_data.wtx_drop_pdu++;
628 if ( vcc->stats )
629 atomic_inc(&vcc->stats->tx_err);
630 dev_kfree_skb_any(skb);
631 return ret;
632 }
633
634 /* operation and maintainance */
635 static int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
636 {
637 int conn;
638 struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
639 int desc_base;
640 struct sk_buff *skb;
641 struct tx_descriptor reg_desc = {0};
642
643 if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
644 && find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
645 || ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
646 && find_vpi(uni_cell_header->vpi) < 0) )
647 {
648 g_atm_priv_data.wtx_err_oam++;
649 return -EINVAL;
650 }
651
652 if ( !g_showtime ) {
653 pr_err("not in showtime\n");
654 g_atm_priv_data.wtx_drop_oam++;
655 return -EIO;
656 }
657
658 conn = find_vcc(vcc);
659 if ( conn < 0 ) {
660 pr_err("FIND_VCC_FAIL\n");
661 g_atm_priv_data.wtx_drop_oam++;
662 return -EINVAL;
663 }
664
665 skb = alloc_skb_tx(CELL_SIZE);
666 if ( skb == NULL ) {
667 pr_err("ALLOC_SKB_TX_FAIL\n");
668 g_atm_priv_data.wtx_drop_oam++;
669 return -ENOMEM;
670 }
671 skb_put(skb, CELL_SIZE);
672 memcpy(skb->data, cell, CELL_SIZE);
673
674 reg_desc.dataptr = (unsigned int)skb->data >> 2;
675 reg_desc.datalen = CELL_SIZE;
676 reg_desc.byteoff = 0;
677 reg_desc.iscell = 1;
678
679 reg_desc.own = 1;
680 reg_desc.c = 1;
681 reg_desc.sop = reg_desc.eop = 1;
682
683 desc_base = get_tx_desc(conn);
684 if ( desc_base < 0 ) {
685 dev_kfree_skb_any(skb);
686 pr_err("ALLOC_TX_CONNECTION_FAIL\n");
687 g_atm_priv_data.wtx_drop_oam++;
688 return -EIO;
689 }
690
691 if ( vcc->stats )
692 atomic_inc(&vcc->stats->tx);
693
694 /* update descriptor send pointer */
695 if ( g_atm_priv_data.conn[conn].tx_skb[desc_base] != NULL )
696 dev_kfree_skb_any(g_atm_priv_data.conn[conn].tx_skb[desc_base]);
697 g_atm_priv_data.conn[conn].tx_skb[desc_base] = skb;
698
699 /* write discriptor to memory and write back cache */
700 g_atm_priv_data.conn[conn].tx_desc[desc_base] = reg_desc;
701 dma_cache_wback((unsigned long)skb->data, CELL_SIZE);
702
703 mailbox_signal(conn, 1);
704
705 g_atm_priv_data.wtx_oam++;
706 adsl_led_flash();
707
708 return 0;
709 }
710
711 static int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
712 {
713 int conn;
714
715 if ( vcc == NULL || qos == NULL )
716 return -EINVAL;
717
718 conn = find_vcc(vcc);
719 if ( conn < 0 )
720 return -EINVAL;
721
722 set_qsb(vcc, qos, conn);
723
724 return 0;
725 }
726
727 static inline void adsl_led_flash(void)
728 {
729 ifx_mei_atm_led_blink();
730 }
731
732 /*
733 * Description:
734 * Add a 32-bit value to 64-bit value, and put result in a 64-bit variable.
735 * Input:
736 * opt1 --- ppe_u64_t, first operand, a 64-bit unsigned integer value
737 * opt2 --- unsigned int, second operand, a 32-bit unsigned integer value
738 * ret --- ppe_u64_t, pointer to a variable to hold result
739 * Output:
740 * none
741 */
742 static inline void u64_add_u32(ppe_u64_t opt1, unsigned int opt2, ppe_u64_t *ret)
743 {
744 ret->l = opt1.l + opt2;
745 if ( ret->l < opt1.l || ret->l < opt2 )
746 ret->h++;
747 }
748
749 static inline struct sk_buff* alloc_skb_rx(void)
750 {
751 struct sk_buff *skb;
752
753 skb = dev_alloc_skb(RX_DMA_CH_AAL_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
754 if ( skb != NULL ) {
755 /* must be burst length alignment */
756 if ( ((unsigned int)skb->data & (DATA_BUFFER_ALIGNMENT - 1)) != 0 )
757 skb_reserve(skb, ~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1));
758 /* pub skb in reserved area "skb->data - 4" */
759 *((struct sk_buff **)skb->data - 1) = skb;
760 /* write back and invalidate cache */
761 dma_cache_wback_inv((unsigned long)skb->data - sizeof(skb), sizeof(skb));
762 /* invalidate cache */
763 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
764 dma_cache_inv((unsigned long)skb->data, LESS_CACHE_INV_LEN);
765 #else
766 dma_cache_inv((unsigned long)skb->data, RX_DMA_CH_AAL_BUF_SIZE);
767 #endif
768 }
769 return skb;
770 }
771
772 static inline struct sk_buff* alloc_skb_tx(unsigned int size)
773 {
774 struct sk_buff *skb;
775
776 /* allocate memory including header and padding */
777 size += TX_INBAND_HEADER_LENGTH + MAX_TX_PACKET_ALIGN_BYTES + MAX_TX_PACKET_PADDING_BYTES;
778 size &= ~(DATA_BUFFER_ALIGNMENT - 1);
779 skb = dev_alloc_skb(size + DATA_BUFFER_ALIGNMENT);
780 /* must be burst length alignment */
781 if ( skb != NULL )
782 skb_reserve(skb, (~((unsigned int)skb->data + (DATA_BUFFER_ALIGNMENT - 1)) & (DATA_BUFFER_ALIGNMENT - 1)) + TX_INBAND_HEADER_LENGTH);
783 return skb;
784 }
785
786 struct sk_buff* atm_alloc_tx(struct atm_vcc *vcc, unsigned int size)
787 {
788 int conn;
789 struct sk_buff *skb;
790
791 /* oversize packet */
792 if ( size > aal5s_max_packet_size ) {
793 pr_err("atm_alloc_tx: oversize packet\n");
794 return NULL;
795 }
796 /* send buffer overflow */
797 if ( atomic_read(&sk_atm(vcc)->sk_wmem_alloc) && !atm_may_send(vcc, size) ) {
798 pr_err("atm_alloc_tx: send buffer overflow\n");
799 return NULL;
800 }
801 conn = find_vcc(vcc);
802 if ( conn < 0 ) {
803 pr_err("atm_alloc_tx: unknown VCC\n");
804 return NULL;
805 }
806
807 skb = dev_alloc_skb(size);
808 if ( skb == NULL ) {
809 pr_err("atm_alloc_tx: sk buffer is used up\n");
810 return NULL;
811 }
812
813 atomic_add(skb->truesize, &sk_atm(vcc)->sk_wmem_alloc);
814
815 return skb;
816 }
817
818 static inline void atm_free_tx_skb_vcc(struct sk_buff *skb, struct atm_vcc *vcc)
819 {
820 if ( vcc->pop != NULL )
821 vcc->pop(vcc, skb);
822 else
823 dev_kfree_skb_any(skb);
824 }
825
826 static inline struct sk_buff *get_skb_rx_pointer(unsigned int dataptr)
827 {
828 unsigned int skb_dataptr;
829 struct sk_buff *skb;
830
831 skb_dataptr = ((dataptr - 1) << 2) | KSEG1;
832 skb = *(struct sk_buff **)skb_dataptr;
833
834 ASSERT((unsigned int)skb >= KSEG0, "invalid skb - skb = %#08x, dataptr = %#08x", (unsigned int)skb, dataptr);
835 ASSERT(((unsigned int)skb->data | KSEG1) == ((dataptr << 2) | KSEG1), "invalid skb - skb = %#08x, skb->data = %#08x, dataptr = %#08x", (unsigned int)skb, (unsigned int)skb->data, dataptr);
836
837 return skb;
838 }
839
840 static inline int get_tx_desc(unsigned int conn)
841 {
842 int desc_base = -1;
843 struct connection *p_conn = &g_atm_priv_data.conn[conn];
844
845 if ( p_conn->tx_desc[p_conn->tx_desc_pos].own == 0 ) {
846 desc_base = p_conn->tx_desc_pos;
847 if ( ++(p_conn->tx_desc_pos) == dma_tx_descriptor_length )
848 p_conn->tx_desc_pos = 0;
849 }
850
851 return desc_base;
852 }
853
854 static struct sk_buff* skb_duplicate(struct sk_buff *skb)
855 {
856 struct sk_buff *new_skb;
857
858 new_skb = alloc_skb_tx(skb->len);
859 if ( new_skb == NULL )
860 return NULL;
861
862 skb_put(new_skb, skb->len);
863 memcpy(new_skb->data, skb->data, skb->len);
864
865 return new_skb;
866 }
867
868 static struct sk_buff* skb_break_away_from_protocol(struct sk_buff *skb)
869 {
870 struct sk_buff *new_skb;
871
872 if ( skb_shared(skb) ) {
873 new_skb = skb_clone(skb, GFP_ATOMIC);
874 if ( new_skb == NULL )
875 return NULL;
876 } else
877 new_skb = skb_get(skb);
878
879 skb_dst_drop(new_skb);
880 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
881 nf_conntrack_put(new_skb->nfct);
882 new_skb->nfct = NULL;
883 nf_conntrack_put_reasm(new_skb->nfct_reasm);
884 new_skb->nfct_reasm = NULL;
885 #ifdef CONFIG_BRIDGE_NETFILTER
886 nf_bridge_put(new_skb->nf_bridge);
887 new_skb->nf_bridge = NULL;
888 #endif
889 #endif
890
891 return new_skb;
892 }
893
894 static inline void mailbox_oam_rx_handler(void)
895 {
896 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM)->vlddes;
897 struct rx_descriptor reg_desc;
898 struct uni_cell_header *header;
899 int conn;
900 struct atm_vcc *vcc;
901 unsigned int i;
902
903 for ( i = 0; i < vlddes; i++ ) {
904 unsigned int loop_count = 0;
905
906 do {
907 reg_desc = g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos];
908 if ( ++loop_count == 1000 )
909 break;
910 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
911 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, oam_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.oam_desc_pos);
912
913 header = (struct uni_cell_header *)&g_atm_priv_data.oam_buf[g_atm_priv_data.oam_desc_pos * RX_DMA_CH_OAM_BUF_SIZE];
914
915 if ( header->pti == ATM_PTI_SEGF5 || header->pti == ATM_PTI_E2EF5 )
916 conn = find_vpivci(header->vpi, header->vci);
917 else if ( header->vci == 0x03 || header->vci == 0x04 )
918 conn = find_vpi(header->vpi);
919 else
920 conn = -1;
921
922 if ( conn >= 0 && g_atm_priv_data.conn[conn].vcc != NULL ) {
923 vcc = g_atm_priv_data.conn[conn].vcc;
924
925 if ( vcc->push_oam != NULL )
926 vcc->push_oam(vcc, header);
927 else
928 ifx_push_oam((unsigned char *)header);
929
930 g_atm_priv_data.wrx_oam++;
931
932 adsl_led_flash();
933 } else
934 g_atm_priv_data.wrx_drop_oam++;
935
936 reg_desc.byteoff = 0;
937 reg_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
938 reg_desc.own = 1;
939 reg_desc.c = 0;
940
941 g_atm_priv_data.oam_desc[g_atm_priv_data.oam_desc_pos] = reg_desc;
942 if ( ++g_atm_priv_data.oam_desc_pos == RX_DMA_CH_OAM_DESC_LEN )
943 g_atm_priv_data.oam_desc_pos = 0;
944
945 dma_cache_inv((unsigned long)header, CELL_SIZE);
946 mailbox_signal(RX_DMA_CH_OAM, 0);
947 }
948 }
949
950 static inline void mailbox_aal_rx_handler(void)
951 {
952 unsigned int vlddes = WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL)->vlddes;
953 struct rx_descriptor reg_desc;
954 int conn;
955 struct atm_vcc *vcc;
956 struct sk_buff *skb, *new_skb;
957 struct rx_inband_trailer *trailer;
958 unsigned int i;
959
960 for ( i = 0; i < vlddes; i++ ) {
961 unsigned int loop_count = 0;
962
963 do {
964 reg_desc = g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos];
965 if ( ++loop_count == 1000 )
966 break;
967 } while ( reg_desc.own || !reg_desc.c ); // keep test OWN and C bit until data is ready
968 ASSERT(loop_count == 1, "loop_count = %u, own = %d, c = %d, aal_desc_pos = %u", loop_count, (int)reg_desc.own, (int)reg_desc.c, g_atm_priv_data.aal_desc_pos);
969
970 conn = reg_desc.id;
971
972 if ( g_atm_priv_data.conn[conn].vcc != NULL ) {
973 vcc = g_atm_priv_data.conn[conn].vcc;
974
975 skb = get_skb_rx_pointer(reg_desc.dataptr);
976
977 if ( reg_desc.err ) {
978 if ( vcc->qos.aal == ATM_AAL5 ) {
979 trailer = (struct rx_inband_trailer *)((unsigned int)skb->data + ((reg_desc.byteoff + reg_desc.datalen + MAX_RX_PACKET_PADDING_BYTES) & ~MAX_RX_PACKET_PADDING_BYTES));
980 if ( trailer->stw_crc )
981 g_atm_priv_data.conn[conn].aal5_vcc_crc_err++;
982 if ( trailer->stw_ovz )
983 g_atm_priv_data.conn[conn].aal5_vcc_oversize_sdu++;
984 g_atm_priv_data.wrx_drop_pdu++;
985 }
986 if ( vcc->stats ) {
987 atomic_inc(&vcc->stats->rx_drop);
988 atomic_inc(&vcc->stats->rx_err);
989 }
990 reg_desc.err = 0;
991 } else if ( atm_charge(vcc, skb->truesize) ) {
992 new_skb = alloc_skb_rx();
993 if ( new_skb != NULL ) {
994 #if defined(ENABLE_LESS_CACHE_INV) && ENABLE_LESS_CACHE_INV
995 if ( reg_desc.byteoff + reg_desc.datalen > LESS_CACHE_INV_LEN )
996 dma_cache_inv((unsigned long)skb->data + LESS_CACHE_INV_LEN, reg_desc.byteoff + reg_desc.datalen - LESS_CACHE_INV_LEN);
997 #endif
998
999 skb_reserve(skb, reg_desc.byteoff);
1000 skb_put(skb, reg_desc.datalen);
1001 ATM_SKB(skb)->vcc = vcc;
1002
1003 vcc->push(vcc, skb);
1004
1005 if ( vcc->qos.aal == ATM_AAL5 )
1006 g_atm_priv_data.wrx_pdu++;
1007 if ( vcc->stats )
1008 atomic_inc(&vcc->stats->rx);
1009 adsl_led_flash();
1010
1011 reg_desc.dataptr = (unsigned int)new_skb->data >> 2;
1012 } else {
1013 atm_return(vcc, skb->truesize);
1014 if ( vcc->qos.aal == ATM_AAL5 )
1015 g_atm_priv_data.wrx_drop_pdu++;
1016 if ( vcc->stats )
1017 atomic_inc(&vcc->stats->rx_drop);
1018 }
1019 } else {
1020 if ( vcc->qos.aal == ATM_AAL5 )
1021 g_atm_priv_data.wrx_drop_pdu++;
1022 if ( vcc->stats )
1023 atomic_inc(&vcc->stats->rx_drop);
1024 }
1025 } else {
1026 g_atm_priv_data.wrx_drop_pdu++;
1027 }
1028
1029 reg_desc.byteoff = 0;
1030 reg_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1031 reg_desc.own = 1;
1032 reg_desc.c = 0;
1033
1034 g_atm_priv_data.aal_desc[g_atm_priv_data.aal_desc_pos] = reg_desc;
1035 if ( ++g_atm_priv_data.aal_desc_pos == dma_rx_descriptor_length )
1036 g_atm_priv_data.aal_desc_pos = 0;
1037
1038 mailbox_signal(RX_DMA_CH_AAL, 0);
1039 }
1040 }
1041
1042 static irqreturn_t mailbox_irq_handler(int irq, void *dev_id)
1043 {
1044 if ( !*MBOX_IGU1_ISR )
1045 return IRQ_HANDLED;
1046
1047 *MBOX_IGU1_ISRC = *MBOX_IGU1_ISR;
1048 mailbox_oam_rx_handler();
1049 mailbox_aal_rx_handler();
1050
1051 return IRQ_HANDLED;
1052 }
1053
1054 static inline void mailbox_signal(unsigned int queue, int is_tx)
1055 {
1056 int count = 1000;
1057
1058 if ( is_tx ) {
1059 while ( MBOX_IGU3_ISR_ISR(queue + FIRST_QSB_QID + 16) && count > 0 )
1060 count--;
1061 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue + FIRST_QSB_QID + 16);
1062 } else {
1063 while ( MBOX_IGU3_ISR_ISR(queue) && count > 0 )
1064 count--;
1065 *MBOX_IGU3_ISRS = MBOX_IGU3_ISRS_SET(queue);
1066 }
1067
1068 ASSERT(count > 0, "queue = %u, is_tx = %d, MBOX_IGU3_ISR = 0x%08x", queue, is_tx, IFX_REG_R32(MBOX_IGU3_ISR));
1069 }
1070
1071 static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int queue)
1072 {
1073 struct clk *fpi_clk = clk_get_fpi();
1074 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1075 unsigned int qsb_qid = queue + FIRST_QSB_QID;
1076 union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
1077 union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
1078 unsigned int tmp;
1079
1080
1081 /*
1082 * Peak Cell Rate (PCR) Limiter
1083 */
1084 if ( qos->txtp.max_pcr == 0 )
1085 qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
1086 else {
1087 /* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
1088 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.max_pcr + 1;
1089 /* check if overflow takes place */
1090 qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1091 }
1092
1093 #if !defined(DISABLE_QOS_WORKAROUND) || !DISABLE_QOS_WORKAROUND
1094 // A funny issue. Create two PVCs, one UBR and one UBR with max_pcr.
1095 // Send packets to these two PVCs at same time, it trigger strange behavior.
1096 // In A1, RAM from 0x80000000 to 0x0x8007FFFF was corrupted with fixed pattern 0x00000000 0x40000000.
1097 // In A4, PPE firmware keep emiting unknown cell and do not respond to driver.
1098 // To work around, create UBR always with max_pcr.
1099 // If user want to create UBR without max_pcr, we give a default one larger than line-rate.
1100 if ( qos->txtp.traffic_class == ATM_UBR && qsb_queue_parameter_table.bit.tp == 0 ) {
1101 int port = g_atm_priv_data.conn[queue].port;
1102 unsigned int max_pcr = g_atm_priv_data.port[port].tx_max_cell_rate + 1000;
1103
1104 tmp = ((qsb_clk * qsb_tstep) >> 5) / max_pcr + 1;
1105 if ( tmp > QSB_TP_TS_MAX )
1106 tmp = QSB_TP_TS_MAX;
1107 else if ( tmp < 1 )
1108 tmp = 1;
1109 qsb_queue_parameter_table.bit.tp = tmp;
1110 }
1111 #endif
1112
1113 /*
1114 * Weighted Fair Queueing Factor (WFQF)
1115 */
1116 switch ( qos->txtp.traffic_class ) {
1117 case ATM_CBR:
1118 case ATM_VBR_RT:
1119 /* real time queue gets weighted fair queueing bypass */
1120 qsb_queue_parameter_table.bit.wfqf = 0;
1121 break;
1122 case ATM_VBR_NRT:
1123 case ATM_UBR_PLUS:
1124 /* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
1125 /* WFQF is maximum cell rate / garenteed cell rate */
1126 /* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
1127 if ( qos->txtp.min_pcr == 0 )
1128 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1129 else {
1130 tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
1131 if ( tmp == 0 )
1132 qsb_queue_parameter_table.bit.wfqf = 1;
1133 else if ( tmp > QSB_WFQ_NONUBR_MAX )
1134 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
1135 else
1136 qsb_queue_parameter_table.bit.wfqf = tmp;
1137 }
1138 break;
1139 default:
1140 case ATM_UBR:
1141 qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
1142 }
1143
1144 /*
1145 * Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
1146 */
1147 if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT ) {
1148 if ( qos->txtp.scr == 0 ) {
1149 /* disable shaper */
1150 qsb_queue_vbr_parameter_table.bit.taus = 0;
1151 qsb_queue_vbr_parameter_table.bit.ts = 0;
1152 } else {
1153 /* Cell Loss Priority (CLP) */
1154 if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
1155 /* CLP1 */
1156 qsb_queue_parameter_table.bit.vbr = 1;
1157 else
1158 /* CLP0 */
1159 qsb_queue_parameter_table.bit.vbr = 0;
1160 /* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
1161 tmp = ((qsb_clk * qsb_tstep) >> 5) / qos->txtp.scr + 1;
1162 qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
1163 tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
1164 if ( tmp == 0 )
1165 qsb_queue_vbr_parameter_table.bit.taus = 1;
1166 else if ( tmp > QSB_TAUS_MAX )
1167 qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
1168 else
1169 qsb_queue_vbr_parameter_table.bit.taus = tmp;
1170 }
1171 } else {
1172 qsb_queue_vbr_parameter_table.bit.taus = 0;
1173 qsb_queue_vbr_parameter_table.bit.ts = 0;
1174 }
1175
1176 /* Queue Parameter Table (QPT) */
1177 *QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
1178 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
1179 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1180 /* Queue VBR Paramter Table (QVPT) */
1181 *QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
1182 *QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
1183 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(qsb_qid);
1184
1185 }
1186
1187 static void qsb_global_set(void)
1188 {
1189 struct clk *fpi_clk = clk_get_fpi();
1190 unsigned int qsb_clk = clk_get_rate(fpi_clk);
1191 int i;
1192 unsigned int tmp1, tmp2, tmp3;
1193
1194 *QSB_ICDV = QSB_ICDV_TAU_SET(qsb_tau);
1195 *QSB_SBL = QSB_SBL_SBL_SET(qsb_srvm);
1196 *QSB_CFG = QSB_CFG_TSTEPC_SET(qsb_tstep >> 1);
1197
1198 /*
1199 * set SCT and SPT per port
1200 */
1201 for ( i = 0; i < ATM_PORT_NUMBER; i++ ) {
1202 if ( g_atm_priv_data.port[i].tx_max_cell_rate != 0 ) {
1203 tmp1 = ((qsb_clk * qsb_tstep) >> 1) / g_atm_priv_data.port[i].tx_max_cell_rate;
1204 tmp2 = tmp1 >> 6; /* integer value of Tsb */
1205 tmp3 = (tmp1 & ((1 << 6) - 1)) + 1; /* fractional part of Tsb */
1206 /* carry over to integer part (?) */
1207 if ( tmp3 == (1 << 6) ) {
1208 tmp3 = 0;
1209 tmp2++;
1210 }
1211 if ( tmp2 == 0 )
1212 tmp2 = tmp3 = 1;
1213 /* 1. set mask */
1214 /* 2. write value to data transfer register */
1215 /* 3. start the tranfer */
1216 /* SCT (FracRate) */
1217 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SCT_MASK);
1218 *QSB_RTD = QSB_RTD_TTV_SET(tmp3);
1219 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1220 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SCT) |
1221 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1222 QSB_RAMAC_TESEL_SET(i & 0x01);
1223 /* SPT (SBV + PN + IntRage) */
1224 *QSB_RTM = QSB_RTM_DM_SET(QSB_SET_SPT_MASK);
1225 *QSB_RTD = QSB_RTD_TTV_SET(QSB_SPT_SBV_VALID | QSB_SPT_PN_SET(i & 0x01) | QSB_SPT_INTRATE_SET(tmp2));
1226 *QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) |
1227 QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_SPT) |
1228 QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) |
1229 QSB_RAMAC_TESEL_SET(i & 0x01);
1230 }
1231 }
1232 }
1233
1234 static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int queue, int aal5, int is_retx)
1235 {
1236 struct htu_entry htu_entry = {
1237 res1: 0x00,
1238 clp: is_retx ? 0x01 : 0x00,
1239 pid: g_atm_priv_data.conn[queue].port & 0x01,
1240 vpi: vpi,
1241 vci: vci,
1242 pti: 0x00,
1243 vld: 0x01};
1244
1245 struct htu_mask htu_mask = {
1246 set: 0x01,
1247 clp: 0x01,
1248 pid_mask: 0x02,
1249 vpi_mask: 0x00,
1250 vci_mask: 0x0000,
1251 pti_mask: 0x03, // 0xx, user data
1252 clear: 0x00};
1253
1254 struct htu_result htu_result = {
1255 res1: 0x00,
1256 cellid: queue,
1257 res2: 0x00,
1258 type: aal5 ? 0x00 : 0x01,
1259 ven: 0x01,
1260 res3: 0x00,
1261 qid: queue};
1262
1263 *HTU_RESULT(queue + OAM_HTU_ENTRY_NUMBER) = htu_result;
1264 *HTU_MASK(queue + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1265 *HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1266 }
1267
1268 static inline void clear_htu_entry(unsigned int queue)
1269 {
1270 HTU_ENTRY(queue + OAM_HTU_ENTRY_NUMBER)->vld = 0;
1271 }
1272
1273 static void validate_oam_htu_entry(void)
1274 {
1275 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 1;
1276 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 1;
1277 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 1;
1278 }
1279
1280 static void invalidate_oam_htu_entry(void)
1281 {
1282 HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY)->vld = 0;
1283 HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY)->vld = 0;
1284 HTU_ENTRY(OAM_F5_HTU_ENTRY)->vld = 0;
1285 }
1286
1287 static inline int find_vpi(unsigned int vpi)
1288 {
1289 int i;
1290 unsigned int bit;
1291
1292 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1293 if ( (g_atm_priv_data.conn_table & bit) != 0
1294 && g_atm_priv_data.conn[i].vcc != NULL
1295 && vpi == g_atm_priv_data.conn[i].vcc->vpi )
1296 return i;
1297 }
1298
1299 return -1;
1300 }
1301
1302 static inline int find_vpivci(unsigned int vpi, unsigned int vci)
1303 {
1304 int i;
1305 unsigned int bit;
1306
1307 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1308 if ( (g_atm_priv_data.conn_table & bit) != 0
1309 && g_atm_priv_data.conn[i].vcc != NULL
1310 && vpi == g_atm_priv_data.conn[i].vcc->vpi
1311 && vci == g_atm_priv_data.conn[i].vcc->vci )
1312 return i;
1313 }
1314
1315 return -1;
1316 }
1317
1318 static inline int find_vcc(struct atm_vcc *vcc)
1319 {
1320 int i;
1321 unsigned int bit;
1322
1323 for ( i = 0, bit = 1; i < MAX_PVC_NUMBER; i++, bit <<= 1 ) {
1324 if ( (g_atm_priv_data.conn_table & bit) != 0
1325 && g_atm_priv_data.conn[i].vcc == vcc )
1326 return i;
1327 }
1328
1329 return -1;
1330 }
1331
1332 static inline int ifx_atm_version(const struct ltq_atm_ops *ops, char *buf)
1333 {
1334 int len = 0;
1335 unsigned int major, minor;
1336
1337 ops->fw_ver(&major, &minor);
1338
1339 len += sprintf(buf + len, "ATM%d.%d.%d", IFX_ATM_VER_MAJOR, IFX_ATM_VER_MID, IFX_ATM_VER_MINOR);
1340 len += sprintf(buf + len, " ATM (A1) firmware version %d.%d\n", major, minor);
1341
1342 return len;
1343 }
1344
1345 static inline void check_parameters(void)
1346 {
1347 /* Please refer to Amazon spec 15.4 for setting these values. */
1348 if ( qsb_tau < 1 )
1349 qsb_tau = 1;
1350 if ( qsb_tstep < 1 )
1351 qsb_tstep = 1;
1352 else if ( qsb_tstep > 4 )
1353 qsb_tstep = 4;
1354 else if ( qsb_tstep == 3 )
1355 qsb_tstep = 2;
1356
1357 /* There is a delay between PPE write descriptor and descriptor is */
1358 /* really stored in memory. Host also has this delay when writing */
1359 /* descriptor. So PPE will use this value to determine if the write */
1360 /* operation makes effect. */
1361 if ( write_descriptor_delay < 0 )
1362 write_descriptor_delay = 0;
1363
1364 if ( aal5_fill_pattern < 0 )
1365 aal5_fill_pattern = 0;
1366 else
1367 aal5_fill_pattern &= 0xFF;
1368
1369 /* Because of the limitation of length field in descriptors, the packet */
1370 /* size could not be larger than 64K minus overhead size. */
1371 if ( aal5r_max_packet_size < 0 )
1372 aal5r_max_packet_size = 0;
1373 else if ( aal5r_max_packet_size >= 65535 - MAX_RX_FRAME_EXTRA_BYTES )
1374 aal5r_max_packet_size = 65535 - MAX_RX_FRAME_EXTRA_BYTES;
1375 if ( aal5r_min_packet_size < 0 )
1376 aal5r_min_packet_size = 0;
1377 else if ( aal5r_min_packet_size > aal5r_max_packet_size )
1378 aal5r_min_packet_size = aal5r_max_packet_size;
1379 if ( aal5s_max_packet_size < 0 )
1380 aal5s_max_packet_size = 0;
1381 else if ( aal5s_max_packet_size >= 65535 - MAX_TX_FRAME_EXTRA_BYTES )
1382 aal5s_max_packet_size = 65535 - MAX_TX_FRAME_EXTRA_BYTES;
1383 if ( aal5s_min_packet_size < 0 )
1384 aal5s_min_packet_size = 0;
1385 else if ( aal5s_min_packet_size > aal5s_max_packet_size )
1386 aal5s_min_packet_size = aal5s_max_packet_size;
1387
1388 if ( dma_rx_descriptor_length < 2 )
1389 dma_rx_descriptor_length = 2;
1390 if ( dma_tx_descriptor_length < 2 )
1391 dma_tx_descriptor_length = 2;
1392 if ( dma_rx_clp1_descriptor_threshold < 0 )
1393 dma_rx_clp1_descriptor_threshold = 0;
1394 else if ( dma_rx_clp1_descriptor_threshold > dma_rx_descriptor_length )
1395 dma_rx_clp1_descriptor_threshold = dma_rx_descriptor_length;
1396
1397 if ( dma_tx_descriptor_length < 2 )
1398 dma_tx_descriptor_length = 2;
1399 }
1400
1401 static inline int init_priv_data(void)
1402 {
1403 void *p;
1404 int i;
1405 struct rx_descriptor rx_desc = {0};
1406 struct sk_buff *skb;
1407 volatile struct tx_descriptor *p_tx_desc;
1408 struct sk_buff **ppskb;
1409
1410 // clear atm private data structure
1411 memset(&g_atm_priv_data, 0, sizeof(g_atm_priv_data));
1412
1413 // allocate memory for RX (AAL) descriptors
1414 p = kzalloc(dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1415 if ( p == NULL )
1416 return -1;
1417 dma_cache_wback_inv((unsigned long)p, dma_rx_descriptor_length * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1418 g_atm_priv_data.aal_desc_base = p;
1419 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1420 g_atm_priv_data.aal_desc = (volatile struct rx_descriptor *)p;
1421
1422 // allocate memory for RX (OAM) descriptors
1423 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1424 if ( p == NULL )
1425 return -1;
1426 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * sizeof(struct rx_descriptor) + DESC_ALIGNMENT);
1427 g_atm_priv_data.oam_desc_base = p;
1428 p = (void *)((((unsigned int)p + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1429 g_atm_priv_data.oam_desc = (volatile struct rx_descriptor *)p;
1430
1431 // allocate memory for RX (OAM) buffer
1432 p = kzalloc(RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT, GFP_KERNEL);
1433 if ( p == NULL )
1434 return -1;
1435 dma_cache_wback_inv((unsigned long)p, RX_DMA_CH_OAM_DESC_LEN * RX_DMA_CH_OAM_BUF_SIZE + DATA_BUFFER_ALIGNMENT);
1436 g_atm_priv_data.oam_buf_base = p;
1437 p = (void *)(((unsigned int)p + DATA_BUFFER_ALIGNMENT - 1) & ~(DATA_BUFFER_ALIGNMENT - 1));
1438 g_atm_priv_data.oam_buf = p;
1439
1440 // allocate memory for TX descriptors
1441 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT, GFP_KERNEL);
1442 if ( p == NULL )
1443 return -1;
1444 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct tx_descriptor) + DESC_ALIGNMENT);
1445 g_atm_priv_data.tx_desc_base = p;
1446
1447 // allocate memory for TX skb pointers
1448 p = kzalloc(MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4, GFP_KERNEL);
1449 if ( p == NULL )
1450 return -1;
1451 dma_cache_wback_inv((unsigned long)p, MAX_PVC_NUMBER * dma_tx_descriptor_length * sizeof(struct sk_buff *) + 4);
1452 g_atm_priv_data.tx_skb_base = p;
1453
1454 // setup RX (AAL) descriptors
1455 rx_desc.own = 1;
1456 rx_desc.c = 0;
1457 rx_desc.sop = 1;
1458 rx_desc.eop = 1;
1459 rx_desc.byteoff = 0;
1460 rx_desc.id = 0;
1461 rx_desc.err = 0;
1462 rx_desc.datalen = RX_DMA_CH_AAL_BUF_SIZE;
1463 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1464 skb = alloc_skb_rx();
1465 if ( skb == NULL )
1466 return -1;
1467 rx_desc.dataptr = ((unsigned int)skb->data >> 2) & 0x0FFFFFFF;
1468 g_atm_priv_data.aal_desc[i] = rx_desc;
1469 }
1470
1471 // setup RX (OAM) descriptors
1472 p = (void *)((unsigned int)g_atm_priv_data.oam_buf | KSEG1);
1473 rx_desc.own = 1;
1474 rx_desc.c = 0;
1475 rx_desc.sop = 1;
1476 rx_desc.eop = 1;
1477 rx_desc.byteoff = 0;
1478 rx_desc.id = 0;
1479 rx_desc.err = 0;
1480 rx_desc.datalen = RX_DMA_CH_OAM_BUF_SIZE;
1481 for ( i = 0; i < RX_DMA_CH_OAM_DESC_LEN; i++ ) {
1482 rx_desc.dataptr = ((unsigned int)p >> 2) & 0x0FFFFFFF;
1483 g_atm_priv_data.oam_desc[i] = rx_desc;
1484 p = (void *)((unsigned int)p + RX_DMA_CH_OAM_BUF_SIZE);
1485 }
1486
1487 // setup TX descriptors and skb pointers
1488 p_tx_desc = (volatile struct tx_descriptor *)((((unsigned int)g_atm_priv_data.tx_desc_base + DESC_ALIGNMENT - 1) & ~(DESC_ALIGNMENT - 1)) | KSEG1);
1489 ppskb = (struct sk_buff **)(((unsigned int)g_atm_priv_data.tx_skb_base + 3) & ~3);
1490 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1491 g_atm_priv_data.conn[i].tx_desc = &p_tx_desc[i * dma_tx_descriptor_length];
1492 g_atm_priv_data.conn[i].tx_skb = &ppskb[i * dma_tx_descriptor_length];
1493 }
1494
1495 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1496 g_atm_priv_data.port[i].tx_max_cell_rate = DEFAULT_TX_LINK_RATE;
1497
1498 return 0;
1499 }
1500
1501 static inline void clear_priv_data(void)
1502 {
1503 int i, j;
1504 struct sk_buff *skb;
1505
1506 for ( i = 0; i < MAX_PVC_NUMBER; i++ ) {
1507 if ( g_atm_priv_data.conn[i].tx_skb != NULL ) {
1508 for ( j = 0; j < dma_tx_descriptor_length; j++ )
1509 if ( g_atm_priv_data.conn[i].tx_skb[j] != NULL )
1510 dev_kfree_skb_any(g_atm_priv_data.conn[i].tx_skb[j]);
1511 }
1512 }
1513
1514 if ( g_atm_priv_data.tx_skb_base != NULL )
1515 kfree(g_atm_priv_data.tx_skb_base);
1516
1517 if ( g_atm_priv_data.tx_desc_base != NULL )
1518 kfree(g_atm_priv_data.tx_desc_base);
1519
1520 if ( g_atm_priv_data.oam_buf_base != NULL )
1521 kfree(g_atm_priv_data.oam_buf_base);
1522
1523 if ( g_atm_priv_data.oam_desc_base != NULL )
1524 kfree(g_atm_priv_data.oam_desc_base);
1525
1526 if ( g_atm_priv_data.aal_desc_base != NULL ) {
1527 for ( i = 0; i < dma_rx_descriptor_length; i++ ) {
1528 if ( g_atm_priv_data.aal_desc[i].sop || g_atm_priv_data.aal_desc[i].eop ) { // descriptor initialized
1529 skb = get_skb_rx_pointer(g_atm_priv_data.aal_desc[i].dataptr);
1530 dev_kfree_skb_any(skb);
1531 }
1532 }
1533 kfree(g_atm_priv_data.aal_desc_base);
1534 }
1535 }
1536
1537 static inline void init_rx_tables(void)
1538 {
1539 int i;
1540 struct wrx_queue_config wrx_queue_config = {0};
1541 struct wrx_dma_channel_config wrx_dma_channel_config = {0};
1542 struct htu_entry htu_entry = {0};
1543 struct htu_result htu_result = {0};
1544 struct htu_mask htu_mask = {
1545 set: 0x01,
1546 clp: 0x01,
1547 pid_mask: 0x00,
1548 vpi_mask: 0x00,
1549 vci_mask: 0x00,
1550 pti_mask: 0x00,
1551 clear: 0x00
1552 };
1553
1554 /*
1555 * General Registers
1556 */
1557 *CFG_WRX_HTUTS = MAX_PVC_NUMBER + OAM_HTU_ENTRY_NUMBER;
1558 #ifndef CONFIG_AMAZON_SE
1559 *CFG_WRX_QNUM = MAX_QUEUE_NUMBER;
1560 #endif
1561 *CFG_WRX_DCHNUM = RX_DMA_CH_TOTAL;
1562 *WRX_DMACH_ON = (1 << RX_DMA_CH_TOTAL) - 1;
1563 *WRX_HUNT_BITTH = DEFAULT_RX_HUNT_BITTH;
1564
1565 /*
1566 * WRX Queue Configuration Table
1567 */
1568 wrx_queue_config.uumask = 0xFF;
1569 wrx_queue_config.cpimask = 0xFF;
1570 wrx_queue_config.uuexp = 0;
1571 wrx_queue_config.cpiexp = 0;
1572 wrx_queue_config.mfs = aal5r_max_packet_size;
1573 wrx_queue_config.oversize = aal5r_max_packet_size;
1574 wrx_queue_config.undersize = aal5r_min_packet_size;
1575 wrx_queue_config.errdp = aal5r_drop_error_packet;
1576 wrx_queue_config.dmach = RX_DMA_CH_AAL;
1577 for ( i = 0; i < MAX_QUEUE_NUMBER; i++ )
1578 *WRX_QUEUE_CONFIG(i) = wrx_queue_config;
1579 WRX_QUEUE_CONFIG(OAM_RX_QUEUE)->dmach = RX_DMA_CH_OAM;
1580
1581 /*
1582 * WRX DMA Channel Configuration Table
1583 */
1584 wrx_dma_channel_config.chrl = 0;
1585 wrx_dma_channel_config.clp1th = dma_rx_clp1_descriptor_threshold;
1586 wrx_dma_channel_config.mode = 0;
1587 wrx_dma_channel_config.rlcfg = 0;
1588
1589 wrx_dma_channel_config.deslen = RX_DMA_CH_OAM_DESC_LEN;
1590 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.oam_desc >> 2) & 0x0FFFFFFF;
1591 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_OAM) = wrx_dma_channel_config;
1592
1593 wrx_dma_channel_config.deslen = dma_rx_descriptor_length;
1594 wrx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.aal_desc >> 2) & 0x0FFFFFFF;
1595 *WRX_DMA_CHANNEL_CONFIG(RX_DMA_CH_AAL) = wrx_dma_channel_config;
1596
1597 /*
1598 * HTU Tables
1599 */
1600 for (i = 0; i < MAX_PVC_NUMBER; i++) {
1601 htu_result.qid = (unsigned int)i;
1602
1603 *HTU_ENTRY(i + OAM_HTU_ENTRY_NUMBER) = htu_entry;
1604 *HTU_MASK(i + OAM_HTU_ENTRY_NUMBER) = htu_mask;
1605 *HTU_RESULT(i + OAM_HTU_ENTRY_NUMBER) = htu_result;
1606 }
1607
1608 /* OAM HTU Entry */
1609 htu_entry.vci = 0x03;
1610 htu_mask.pid_mask = 0x03;
1611 htu_mask.vpi_mask = 0xFF;
1612 htu_mask.vci_mask = 0x0000;
1613 htu_mask.pti_mask = 0x07;
1614 htu_result.cellid = OAM_RX_QUEUE;
1615 htu_result.type = 1;
1616 htu_result.ven = 1;
1617 htu_result.qid = OAM_RX_QUEUE;
1618 *HTU_RESULT(OAM_F4_SEG_HTU_ENTRY) = htu_result;
1619 *HTU_MASK(OAM_F4_SEG_HTU_ENTRY) = htu_mask;
1620 *HTU_ENTRY(OAM_F4_SEG_HTU_ENTRY) = htu_entry;
1621 htu_entry.vci = 0x04;
1622 htu_result.cellid = OAM_RX_QUEUE;
1623 htu_result.type = 1;
1624 htu_result.ven = 1;
1625 htu_result.qid = OAM_RX_QUEUE;
1626 *HTU_RESULT(OAM_F4_TOT_HTU_ENTRY) = htu_result;
1627 *HTU_MASK(OAM_F4_TOT_HTU_ENTRY) = htu_mask;
1628 *HTU_ENTRY(OAM_F4_TOT_HTU_ENTRY) = htu_entry;
1629 htu_entry.vci = 0x00;
1630 htu_entry.pti = 0x04;
1631 htu_mask.vci_mask = 0xFFFF;
1632 htu_mask.pti_mask = 0x01;
1633 htu_result.cellid = OAM_RX_QUEUE;
1634 htu_result.type = 1;
1635 htu_result.ven = 1;
1636 htu_result.qid = OAM_RX_QUEUE;
1637 *HTU_RESULT(OAM_F5_HTU_ENTRY) = htu_result;
1638 *HTU_MASK(OAM_F5_HTU_ENTRY) = htu_mask;
1639 *HTU_ENTRY(OAM_F5_HTU_ENTRY) = htu_entry;
1640 }
1641
1642 static inline void init_tx_tables(void)
1643 {
1644 int i;
1645 struct wtx_queue_config wtx_queue_config = {0};
1646 struct wtx_dma_channel_config wtx_dma_channel_config = {0};
1647 struct wtx_port_config wtx_port_config = {
1648 res1: 0,
1649 qid: 0,
1650 qsben: 1
1651 };
1652
1653 /*
1654 * General Registers
1655 */
1656 *CFG_WTX_DCHNUM = MAX_TX_DMA_CHANNEL_NUMBER;
1657 *WTX_DMACH_ON = ((1 << MAX_TX_DMA_CHANNEL_NUMBER) - 1) ^ ((1 << FIRST_QSB_QID) - 1);
1658 *CFG_WRDES_DELAY = write_descriptor_delay;
1659
1660 /*
1661 * WTX Port Configuration Table
1662 */
1663 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1664 *WTX_PORT_CONFIG(i) = wtx_port_config;
1665
1666 /*
1667 * WTX Queue Configuration Table
1668 */
1669 wtx_queue_config.qsben = 1;
1670 wtx_queue_config.sbid = 0;
1671 for ( i = 0; i < MAX_TX_DMA_CHANNEL_NUMBER; i++ ) {
1672 wtx_queue_config.qsb_vcid = i;
1673 *WTX_QUEUE_CONFIG(i) = wtx_queue_config;
1674 }
1675
1676 /*
1677 * WTX DMA Channel Configuration Table
1678 */
1679 wtx_dma_channel_config.mode = 0;
1680 wtx_dma_channel_config.deslen = 0;
1681 wtx_dma_channel_config.desba = 0;
1682 for ( i = 0; i < FIRST_QSB_QID; i++ )
1683 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1684 /* normal connection */
1685 wtx_dma_channel_config.deslen = dma_tx_descriptor_length;
1686 for ( ; i < MAX_TX_DMA_CHANNEL_NUMBER ; i++ ) {
1687 wtx_dma_channel_config.desba = ((unsigned int)g_atm_priv_data.conn[i - FIRST_QSB_QID].tx_desc >> 2) & 0x0FFFFFFF;
1688 *WTX_DMA_CHANNEL_CONFIG(i) = wtx_dma_channel_config;
1689 }
1690 }
1691
1692 static int atm_showtime_enter(struct port_cell_info *port_cell, void *xdata_addr)
1693 {
1694 int i, j;
1695
1696 ASSERT(port_cell != NULL, "port_cell is NULL");
1697 ASSERT(xdata_addr != NULL, "xdata_addr is NULL");
1698
1699 for ( j = 0; j < ATM_PORT_NUMBER && j < port_cell->port_num; j++ )
1700 if ( port_cell->tx_link_rate[j] > 0 )
1701 break;
1702 for ( i = 0; i < ATM_PORT_NUMBER && i < port_cell->port_num; i++ )
1703 g_atm_priv_data.port[i].tx_max_cell_rate =
1704 port_cell->tx_link_rate[i] > 0 ? port_cell->tx_link_rate[i] : port_cell->tx_link_rate[j];
1705
1706 qsb_global_set();
1707
1708 for ( i = 0; i < MAX_PVC_NUMBER; i++ )
1709 if ( g_atm_priv_data.conn[i].vcc != NULL )
1710 set_qsb(g_atm_priv_data.conn[i].vcc, &g_atm_priv_data.conn[i].vcc->qos, i);
1711
1712 // TODO: ReTX set xdata_addr
1713 g_xdata_addr = xdata_addr;
1714
1715 g_showtime = 1;
1716
1717 #if defined(CONFIG_VR9)
1718 IFX_REG_W32(0x0F, UTP_CFG);
1719 #endif
1720
1721 printk("enter showtime, cell rate: 0 - %d, 1 - %d, xdata addr: 0x%08x\n",
1722 g_atm_priv_data.port[0].tx_max_cell_rate,
1723 g_atm_priv_data.port[1].tx_max_cell_rate,
1724 (unsigned int)g_xdata_addr);
1725
1726 return 0;
1727 }
1728
1729 static int atm_showtime_exit(void)
1730 {
1731 if ( !g_showtime )
1732 return -1;
1733
1734 #if defined(CONFIG_VR9)
1735 IFX_REG_W32(0x00, UTP_CFG);
1736 #endif
1737 g_showtime = 0;
1738 g_xdata_addr = NULL;
1739 printk("leave showtime\n");
1740 return 0;
1741 }
1742
1743 extern struct ltq_atm_ops ar9_ops;
1744 extern struct ltq_atm_ops vr9_ops;
1745 extern struct ltq_atm_ops danube_ops;
1746 extern struct ltq_atm_ops ase_ops;
1747
1748 static const struct of_device_id ltq_atm_match[] = {
1749 #ifdef CONFIG_DANUBE
1750 { .compatible = "lantiq,ppe-danube", .data = &danube_ops },
1751 #elif defined CONFIG_AMAZON_SE
1752 { .compatible = "lantiq,ppe-ase", .data = &ase_ops },
1753 #elif defined CONFIG_AR9
1754 { .compatible = "lantiq,ppe-arx100", .data = &ar9_ops },
1755 #elif defined CONFIG_VR9
1756 { .compatible = "lantiq,ppe-xrx200", .data = &vr9_ops },
1757 #endif
1758 {},
1759 };
1760 MODULE_DEVICE_TABLE(of, ltq_atm_match);
1761
1762 static int __devinit ltq_atm_probe(struct platform_device *pdev)
1763 {
1764 const struct of_device_id *match;
1765 struct ltq_atm_ops *ops = NULL;
1766 int ret;
1767 int port_num;
1768 struct port_cell_info port_cell = {0};
1769 int i, j;
1770 char ver_str[256];
1771
1772 match = of_match_device(ltq_atm_match, &pdev->dev);
1773 if (!match) {
1774 dev_err(&pdev->dev, "failed to find matching device\n");
1775 return -ENOENT;
1776 }
1777 ops = (struct ltq_atm_ops *) match->data;
1778
1779 check_parameters();
1780
1781 ret = init_priv_data();
1782 if ( ret != 0 ) {
1783 pr_err("INIT_PRIV_DATA_FAIL\n");
1784 goto INIT_PRIV_DATA_FAIL;
1785 }
1786
1787 ops->init();
1788 init_rx_tables();
1789 init_tx_tables();
1790
1791 /* create devices */
1792 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ ) {
1793 g_atm_priv_data.port[port_num].dev = atm_dev_register("ifxmips_atm", NULL, &g_ifx_atm_ops, -1, NULL);
1794 if ( !g_atm_priv_data.port[port_num].dev ) {
1795 pr_err("failed to register atm device %d!\n", port_num);
1796 ret = -EIO;
1797 goto ATM_DEV_REGISTER_FAIL;
1798 } else {
1799 g_atm_priv_data.port[port_num].dev->ci_range.vpi_bits = 8;
1800 g_atm_priv_data.port[port_num].dev->ci_range.vci_bits = 16;
1801 g_atm_priv_data.port[port_num].dev->link_rate = g_atm_priv_data.port[port_num].tx_max_cell_rate;
1802 g_atm_priv_data.port[port_num].dev->dev_data = (void*)port_num;
1803 }
1804 }
1805
1806 /* register interrupt handler */
1807 ret = request_irq(PPE_MAILBOX_IGU1_INT, mailbox_irq_handler, IRQF_DISABLED, "atm_mailbox_isr", &g_atm_priv_data);
1808 if ( ret ) {
1809 if ( ret == -EBUSY ) {
1810 pr_err("IRQ may be occupied by other driver, please reconfig to disable it.\n");
1811 } else {
1812 pr_err("request_irq fail irq:%d\n", PPE_MAILBOX_IGU1_INT);
1813 }
1814 goto REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL;
1815 }
1816 disable_irq(PPE_MAILBOX_IGU1_INT);
1817
1818
1819 ret = ops->start(0);
1820 if ( ret ) {
1821 pr_err("ifx_pp32_start fail!\n");
1822 goto PP32_START_FAIL;
1823 }
1824
1825 port_cell.port_num = ATM_PORT_NUMBER;
1826 ifx_mei_atm_showtime_check(&g_showtime, &port_cell, &g_xdata_addr);
1827 if ( g_showtime ) {
1828 for ( i = 0; i < ATM_PORT_NUMBER; i++ )
1829 if ( port_cell.tx_link_rate[i] != 0 )
1830 break;
1831 for ( j = 0; j < ATM_PORT_NUMBER; j++ )
1832 g_atm_priv_data.port[j].tx_max_cell_rate =
1833 port_cell.tx_link_rate[j] != 0 ? port_cell.tx_link_rate[j] : port_cell.tx_link_rate[i];
1834 }
1835
1836 qsb_global_set();
1837 validate_oam_htu_entry();
1838
1839 ifx_mei_atm_showtime_enter = atm_showtime_enter;
1840 ifx_mei_atm_showtime_exit = atm_showtime_exit;
1841
1842 ifx_atm_version(ops, ver_str);
1843 printk(KERN_INFO "%s", ver_str);
1844 platform_set_drvdata(pdev, ops);
1845 printk("ifxmips_atm: ATM init succeed\n");
1846
1847 return 0;
1848
1849 PP32_START_FAIL:
1850 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1851 REQUEST_IRQ_PPE_MAILBOX_IGU1_INT_FAIL:
1852 ATM_DEV_REGISTER_FAIL:
1853 while ( port_num-- > 0 )
1854 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1855 INIT_PRIV_DATA_FAIL:
1856 clear_priv_data();
1857 printk("ifxmips_atm: ATM init failed\n");
1858 return ret;
1859 }
1860
1861 static int __devexit ltq_atm_remove(struct platform_device *pdev)
1862 {
1863 int port_num;
1864 struct ltq_atm_ops *ops = platform_get_drvdata(pdev);
1865
1866 ifx_mei_atm_showtime_enter = NULL;
1867 ifx_mei_atm_showtime_exit = NULL;
1868
1869 invalidate_oam_htu_entry();
1870
1871 ops->stop(0);
1872
1873 free_irq(PPE_MAILBOX_IGU1_INT, &g_atm_priv_data);
1874
1875 for ( port_num = 0; port_num < ATM_PORT_NUMBER; port_num++ )
1876 atm_dev_deregister(g_atm_priv_data.port[port_num].dev);
1877
1878 ops->shutdown();
1879
1880 clear_priv_data();
1881
1882 return 0;
1883 }
1884
1885 static struct platform_driver ltq_atm_driver = {
1886 .probe = ltq_atm_probe,
1887 .remove = __devexit_p(ltq_atm_remove),
1888 .driver = {
1889 .name = "atm",
1890 .owner = THIS_MODULE,
1891 .of_match_table = ltq_atm_match,
1892 },
1893 };
1894
1895 module_platform_driver(ltq_atm_driver);
1896
1897 MODULE_LICENSE("Dual BSD/GPL");