madwifi: merge fixes from trunk
[openwrt/svn-archive/archive.git] / package / ubsec_ssb / src / ubsec_ssb.c
1 /* $Id: $ */
2
3 /*
4 * Copyright (c) 2008 Daniel Mueller (daniel@danm.de)
5 * Copyright (c) 2007 David McCullough (david_mccullough@securecomputing.com)
6 * Copyright (c) 2000 Jason L. Wright (jason@thought.net)
7 * Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
8 * Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
21 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
22 * DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
23 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
24 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
25 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
27 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
28 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 *
31 * Effort sponsored in part by the Defense Advanced Research Projects
32 * Agency (DARPA) and Air Force Research Laboratory, Air Force
33 * Materiel Command, USAF, under agreement number F30602-01-2-0537.
34 *
35 */
36 #undef UBSEC_DEBUG
37 #undef UBSEC_VERBOSE_DEBUG
38
39 #ifdef UBSEC_VERBOSE_DEBUG
40 #define UBSEC_DEBUG
41 #endif
42
43 /*
44 * uBsec BCM5365 hardware crypto accelerator
45 */
46
47 #include <linux/kernel.h>
48 #include <linux/byteorder/swab.h>
49 #include <linux/byteorder/generic.h>
50 #include <linux/module.h>
51 #include <linux/moduleparam.h>
52 #include <linux/proc_fs.h>
53 #include <linux/types.h>
54 #include <linux/init.h>
55 #include <linux/delay.h>
56 #include <linux/interrupt.h>
57 #include <linux/fs.h>
58 #include <linux/random.h>
59 #include <linux/skbuff.h>
60 #include <linux/stat.h>
61 #include <asm/io.h>
62
63 #include <linux/ssb/ssb.h>
64
65 /*
66 * BSD queue
67 */
68 #include "bsdqueue.h"
69
70 /*
71 * OCF
72 */
73 #include "cryptodev.h"
74 #include "uio.h"
75
76 #define HMAC_HACK 1
77
78 #ifdef HMAC_HACK
79 #include "hmachack.h"
80 #include "md5.h"
81 #include "md5.c"
82 #include "sha1.h"
83 #include "sha1.c"
84 #endif
85
86 #include "ubsecreg.h"
87 #include "ubsecvar.h"
88
89 #define DRV_MODULE_NAME "ubsec_ssb"
90 #define PFX DRV_MODULE_NAME ": "
91 #define DRV_MODULE_VERSION "0.01"
92 #define DRV_MODULE_RELDATE "Jan 1, 2008"
93
94 #if 1
95 #define DPRINTF(a...) \
96 if (debug) \
97 { \
98 printk(DRV_MODULE_NAME ": " a); \
99 }
100 #else
101 #define DPRINTF(a...)
102 #endif
103
104 /*
105 * Prototypes
106 */
107 static irqreturn_t ubsec_ssb_isr(int, void *, struct pt_regs *);
108 static int __devinit ubsec_ssb_probe(struct ssb_device *sdev,
109 const struct ssb_device_id *ent);
110 static void __devexit ubsec_ssb_remove(struct ssb_device *sdev);
111 int ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
112 struct device *self);
113 static void ubsec_setup_mackey(struct ubsec_session *ses, int algo,
114 caddr_t key, int klen);
115 static int dma_map_skb(struct ubsec_softc *sc,
116 struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen);
117 static int dma_map_uio(struct ubsec_softc *sc,
118 struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen);
119 static void dma_unmap(struct ubsec_softc *sc,
120 struct ubsec_dma_alloc *q_map, int mlen);
121 static int ubsec_dmamap_aligned(struct ubsec_softc *sc,
122 const struct ubsec_dma_alloc *q_map, int mlen);
123
124 #ifdef UBSEC_DEBUG
125 static int proc_read(char *buf, char **start, off_t offset,
126 int size, int *peof, void *data);
127 #endif
128
129 void ubsec_reset_board(struct ubsec_softc *);
130 void ubsec_init_board(struct ubsec_softc *);
131 void ubsec_cleanchip(struct ubsec_softc *);
132 void ubsec_totalreset(struct ubsec_softc *);
133 int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
134
135 static int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
136 static int ubsec_freesession(device_t, u_int64_t);
137 static int ubsec_process(device_t, struct cryptop *, int);
138
139 void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
140 void ubsec_feed(struct ubsec_softc *);
141 void ubsec_mcopy(struct sk_buff *, struct sk_buff *, int, int);
142 void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
143 int ubsec_dma_malloc(struct ubsec_softc *, struct ubsec_dma_alloc *,
144 size_t, int);
145
146 /* DEBUG crap... */
147 void ubsec_dump_pb(struct ubsec_pktbuf *);
148 void ubsec_dump_mcr(struct ubsec_mcr *);
149
150 #define READ_REG(sc,r) \
151 ssb_read32((sc)->sdev, (r));
152 #define WRITE_REG(sc,r,val) \
153 ssb_write32((sc)->sdev, (r), (val));
154 #define READ_REG_SDEV(sdev,r) \
155 ssb_read32((sdev), (r));
156 #define WRITE_REG_SDEV(sdev,r,val) \
157 ssb_write32((sdev), (r), (val));
158
159 #define SWAP32(x) (x) = htole32(ntohl((x)))
160 #define HTOLE32(x) (x) = htole32(x)
161
162 #ifdef __LITTLE_ENDIAN
163 #define letoh16(x) (x)
164 #define letoh32(x) (x)
165 #endif
166
167 static int debug;
168 module_param(debug, int, 0644);
169 MODULE_PARM_DESC(debug, "Enable debug output");
170
171 #define UBSEC_SSB_MAX_CHIPS 1
172 static struct ubsec_softc *ubsec_chip_idx[UBSEC_SSB_MAX_CHIPS];
173 static struct ubsec_stats ubsecstats;
174
175 #ifdef UBSEC_DEBUG
176 static struct proc_dir_entry *procdebug;
177 #endif
178
179 static struct ssb_device_id ubsec_ssb_tbl[] = {
180 /* Broadcom BCM5365P IPSec Core */
181 SSB_DEVICE(SSB_VENDOR_BROADCOM, SSB_DEV_IPSEC, SSB_ANY_REV),
182 SSB_DEVTABLE_END
183 };
184
185 static struct ssb_driver ubsec_ssb_driver = {
186 .name = DRV_MODULE_NAME,
187 .id_table = ubsec_ssb_tbl,
188 .probe = ubsec_ssb_probe,
189 .remove = __devexit_p(ubsec_ssb_remove),
190 /*
191 .suspend = ubsec_ssb_suspend,
192 .resume = ubsec_ssb_resume
193 */
194 };
195
196 static device_method_t ubsec_ssb_methods = {
197 /* crypto device methods */
198 DEVMETHOD(cryptodev_newsession, ubsec_newsession),
199 DEVMETHOD(cryptodev_freesession,ubsec_freesession),
200 DEVMETHOD(cryptodev_process, ubsec_process),
201 };
202
203 #ifdef UBSEC_DEBUG
204 static int
205 proc_read(char *buf, char **start, off_t offset,
206 int size, int *peof, void *data)
207 {
208 int i = 0, byteswritten = 0, ret;
209 unsigned int stat, ctrl;
210 #ifdef UBSEC_VERBOSE_DEBUG
211 struct ubsec_q *q;
212 struct ubsec_dma *dmap;
213 #endif
214
215 while ((i < UBSEC_SSB_MAX_CHIPS) && (ubsec_chip_idx[i] != NULL))
216 {
217 struct ubsec_softc *sc = ubsec_chip_idx[i];
218
219 stat = READ_REG(sc, BS_STAT);
220 ctrl = READ_REG(sc, BS_CTRL);
221 ret = snprintf((buf + byteswritten),
222 (size - byteswritten) ,
223 "DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
224
225 byteswritten += ret;
226
227 #ifdef UBSEC_VERBOSE_DEBUG
228 printf("DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
229
230 /* Dump all queues MCRs */
231 if (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
232 BSD_SIMPLEQ_FOREACH(q, &sc->sc_qchip, q_next)
233 {
234 dmap = q->q_dma;
235 ubsec_dump_mcr(&dmap->d_dma->d_mcr);
236 }
237 }
238 #endif
239
240 i++;
241 }
242
243 *peof = 1;
244
245 return byteswritten;
246 }
247 #endif
248
249 /*
250 * map in a given sk_buff
251 */
252 static int
253 dma_map_skb(struct ubsec_softc *sc, struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen)
254 {
255 int i = 0;
256 dma_addr_t tmp;
257
258 #ifdef UBSEC_DEBUG
259 DPRINTF("%s()\n", __FUNCTION__);
260 #endif
261
262 /*
263 * We support only a limited number of fragments.
264 */
265 if (unlikely((skb_shinfo(skb)->nr_frags + 1) >= UBS_MAX_SCATTER))
266 {
267 printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
268 return (-ENOMEM);
269 }
270
271 #ifdef UBSEC_VERBOSE_DEBUG
272 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, 0, (unsigned int)skb->data, skb_headlen(skb));
273 #endif
274
275 /* first data package */
276 tmp = dma_map_single(sc->sc_dv,
277 skb->data,
278 skb_headlen(skb),
279 DMA_BIDIRECTIONAL);
280
281 q_map[i].dma_paddr = tmp;
282 q_map[i].dma_vaddr = skb->data;
283 q_map[i].dma_size = skb_headlen(skb);
284
285 if (unlikely(tmp == 0))
286 {
287 printk(KERN_ERR "Could not map memory region for dma.\n");
288 return (-EINVAL);
289 }
290
291 #ifdef UBSEC_VERBOSE_DEBUG
292 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, 0, (unsigned int)tmp);
293 #endif
294
295
296 /* all other data packages */
297 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
298
299 #ifdef UBSEC_VERBOSE_DEBUG
300 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, i + 1,
301 (unsigned int)page_address(skb_shinfo(skb)->frags[i].page) +
302 skb_shinfo(skb)->frags[i].page_offset, skb_shinfo(skb)->frags[i].size);
303 #endif
304
305 tmp = dma_map_single(sc->sc_dv,
306 page_address(skb_shinfo(skb)->frags[i].page) +
307 skb_shinfo(skb)->frags[i].page_offset,
308 skb_shinfo(skb)->frags[i].size,
309 DMA_BIDIRECTIONAL);
310
311 q_map[i + 1].dma_paddr = tmp;
312 q_map[i + 1].dma_vaddr = (void*)(page_address(skb_shinfo(skb)->frags[i].page) +
313 skb_shinfo(skb)->frags[i].page_offset);
314 q_map[i + 1].dma_size = skb_shinfo(skb)->frags[i].size;
315
316 if (unlikely(tmp == 0))
317 {
318 printk(KERN_ERR "Could not map memory region for dma.\n");
319 return (-EINVAL);
320 }
321
322 #ifdef UBSEC_VERBOSE_DEBUG
323 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, i + 1, (unsigned int)tmp);
324 #endif
325
326 }
327 *mlen = i + 1;
328
329 return(0);
330 }
331
332 /*
333 * map in a given uio buffer
334 */
335
336 static int
337 dma_map_uio(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen)
338 {
339 struct iovec *iov = uio->uio_iov;
340 int n;
341 dma_addr_t tmp;
342
343 #ifdef UBSEC_DEBUG
344 DPRINTF("%s()\n", __FUNCTION__);
345 #endif
346
347 /*
348 * We support only a limited number of fragments.
349 */
350 if (unlikely(uio->uio_iovcnt >= UBS_MAX_SCATTER))
351 {
352 printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
353 return (-ENOMEM);
354 }
355
356 for (n = 0; n < uio->uio_iovcnt; n++) {
357 #ifdef UBSEC_VERBOSE_DEBUG
358 DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, n, (unsigned int)iov->iov_base, iov->iov_len);
359 #endif
360 tmp = dma_map_single(sc->sc_dv,
361 iov->iov_base,
362 iov->iov_len,
363 DMA_BIDIRECTIONAL);
364
365 q_map[n].dma_paddr = tmp;
366 q_map[n].dma_vaddr = iov->iov_base;
367 q_map[n].dma_size = iov->iov_len;
368
369 if (unlikely(tmp == 0))
370 {
371 printk(KERN_ERR "Could not map memory region for dma.\n");
372 return (-EINVAL);
373 }
374
375 #ifdef UBSEC_VERBOSE_DEBUG
376 DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, n, (unsigned int)tmp);
377 #endif
378
379 iov++;
380 }
381 *mlen = n;
382
383 return(0);
384 }
385
386 static void
387 dma_unmap(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, int mlen)
388 {
389 int i;
390
391 #ifdef UBSEC_DEBUG
392 DPRINTF("%s()\n", __FUNCTION__);
393 #endif
394
395 for(i = 0; i < mlen; i++)
396 {
397 #ifdef UBSEC_VERBOSE_DEBUG
398 DPRINTF("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, (unsigned int)q_map[i].dma_paddr, q_map[i].dma_size);
399 #endif
400 dma_unmap_single(sc->sc_dv,
401 q_map[i].dma_paddr,
402 q_map[i].dma_size,
403 DMA_BIDIRECTIONAL);
404 }
405 return;
406 }
407
408 /*
409 * Is the operand suitable aligned for direct DMA. Each
410 * segment must be aligned on a 32-bit boundary and all
411 * but the last segment must be a multiple of 4 bytes.
412 */
413 static int
414 ubsec_dmamap_aligned(struct ubsec_softc *sc, const struct ubsec_dma_alloc *q_map, int mlen)
415 {
416 int i;
417
418 #ifdef UBSEC_DEBUG
419 DPRINTF("%s()\n", __FUNCTION__);
420 #endif
421
422 for (i = 0; i < mlen; i++) {
423 if (q_map[i].dma_paddr & 3)
424 return (0);
425 if (i != (mlen - 1) && (q_map[i].dma_size & 3))
426 return (0);
427 }
428 return (1);
429 }
430
431
432 #define N(a) (sizeof(a) / sizeof (a[0]))
433 static void
434 ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
435 {
436 #ifdef HMAC_HACK
437 MD5_CTX md5ctx;
438 SHA1_CTX sha1ctx;
439 int i;
440
441 #ifdef UBSEC_DEBUG
442 DPRINTF("%s()\n", __FUNCTION__);
443 #endif
444
445 for (i = 0; i < klen; i++)
446 key[i] ^= HMAC_IPAD_VAL;
447
448 if (algo == CRYPTO_MD5_HMAC) {
449 MD5Init(&md5ctx);
450 MD5Update(&md5ctx, key, klen);
451 MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
452 bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
453 } else {
454 SHA1Init(&sha1ctx);
455 SHA1Update(&sha1ctx, key, klen);
456 SHA1Update(&sha1ctx, hmac_ipad_buffer,
457 SHA1_HMAC_BLOCK_LEN - klen);
458 bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
459 }
460
461 for (i = 0; i < klen; i++)
462 key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
463
464 if (algo == CRYPTO_MD5_HMAC) {
465 MD5Init(&md5ctx);
466 MD5Update(&md5ctx, key, klen);
467 MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
468 bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
469 } else {
470 SHA1Init(&sha1ctx);
471 SHA1Update(&sha1ctx, key, klen);
472 SHA1Update(&sha1ctx, hmac_opad_buffer,
473 SHA1_HMAC_BLOCK_LEN - klen);
474 bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
475 }
476
477 for (i = 0; i < klen; i++)
478 key[i] ^= HMAC_OPAD_VAL;
479
480 #else /* HMAC_HACK */
481 DPRINTF("md5/sha not implemented\n");
482 #endif /* HMAC_HACK */
483 }
484 #undef N
485
486 static int
487 __devinit ubsec_ssb_probe(struct ssb_device *sdev,
488 const struct ssb_device_id *ent)
489 {
490 int err;
491
492 #ifdef UBSEC_DEBUG
493 DPRINTF("%s()\n", __FUNCTION__);
494 #endif
495
496 err = ssb_bus_powerup(sdev->bus, 0);
497 if (err) {
498 dev_err(sdev->dev, "Failed to powerup the bus\n");
499 goto err_powerup;
500 }
501
502 err = request_irq(sdev->irq, (irq_handler_t)ubsec_ssb_isr,
503 IRQF_DISABLED | IRQF_SHARED, DRV_MODULE_NAME, sdev);
504 if (err) {
505 dev_err(sdev->dev, "Could not request irq\n");
506 goto err_out_powerdown;
507 }
508
509 err = ssb_dma_set_mask(sdev, DMA_32BIT_MASK);
510 if (err) {
511 dev_err(sdev->dev,
512 "Required 32BIT DMA mask unsupported by the system.\n");
513 goto err_out_powerdown;
514 }
515
516 printk(KERN_INFO "Sentry5(tm) ROBOGateway(tm) IPSec Core at IRQ %u\n",
517 sdev->irq);
518
519 DPRINTF("Vendor: %x, core id: %x, revision: %x\n",
520 sdev->id.vendor, sdev->id.coreid, sdev->id.revision);
521
522 ssb_device_enable(sdev, 0);
523
524 if (ubsec_attach(sdev, ent, sdev->dev) != 0)
525 goto err_disable_interrupt;
526
527 #ifdef UBSEC_DEBUG
528 procdebug = create_proc_entry(DRV_MODULE_NAME, S_IRUSR, NULL);
529 if (procdebug)
530 {
531 procdebug->read_proc = proc_read;
532 procdebug->data = NULL;
533 } else
534 DPRINTF("Unable to create proc file.\n");
535 #endif
536
537 return 0;
538
539 err_disable_interrupt:
540 free_irq(sdev->irq, sdev);
541
542 err_out_powerdown:
543 ssb_bus_may_powerdown(sdev->bus);
544
545 err_powerup:
546 ssb_device_disable(sdev, 0);
547 return err;
548 }
549
550 static void __devexit ubsec_ssb_remove(struct ssb_device *sdev) {
551
552 struct ubsec_softc *sc;
553 unsigned int ctrlflgs;
554 struct ubsec_dma *dmap;
555 u_int32_t i;
556
557 #ifdef UBSEC_DEBUG
558 DPRINTF("%s()\n", __FUNCTION__);
559 #endif
560
561 ctrlflgs = READ_REG_SDEV(sdev, BS_CTRL);
562 /* disable all IPSec Core interrupts globally */
563 ctrlflgs ^= (BS_CTRL_MCR1INT | BS_CTRL_MCR2INT |
564 BS_CTRL_DMAERR);
565 WRITE_REG_SDEV(sdev, BS_CTRL, ctrlflgs);
566
567 free_irq(sdev->irq, sdev);
568
569 sc = (struct ubsec_softc *)ssb_get_drvdata(sdev);
570
571 /* unregister all crypto algorithms */
572 crypto_unregister_all(sc->sc_cid);
573
574 /* Free queue / dma memory */
575 for (i = 0; i < UBS_MAX_NQUEUE; i++) {
576 struct ubsec_q *q;
577
578 q = sc->sc_queuea[i];
579 if (q != NULL)
580 {
581 dmap = q->q_dma;
582 if (dmap != NULL)
583 {
584 ubsec_dma_free(sc, &dmap->d_alloc);
585 q->q_dma = NULL;
586 }
587 kfree(q);
588 }
589 sc->sc_queuea[i] = NULL;
590 }
591
592 ssb_bus_may_powerdown(sdev->bus);
593 ssb_device_disable(sdev, 0);
594 ssb_set_drvdata(sdev, NULL);
595
596 #ifdef UBSEC_DEBUG
597 if (procdebug)
598 remove_proc_entry(DRV_MODULE_NAME, NULL);
599 #endif
600
601 }
602
603
604 int
605 ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
606 struct device *self)
607 {
608 struct ubsec_softc *sc = NULL;
609 struct ubsec_dma *dmap;
610 u_int32_t i;
611 static int num_chips = 0;
612
613 #ifdef UBSEC_DEBUG
614 DPRINTF("%s()\n", __FUNCTION__);
615 #endif
616
617 sc = (struct ubsec_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
618 if (!sc)
619 return(-ENOMEM);
620 memset(sc, 0, sizeof(*sc));
621
622 sc->sc_dv = sdev->dev;
623 sc->sdev = sdev;
624
625 spin_lock_init(&sc->sc_ringmtx);
626
627 softc_device_init(sc, "ubsec_ssb", num_chips, ubsec_ssb_methods);
628
629 /* Maybe someday there are boards with more than one chip available */
630 if (num_chips < UBSEC_SSB_MAX_CHIPS) {
631 ubsec_chip_idx[device_get_unit(sc->sc_dev)] = sc;
632 num_chips++;
633 }
634
635 ssb_set_drvdata(sdev, sc);
636
637 BSD_SIMPLEQ_INIT(&sc->sc_queue);
638 BSD_SIMPLEQ_INIT(&sc->sc_qchip);
639 BSD_SIMPLEQ_INIT(&sc->sc_queue2);
640 BSD_SIMPLEQ_INIT(&sc->sc_qchip2);
641 BSD_SIMPLEQ_INIT(&sc->sc_q2free);
642
643 sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
644
645 sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
646 if (sc->sc_cid < 0) {
647 device_printf(sc->sc_dev, "could not get crypto driver id\n");
648 return -1;
649 }
650
651 BSD_SIMPLEQ_INIT(&sc->sc_freequeue);
652 dmap = sc->sc_dmaa;
653 for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
654 struct ubsec_q *q;
655
656 q = (struct ubsec_q *)kmalloc(sizeof(struct ubsec_q), GFP_KERNEL);
657 if (q == NULL) {
658 printf(": can't allocate queue buffers\n");
659 break;
660 }
661
662 if (ubsec_dma_malloc(sc, &dmap->d_alloc, sizeof(struct ubsec_dmachunk),0)) {
663 printf(": can't allocate dma buffers\n");
664 kfree(q);
665 break;
666 }
667 dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
668
669 q->q_dma = dmap;
670 sc->sc_queuea[i] = q;
671
672 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
673 }
674
675 /*
676 * Reset Broadcom chip
677 */
678 ubsec_reset_board(sc);
679
680 /*
681 * Init Broadcom chip
682 */
683 ubsec_init_board(sc);
684
685 /* supported crypto algorithms */
686 crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
687 crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
688
689 if (sc->sc_flags & UBS_FLAGS_AES) {
690 crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
691 printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES AES128 AES192 AES256 MD5_HMAC SHA1_HMAC\n");
692 }
693 else
694 printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES MD5_HMAC SHA1_HMAC\n");
695
696 crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
697 crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
698
699 return 0;
700 }
701
702 /*
703 * UBSEC Interrupt routine
704 */
705 static irqreturn_t
706 ubsec_ssb_isr(int irq, void *arg, struct pt_regs *regs)
707 {
708 struct ubsec_softc *sc = NULL;
709 volatile u_int32_t stat;
710 struct ubsec_q *q;
711 struct ubsec_dma *dmap;
712 int npkts = 0, i;
713
714 #ifdef UBSEC_VERBOSE_DEBUG
715 DPRINTF("%s()\n", __FUNCTION__);
716 #endif
717
718 sc = (struct ubsec_softc *)ssb_get_drvdata(arg);
719
720 stat = READ_REG(sc, BS_STAT);
721
722 stat &= sc->sc_statmask;
723 if (stat == 0)
724 return IRQ_NONE;
725
726 WRITE_REG(sc, BS_STAT, stat); /* IACK */
727
728 /*
729 * Check to see if we have any packets waiting for us
730 */
731 if ((stat & BS_STAT_MCR1_DONE)) {
732 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
733 q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
734 dmap = q->q_dma;
735
736 if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
737 {
738 DPRINTF("error while processing MCR. Flags = %x\n", dmap->d_dma->d_mcr.mcr_flags);
739 break;
740 }
741
742 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
743
744 npkts = q->q_nstacked_mcrs;
745 /*
746 * search for further sc_qchip ubsec_q's that share
747 * the same MCR, and complete them too, they must be
748 * at the top.
749 */
750 for (i = 0; i < npkts; i++) {
751 if(q->q_stacked_mcr[i])
752 ubsec_callback(sc, q->q_stacked_mcr[i]);
753 else
754 break;
755 }
756 ubsec_callback(sc, q);
757 }
758
759 /*
760 * Don't send any more packet to chip if there has been
761 * a DMAERR.
762 */
763 if (likely(!(stat & BS_STAT_DMAERR)))
764 ubsec_feed(sc);
765 else
766 DPRINTF("DMA error occurred. Stop feeding crypto chip.\n");
767 }
768
769 /*
770 * Check to see if we got any DMA Error
771 */
772 if (stat & BS_STAT_DMAERR) {
773 volatile u_int32_t a = READ_REG(sc, BS_ERR);
774
775 printf(KERN_ERR "%s: dmaerr %s@%08x\n", DRV_MODULE_NAME,
776 (a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR);
777
778 ubsecstats.hst_dmaerr++;
779 ubsec_totalreset(sc);
780 ubsec_feed(sc);
781 }
782
783 return IRQ_HANDLED;
784 }
785
786 /*
787 * ubsec_feed() - aggregate and post requests to chip
788 * It is assumed that the caller set splnet()
789 */
790 void
791 ubsec_feed(struct ubsec_softc *sc)
792 {
793 #ifdef UBSEC_VERBOSE_DEBUG
794 static int max;
795 #endif
796 struct ubsec_q *q, *q2;
797 int npkts, i;
798 void *v;
799 u_int32_t stat;
800
801 npkts = sc->sc_nqueue;
802 if (npkts > UBS_MAX_AGGR)
803 npkts = UBS_MAX_AGGR;
804 if (npkts < 2)
805 goto feed1;
806
807 stat = READ_REG(sc, BS_STAT);
808
809 if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
810 if(stat & BS_STAT_DMAERR) {
811 ubsec_totalreset(sc);
812 ubsecstats.hst_dmaerr++;
813 }
814 return;
815 }
816
817 #ifdef UBSEC_VERBOSE_DEBUG
818 DPRINTF("merging %d records\n", npkts);
819
820 /* XXX temporary aggregation statistics reporting code */
821 if (max < npkts) {
822 max = npkts;
823 DPRINTF("%s: new max aggregate %d\n", DRV_MODULE_NAME, max);
824 }
825 #endif /* UBSEC_VERBOSE_DEBUG */
826
827 q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
828 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
829 --sc->sc_nqueue;
830
831 #if 0
832 /*
833 * XXX
834 * We use dma_map_single() - no sync required!
835 */
836
837 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
838 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
839 if (q->q_dst_map != NULL)
840 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
841 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
842 #endif
843
844 q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
845
846 for (i = 0; i < q->q_nstacked_mcrs; i++) {
847 q2 = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
848
849 #if 0
850 bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
851 0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
852 if (q2->q_dst_map != NULL)
853 bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
854 0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
855 #endif
856 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
857 --sc->sc_nqueue;
858
859 v = ((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
860 sizeof(struct ubsec_mcr_add);
861 bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
862 q->q_stacked_mcr[i] = q2;
863 }
864 q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
865 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
866 #if 0
867 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
868 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
869 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
870 #endif
871 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
872 offsetof(struct ubsec_dmachunk, d_mcr));
873 #ifdef UBSEC_VERBOSE_DEBUG
874 DPRINTF("feed (1): q->chip %p %08x %08x\n", q,
875 (u_int32_t)q->q_dma->d_alloc.dma_paddr,
876 (u_int32_t)(q->q_dma->d_alloc.dma_paddr +
877 offsetof(struct ubsec_dmachunk, d_mcr)));
878 #endif /* UBSEC_DEBUG */
879 return;
880
881 feed1:
882 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_queue)) {
883 stat = READ_REG(sc, BS_STAT);
884
885 if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
886 if(stat & BS_STAT_DMAERR) {
887 ubsec_totalreset(sc);
888 ubsecstats.hst_dmaerr++;
889 }
890 break;
891 }
892
893 q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
894
895 #if 0
896 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
897 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
898 if (q->q_dst_map != NULL)
899 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
900 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
901 bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
902 0, q->q_dma->d_alloc.dma_map->dm_mapsize,
903 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
904 #endif
905
906 WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
907 offsetof(struct ubsec_dmachunk, d_mcr));
908 #ifdef UBSEC_VERBOSE_DEBUG
909 DPRINTF("feed (2): q->chip %p %08x %08x\n", q,
910 (u_int32_t)q->q_dma->d_alloc.dma_paddr,
911 (u_int32_t)(q->q_dma->d_alloc.dma_paddr +
912 offsetof(struct ubsec_dmachunk, d_mcr)));
913 #endif /* UBSEC_DEBUG */
914 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
915 --sc->sc_nqueue;
916 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
917 }
918 }
919
920 /*
921 * Allocate a new 'session' and return an encoded session id. 'sidp'
922 * contains our registration id, and should contain an encoded session
923 * id on successful allocation.
924 */
925 static int
926 ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
927 {
928 struct cryptoini *c, *encini = NULL, *macini = NULL;
929 struct ubsec_softc *sc = NULL;
930 struct ubsec_session *ses = NULL;
931 int sesn, i;
932
933 #ifdef UBSEC_DEBUG
934 DPRINTF("%s()\n", __FUNCTION__);
935 #endif
936
937 if (sidp == NULL || cri == NULL)
938 return (EINVAL);
939
940 sc = device_get_softc(dev);
941
942 if (sc == NULL)
943 return (EINVAL);
944
945 for (c = cri; c != NULL; c = c->cri_next) {
946 if (c->cri_alg == CRYPTO_MD5_HMAC ||
947 c->cri_alg == CRYPTO_SHA1_HMAC) {
948 if (macini)
949 return (EINVAL);
950 macini = c;
951 } else if (c->cri_alg == CRYPTO_DES_CBC ||
952 c->cri_alg == CRYPTO_3DES_CBC ||
953 c->cri_alg == CRYPTO_AES_CBC) {
954 if (encini)
955 return (EINVAL);
956 encini = c;
957 } else
958 return (EINVAL);
959 }
960 if (encini == NULL && macini == NULL)
961 return (EINVAL);
962
963 if (sc->sc_sessions == NULL) {
964 ses = sc->sc_sessions = (struct ubsec_session *)kmalloc(
965 sizeof(struct ubsec_session), SLAB_ATOMIC);
966 if (ses == NULL)
967 return (ENOMEM);
968 memset(ses, 0, sizeof(struct ubsec_session));
969 sesn = 0;
970 sc->sc_nsessions = 1;
971 } else {
972 for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
973 if (sc->sc_sessions[sesn].ses_used == 0) {
974 ses = &sc->sc_sessions[sesn];
975 break;
976 }
977 }
978
979 if (ses == NULL) {
980 sesn = sc->sc_nsessions;
981 ses = (struct ubsec_session *)kmalloc((sesn + 1) *
982 sizeof(struct ubsec_session), SLAB_ATOMIC);
983 if (ses == NULL)
984 return (ENOMEM);
985 memset(ses, 0, (sesn + 1) * sizeof(struct ubsec_session));
986 bcopy(sc->sc_sessions, ses, sesn *
987 sizeof(struct ubsec_session));
988 bzero(sc->sc_sessions, sesn *
989 sizeof(struct ubsec_session));
990 kfree(sc->sc_sessions);
991 sc->sc_sessions = ses;
992 ses = &sc->sc_sessions[sesn];
993 sc->sc_nsessions++;
994 }
995 }
996
997 bzero(ses, sizeof(struct ubsec_session));
998 ses->ses_used = 1;
999 if (encini) {
1000 /* get an IV */
1001 /* XXX may read fewer than requested */
1002 read_random(ses->ses_iv, sizeof(ses->ses_iv));
1003
1004 /* Go ahead and compute key in ubsec's byte order */
1005 if (encini->cri_alg == CRYPTO_DES_CBC) {
1006 /* DES uses the same key three times:
1007 * 1st encrypt -> 2nd decrypt -> 3nd encrypt */
1008 bcopy(encini->cri_key, &ses->ses_key[0], 8);
1009 bcopy(encini->cri_key, &ses->ses_key[2], 8);
1010 bcopy(encini->cri_key, &ses->ses_key[4], 8);
1011 ses->ses_keysize = 192; /* Fake! Actually its only 64bits ..
1012 oh no it is even less: 54bits. */
1013 } else if(encini->cri_alg == CRYPTO_3DES_CBC) {
1014 bcopy(encini->cri_key, ses->ses_key, 24);
1015 ses->ses_keysize = 192;
1016 } else if(encini->cri_alg == CRYPTO_AES_CBC) {
1017 ses->ses_keysize = encini->cri_klen;
1018
1019 if (ses->ses_keysize != 128 &&
1020 ses->ses_keysize != 192 &&
1021 ses->ses_keysize != 256)
1022 {
1023 DPRINTF("unsupported AES key size: %d\n", ses->ses_keysize);
1024 return (EINVAL);
1025 }
1026 bcopy(encini->cri_key, ses->ses_key, (ses->ses_keysize / 8));
1027 }
1028
1029 /* Hardware requires the keys in little endian byte order */
1030 for (i=0; i < (ses->ses_keysize / 32); i++)
1031 SWAP32(ses->ses_key[i]);
1032 }
1033
1034 if (macini) {
1035 ses->ses_mlen = macini->cri_mlen;
1036
1037 if (ses->ses_mlen == 0 ||
1038 ses->ses_mlen > SHA1_HASH_LEN) {
1039
1040 if (macini->cri_alg == CRYPTO_MD5_HMAC ||
1041 macini->cri_alg == CRYPTO_SHA1_HMAC)
1042 {
1043 ses->ses_mlen = DEFAULT_HMAC_LEN;
1044 } else
1045 {
1046 /*
1047 * Reserved for future usage. MD5/SHA1 calculations have
1048 * different hash sizes.
1049 */
1050 printk(KERN_ERR DRV_MODULE_NAME ": unsupported hash operation with mac/hash len: %d\n", ses->ses_mlen);
1051 return (EINVAL);
1052 }
1053
1054 }
1055
1056 if (macini->cri_key != NULL) {
1057 ubsec_setup_mackey(ses, macini->cri_alg, macini->cri_key,
1058 macini->cri_klen / 8);
1059 }
1060 }
1061
1062 *sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
1063 return (0);
1064 }
1065
1066 /*
1067 * Deallocate a session.
1068 */
1069 static int
1070 ubsec_freesession(device_t dev, u_int64_t tid)
1071 {
1072 struct ubsec_softc *sc = device_get_softc(dev);
1073 int session;
1074 u_int32_t sid = ((u_int32_t)tid) & 0xffffffff;
1075
1076 #ifdef UBSEC_DEBUG
1077 DPRINTF("%s()\n", __FUNCTION__);
1078 #endif
1079
1080 if (sc == NULL)
1081 return (EINVAL);
1082
1083 session = UBSEC_SESSION(sid);
1084 if (session < sc->sc_nsessions) {
1085 bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
1086 return (0);
1087 } else
1088 return (EINVAL);
1089 }
1090
1091 static int
1092 ubsec_process(device_t dev, struct cryptop *crp, int hint)
1093 {
1094 struct ubsec_q *q = NULL;
1095 int err = 0, i, j, nicealign;
1096 struct ubsec_softc *sc = device_get_softc(dev);
1097 struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
1098 int encoffset = 0, macoffset = 0, cpskip, cpoffset;
1099 int sskip, dskip, stheend, dtheend, ivsize = 8;
1100 int16_t coffset;
1101 struct ubsec_session *ses;
1102 struct ubsec_generic_ctx ctx;
1103 struct ubsec_dma *dmap = NULL;
1104 unsigned long flags;
1105
1106 #ifdef UBSEC_DEBUG
1107 DPRINTF("%s()\n", __FUNCTION__);
1108 #endif
1109
1110 if (unlikely(crp == NULL || crp->crp_callback == NULL)) {
1111 ubsecstats.hst_invalid++;
1112 return (EINVAL);
1113 }
1114
1115 if (unlikely(sc == NULL))
1116 return (EINVAL);
1117
1118 #ifdef UBSEC_VERBOSE_DEBUG
1119 DPRINTF("spin_lock_irqsave\n");
1120 #endif
1121 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1122 //spin_lock_irq(&sc->sc_ringmtx);
1123
1124 if (BSD_SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
1125 ubsecstats.hst_queuefull++;
1126 #ifdef UBSEC_VERBOSE_DEBUG
1127 DPRINTF("spin_unlock_irqrestore\n");
1128 #endif
1129 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1130 //spin_unlock_irq(&sc->sc_ringmtx);
1131 err = ENOMEM;
1132 goto errout2;
1133 }
1134
1135 q = BSD_SIMPLEQ_FIRST(&sc->sc_freequeue);
1136 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
1137 #ifdef UBSEC_VERBOSE_DEBUG
1138 DPRINTF("spin_unlock_irqrestore\n");
1139 #endif
1140 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1141 //spin_unlock_irq(&sc->sc_ringmtx);
1142
1143 dmap = q->q_dma; /* Save dma pointer */
1144 bzero(q, sizeof(struct ubsec_q));
1145 bzero(&ctx, sizeof(ctx));
1146
1147 q->q_sesn = UBSEC_SESSION(crp->crp_sid);
1148 q->q_dma = dmap;
1149 ses = &sc->sc_sessions[q->q_sesn];
1150
1151 if (crp->crp_flags & CRYPTO_F_SKBUF) {
1152 q->q_src_m = (struct sk_buff *)crp->crp_buf;
1153 q->q_dst_m = (struct sk_buff *)crp->crp_buf;
1154 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1155 q->q_src_io = (struct uio *)crp->crp_buf;
1156 q->q_dst_io = (struct uio *)crp->crp_buf;
1157 } else {
1158 err = EINVAL;
1159 goto errout; /* XXX we don't handle contiguous blocks! */
1160 }
1161
1162 bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
1163
1164 dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
1165 dmap->d_dma->d_mcr.mcr_flags = 0;
1166 q->q_crp = crp;
1167
1168 crd1 = crp->crp_desc;
1169 if (crd1 == NULL) {
1170 err = EINVAL;
1171 goto errout;
1172 }
1173 crd2 = crd1->crd_next;
1174
1175 if (crd2 == NULL) {
1176 if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
1177 crd1->crd_alg == CRYPTO_SHA1_HMAC) {
1178 maccrd = crd1;
1179 enccrd = NULL;
1180 } else if (crd1->crd_alg == CRYPTO_DES_CBC ||
1181 crd1->crd_alg == CRYPTO_3DES_CBC ||
1182 crd1->crd_alg == CRYPTO_AES_CBC) {
1183 maccrd = NULL;
1184 enccrd = crd1;
1185 } else {
1186 err = EINVAL;
1187 goto errout;
1188 }
1189 } else {
1190 if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
1191 crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
1192 (crd2->crd_alg == CRYPTO_DES_CBC ||
1193 crd2->crd_alg == CRYPTO_3DES_CBC ||
1194 crd2->crd_alg == CRYPTO_AES_CBC) &&
1195 ((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
1196 maccrd = crd1;
1197 enccrd = crd2;
1198 } else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
1199 crd1->crd_alg == CRYPTO_3DES_CBC ||
1200 crd1->crd_alg == CRYPTO_AES_CBC) &&
1201 (crd2->crd_alg == CRYPTO_MD5_HMAC ||
1202 crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
1203 (crd1->crd_flags & CRD_F_ENCRYPT)) {
1204 enccrd = crd1;
1205 maccrd = crd2;
1206 } else {
1207 /*
1208 * We cannot order the ubsec as requested
1209 */
1210 printk(KERN_ERR DRV_MODULE_NAME ": got wrong algorithm/signature order.\n");
1211 err = EINVAL;
1212 goto errout;
1213 }
1214 }
1215
1216 /* Encryption/Decryption requested */
1217 if (enccrd) {
1218 encoffset = enccrd->crd_skip;
1219
1220 if (enccrd->crd_alg == CRYPTO_DES_CBC ||
1221 enccrd->crd_alg == CRYPTO_3DES_CBC)
1222 {
1223 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
1224 ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_DES);
1225 ivsize = 8; /* [3]DES uses 64bit IVs */
1226 } else {
1227 ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_AES);
1228 ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
1229 ivsize = 16; /* AES uses 128bit IVs / [3]DES 64bit IVs */
1230
1231 switch(ses->ses_keysize)
1232 {
1233 case 128:
1234 ctx.pc_flags |= htole16(UBS_PKTCTX_AES128);
1235 break;
1236 case 192:
1237 ctx.pc_flags |= htole16(UBS_PKTCTX_AES192);
1238 break;
1239 case 256:
1240 ctx.pc_flags |= htole16(UBS_PKTCTX_AES256);
1241 break;
1242 default:
1243 DPRINTF("invalid AES key size: %d\n", ses->ses_keysize);
1244 err = EINVAL;
1245 goto errout;
1246 }
1247 }
1248
1249 if (enccrd->crd_flags & CRD_F_ENCRYPT) {
1250 /* Direction: Outbound */
1251
1252 q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
1253
1254 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
1255 bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
1256 } else {
1257 for(i=0; i < (ivsize / 4); i++)
1258 ctx.pc_iv[i] = ses->ses_iv[i];
1259 }
1260
1261 /* If there is no IV in the buffer -> copy it here */
1262 if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
1263 if (crp->crp_flags & CRYPTO_F_SKBUF)
1264 /*
1265 m_copyback(q->q_src_m,
1266 enccrd->crd_inject,
1267 8, ctx.pc_iv);
1268 */
1269 crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_m,
1270 enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
1271 else if (crp->crp_flags & CRYPTO_F_IOV)
1272 /*
1273 cuio_copyback(q->q_src_io,
1274 enccrd->crd_inject,
1275 8, ctx.pc_iv);
1276 */
1277 crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_io,
1278 enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
1279 }
1280 } else {
1281 /* Direction: Inbound */
1282
1283 ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
1284
1285 if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
1286 bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
1287 else if (crp->crp_flags & CRYPTO_F_SKBUF)
1288 /*
1289 m_copydata(q->q_src_m, enccrd->crd_inject,
1290 8, (caddr_t)ctx.pc_iv);
1291 */
1292 crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_m,
1293 enccrd->crd_inject, ivsize,
1294 (caddr_t)ctx.pc_iv);
1295 else if (crp->crp_flags & CRYPTO_F_IOV)
1296 /*
1297 cuio_copydata(q->q_src_io,
1298 enccrd->crd_inject, 8,
1299 (caddr_t)ctx.pc_iv);
1300 */
1301 crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_io,
1302 enccrd->crd_inject, ivsize,
1303 (caddr_t)ctx.pc_iv);
1304
1305 }
1306
1307 /* Even though key & IV sizes differ from cipher to cipher
1308 * copy / swap the full array lengths. Let the compiler unroll
1309 * the loop to increase the cpu pipeline performance... */
1310 for(i=0; i < 8; i++)
1311 ctx.pc_key[i] = ses->ses_key[i];
1312 for(i=0; i < 4; i++)
1313 SWAP32(ctx.pc_iv[i]);
1314 }
1315
1316 /* Authentication requested */
1317 if (maccrd) {
1318 macoffset = maccrd->crd_skip;
1319
1320 if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
1321 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
1322 else
1323 ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
1324
1325 for (i = 0; i < 5; i++) {
1326 ctx.pc_hminner[i] = ses->ses_hminner[i];
1327 ctx.pc_hmouter[i] = ses->ses_hmouter[i];
1328
1329 HTOLE32(ctx.pc_hminner[i]);
1330 HTOLE32(ctx.pc_hmouter[i]);
1331 }
1332 }
1333
1334 if (enccrd && maccrd) {
1335 /*
1336 * ubsec cannot handle packets where the end of encryption
1337 * and authentication are not the same, or where the
1338 * encrypted part begins before the authenticated part.
1339 */
1340 if (((encoffset + enccrd->crd_len) !=
1341 (macoffset + maccrd->crd_len)) ||
1342 (enccrd->crd_skip < maccrd->crd_skip)) {
1343 err = EINVAL;
1344 goto errout;
1345 }
1346 sskip = maccrd->crd_skip;
1347 cpskip = dskip = enccrd->crd_skip;
1348 stheend = maccrd->crd_len;
1349 dtheend = enccrd->crd_len;
1350 coffset = enccrd->crd_skip - maccrd->crd_skip;
1351 cpoffset = cpskip + dtheend;
1352 #ifdef UBSEC_DEBUG
1353 DPRINTF("mac: skip %d, len %d, inject %d\n",
1354 maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
1355 DPRINTF("enc: skip %d, len %d, inject %d\n",
1356 enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
1357 DPRINTF("src: skip %d, len %d\n", sskip, stheend);
1358 DPRINTF("dst: skip %d, len %d\n", dskip, dtheend);
1359 DPRINTF("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
1360 coffset, stheend, cpskip, cpoffset);
1361 #endif
1362 } else {
1363 cpskip = dskip = sskip = macoffset + encoffset;
1364 dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
1365 cpoffset = cpskip + dtheend;
1366 coffset = 0;
1367 }
1368 ctx.pc_offset = htole16(coffset >> 2);
1369
1370 #if 0
1371 if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
1372 0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
1373 err = ENOMEM;
1374 goto errout;
1375 }
1376 #endif
1377
1378 if (crp->crp_flags & CRYPTO_F_SKBUF) {
1379 #if 0
1380 if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
1381 q->q_src_m, BUS_DMA_NOWAIT) != 0) {
1382 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1383 q->q_src_map = NULL;
1384 err = ENOMEM;
1385 goto errout;
1386 }
1387 #endif
1388 err = dma_map_skb(sc, q->q_src_map, q->q_src_m, &q->q_src_len);
1389 if (unlikely(err != 0))
1390 goto errout;
1391
1392 } else if (crp->crp_flags & CRYPTO_F_IOV) {
1393 #if 0
1394 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
1395 q->q_src_io, BUS_DMA_NOWAIT) != 0) {
1396 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1397 q->q_src_map = NULL;
1398 err = ENOMEM;
1399 goto errout;
1400 }
1401 #endif
1402 err = dma_map_uio(sc, q->q_src_map, q->q_src_io, &q->q_src_len);
1403 if (unlikely(err != 0))
1404 goto errout;
1405 }
1406
1407 /*
1408 * Check alignment
1409 */
1410 nicealign = ubsec_dmamap_aligned(sc, q->q_src_map, q->q_src_len);
1411
1412 dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
1413
1414 #ifdef UBSEC_DEBUG
1415 DPRINTF("src skip: %d\n", sskip);
1416 #endif
1417 for (i = j = 0; i < q->q_src_len; i++) {
1418 struct ubsec_pktbuf *pb;
1419 size_t packl = q->q_src_map[i].dma_size;
1420 dma_addr_t packp = q->q_src_map[i].dma_paddr;
1421
1422 if (sskip >= packl) {
1423 sskip -= packl;
1424 continue;
1425 }
1426
1427 packl -= sskip;
1428 packp += sskip;
1429 sskip = 0;
1430
1431 /* maximum fragment size is 0xfffc */
1432 if (packl > 0xfffc) {
1433 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1434 err = EIO;
1435 goto errout;
1436 }
1437
1438 if (j == 0)
1439 pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
1440 else
1441 pb = &dmap->d_dma->d_sbuf[j - 1];
1442
1443 pb->pb_addr = htole32(packp);
1444
1445 if (stheend) {
1446 if (packl > stheend) {
1447 pb->pb_len = htole32(stheend);
1448 stheend = 0;
1449 } else {
1450 pb->pb_len = htole32(packl);
1451 stheend -= packl;
1452 }
1453 } else
1454 pb->pb_len = htole32(packl);
1455
1456 if ((i + 1) == q->q_src_len)
1457 pb->pb_next = 0;
1458 else
1459 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1460 offsetof(struct ubsec_dmachunk, d_sbuf[j]));
1461 j++;
1462 }
1463
1464 if (enccrd == NULL && maccrd != NULL) {
1465 /* Authentication only */
1466 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
1467 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
1468 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next =
1469 htole32(dmap->d_alloc.dma_paddr +
1470 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1471 #ifdef UBSEC_DEBUG
1472 DPRINTF("opkt: %x %x %x\n",
1473 dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
1474 dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
1475 dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
1476 #endif
1477 } else {
1478 if (crp->crp_flags & CRYPTO_F_IOV) {
1479 if (!nicealign) {
1480 err = EINVAL;
1481 goto errout;
1482 }
1483 #if 0
1484 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1485 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1486 &q->q_dst_map) != 0) {
1487 err = ENOMEM;
1488 goto errout;
1489 }
1490 if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
1491 q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
1492 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1493 q->q_dst_map = NULL;
1494 goto errout;
1495 }
1496 #endif
1497
1498 /* HW shall copy the result into the source memory */
1499 for(i = 0; i < q->q_src_len; i++)
1500 q->q_dst_map[i] = q->q_src_map[i];
1501
1502 q->q_dst_len = q->q_src_len;
1503 q->q_has_dst = 0;
1504
1505 } else if (crp->crp_flags & CRYPTO_F_SKBUF) {
1506 if (nicealign) {
1507
1508 /* HW shall copy the result into the source memory */
1509 q->q_dst_m = q->q_src_m;
1510 for(i = 0; i < q->q_src_len; i++)
1511 q->q_dst_map[i] = q->q_src_map[i];
1512
1513 q->q_dst_len = q->q_src_len;
1514 q->q_has_dst = 0;
1515
1516 } else {
1517 #ifdef NOTYET
1518 int totlen, len;
1519 struct sk_buff *m, *top, **mp;
1520
1521 totlen = q->q_src_map->dm_mapsize;
1522 if (q->q_src_m->m_flags & M_PKTHDR) {
1523 len = MHLEN;
1524 MGETHDR(m, M_DONTWAIT, MT_DATA);
1525 } else {
1526 len = MLEN;
1527 MGET(m, M_DONTWAIT, MT_DATA);
1528 }
1529 if (m == NULL) {
1530 err = ENOMEM;
1531 goto errout;
1532 }
1533 if (len == MHLEN)
1534 M_DUP_PKTHDR(m, q->q_src_m);
1535 if (totlen >= MINCLSIZE) {
1536 MCLGET(m, M_DONTWAIT);
1537 if (m->m_flags & M_EXT)
1538 len = MCLBYTES;
1539 }
1540 m->m_len = len;
1541 top = NULL;
1542 mp = &top;
1543
1544 while (totlen > 0) {
1545 if (top) {
1546 MGET(m, M_DONTWAIT, MT_DATA);
1547 if (m == NULL) {
1548 m_freem(top);
1549 err = ENOMEM;
1550 goto errout;
1551 }
1552 len = MLEN;
1553 }
1554 if (top && totlen >= MINCLSIZE) {
1555 MCLGET(m, M_DONTWAIT);
1556 if (m->m_flags & M_EXT)
1557 len = MCLBYTES;
1558 }
1559 m->m_len = len = min(totlen, len);
1560 totlen -= len;
1561 *mp = m;
1562 mp = &m->m_next;
1563 }
1564 q->q_dst_m = top;
1565 ubsec_mcopy(q->q_src_m, q->q_dst_m,
1566 cpskip, cpoffset);
1567 if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
1568 UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
1569 &q->q_dst_map) != 0) {
1570 err = ENOMEM;
1571 goto errout;
1572 }
1573 if (bus_dmamap_load_mbuf(sc->sc_dmat,
1574 q->q_dst_map, q->q_dst_m,
1575 BUS_DMA_NOWAIT) != 0) {
1576 bus_dmamap_destroy(sc->sc_dmat,
1577 q->q_dst_map);
1578 q->q_dst_map = NULL;
1579 err = ENOMEM;
1580 goto errout;
1581 }
1582 #else
1583 device_printf(sc->sc_dev,
1584 "%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
1585 __FILE__, __LINE__);
1586 err = EINVAL;
1587 goto errout;
1588 #endif
1589 }
1590 } else {
1591 err = EINVAL;
1592 goto errout;
1593 }
1594
1595 #ifdef UBSEC_DEBUG
1596 DPRINTF("dst skip: %d\n", dskip);
1597 #endif
1598 for (i = j = 0; i < q->q_dst_len; i++) {
1599 struct ubsec_pktbuf *pb;
1600 size_t packl = q->q_dst_map[i].dma_size;
1601 dma_addr_t packp = q->q_dst_map[i].dma_paddr;
1602
1603 if (dskip >= packl) {
1604 dskip -= packl;
1605 continue;
1606 }
1607
1608 packl -= dskip;
1609 packp += dskip;
1610 dskip = 0;
1611
1612 if (packl > 0xfffc) {
1613 DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
1614 err = EIO;
1615 goto errout;
1616 }
1617
1618 if (j == 0)
1619 pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
1620 else
1621 pb = &dmap->d_dma->d_dbuf[j - 1];
1622
1623 pb->pb_addr = htole32(packp);
1624
1625 if (dtheend) {
1626 if (packl > dtheend) {
1627 pb->pb_len = htole32(dtheend);
1628 dtheend = 0;
1629 } else {
1630 pb->pb_len = htole32(packl);
1631 dtheend -= packl;
1632 }
1633 } else
1634 pb->pb_len = htole32(packl);
1635
1636 if ((i + 1) == q->q_dst_len) {
1637 if (maccrd)
1638 /* Authentication:
1639 * The last fragment of the output buffer
1640 * contains the HMAC. */
1641 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1642 offsetof(struct ubsec_dmachunk, d_macbuf[0]));
1643 else
1644 pb->pb_next = 0;
1645 } else
1646 pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
1647 offsetof(struct ubsec_dmachunk, d_dbuf[j]));
1648 j++;
1649 }
1650 }
1651
1652 dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
1653 offsetof(struct ubsec_dmachunk, d_ctx));
1654
1655 if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
1656 /* new Broadcom cards with dynamic long command context structure */
1657
1658 if (enccrd != NULL &&
1659 enccrd->crd_alg == CRYPTO_AES_CBC)
1660 {
1661 struct ubsec_pktctx_aes128 *ctxaes128;
1662 struct ubsec_pktctx_aes192 *ctxaes192;
1663 struct ubsec_pktctx_aes256 *ctxaes256;
1664
1665 switch(ses->ses_keysize)
1666 {
1667 /* AES 128bit */
1668 case 128:
1669 ctxaes128 = (struct ubsec_pktctx_aes128 *)
1670 (dmap->d_alloc.dma_vaddr +
1671 offsetof(struct ubsec_dmachunk, d_ctx));
1672
1673 ctxaes128->pc_len = htole16(sizeof(struct ubsec_pktctx_aes128));
1674 ctxaes128->pc_type = ctx.pc_type;
1675 ctxaes128->pc_flags = ctx.pc_flags;
1676 ctxaes128->pc_offset = ctx.pc_offset;
1677 for (i = 0; i < 4; i++)
1678 ctxaes128->pc_aeskey[i] = ctx.pc_key[i];
1679 for (i = 0; i < 5; i++)
1680 ctxaes128->pc_hminner[i] = ctx.pc_hminner[i];
1681 for (i = 0; i < 5; i++)
1682 ctxaes128->pc_hmouter[i] = ctx.pc_hmouter[i];
1683 for (i = 0; i < 4; i++)
1684 ctxaes128->pc_iv[i] = ctx.pc_iv[i];
1685 break;
1686
1687 /* AES 192bit */
1688 case 192:
1689 ctxaes192 = (struct ubsec_pktctx_aes192 *)
1690 (dmap->d_alloc.dma_vaddr +
1691 offsetof(struct ubsec_dmachunk, d_ctx));
1692
1693 ctxaes192->pc_len = htole16(sizeof(struct ubsec_pktctx_aes192));
1694 ctxaes192->pc_type = ctx.pc_type;
1695 ctxaes192->pc_flags = ctx.pc_flags;
1696 ctxaes192->pc_offset = ctx.pc_offset;
1697 for (i = 0; i < 6; i++)
1698 ctxaes192->pc_aeskey[i] = ctx.pc_key[i];
1699 for (i = 0; i < 5; i++)
1700 ctxaes192->pc_hminner[i] = ctx.pc_hminner[i];
1701 for (i = 0; i < 5; i++)
1702 ctxaes192->pc_hmouter[i] = ctx.pc_hmouter[i];
1703 for (i = 0; i < 4; i++)
1704 ctxaes192->pc_iv[i] = ctx.pc_iv[i];
1705 break;
1706
1707 /* AES 256bit */
1708 case 256:
1709 ctxaes256 = (struct ubsec_pktctx_aes256 *)
1710 (dmap->d_alloc.dma_vaddr +
1711 offsetof(struct ubsec_dmachunk, d_ctx));
1712
1713 ctxaes256->pc_len = htole16(sizeof(struct ubsec_pktctx_aes256));
1714 ctxaes256->pc_type = ctx.pc_type;
1715 ctxaes256->pc_flags = ctx.pc_flags;
1716 ctxaes256->pc_offset = ctx.pc_offset;
1717 for (i = 0; i < 8; i++)
1718 ctxaes256->pc_aeskey[i] = ctx.pc_key[i];
1719 for (i = 0; i < 5; i++)
1720 ctxaes256->pc_hminner[i] = ctx.pc_hminner[i];
1721 for (i = 0; i < 5; i++)
1722 ctxaes256->pc_hmouter[i] = ctx.pc_hmouter[i];
1723 for (i = 0; i < 4; i++)
1724 ctxaes256->pc_iv[i] = ctx.pc_iv[i];
1725 break;
1726
1727 }
1728 } else {
1729 /*
1730 * [3]DES / MD5_HMAC / SHA1_HMAC
1731 *
1732 * MD5_HMAC / SHA1_HMAC can use the IPSEC 3DES operation without
1733 * encryption.
1734 */
1735 struct ubsec_pktctx_des *ctxdes;
1736
1737 ctxdes = (struct ubsec_pktctx_des *)(dmap->d_alloc.dma_vaddr +
1738 offsetof(struct ubsec_dmachunk, d_ctx));
1739
1740 ctxdes->pc_len = htole16(sizeof(struct ubsec_pktctx_des));
1741 ctxdes->pc_type = ctx.pc_type;
1742 ctxdes->pc_flags = ctx.pc_flags;
1743 ctxdes->pc_offset = ctx.pc_offset;
1744 for (i = 0; i < 6; i++)
1745 ctxdes->pc_deskey[i] = ctx.pc_key[i];
1746 for (i = 0; i < 5; i++)
1747 ctxdes->pc_hminner[i] = ctx.pc_hminner[i];
1748 for (i = 0; i < 5; i++)
1749 ctxdes->pc_hmouter[i] = ctx.pc_hmouter[i];
1750 ctxdes->pc_iv[0] = ctx.pc_iv[0];
1751 ctxdes->pc_iv[1] = ctx.pc_iv[1];
1752 }
1753 } else
1754 {
1755 /* old Broadcom card with fixed small command context structure */
1756
1757 /*
1758 * [3]DES / MD5_HMAC / SHA1_HMAC
1759 */
1760 struct ubsec_pktctx *ctxs;
1761
1762 ctxs = (struct ubsec_pktctx *)(dmap->d_alloc.dma_vaddr +
1763 offsetof(struct ubsec_dmachunk, d_ctx));
1764
1765 /* transform generic context into small context */
1766 for (i = 0; i < 6; i++)
1767 ctxs->pc_deskey[i] = ctx.pc_key[i];
1768 for (i = 0; i < 5; i++)
1769 ctxs->pc_hminner[i] = ctx.pc_hminner[i];
1770 for (i = 0; i < 5; i++)
1771 ctxs->pc_hmouter[i] = ctx.pc_hmouter[i];
1772 ctxs->pc_iv[0] = ctx.pc_iv[0];
1773 ctxs->pc_iv[1] = ctx.pc_iv[1];
1774 ctxs->pc_flags = ctx.pc_flags;
1775 ctxs->pc_offset = ctx.pc_offset;
1776 }
1777
1778 #ifdef UBSEC_VERBOSE_DEBUG
1779 DPRINTF("spin_lock_irqsave\n");
1780 #endif
1781 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1782 //spin_lock_irq(&sc->sc_ringmtx);
1783
1784 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
1785 sc->sc_nqueue++;
1786 ubsecstats.hst_ipackets++;
1787 ubsecstats.hst_ibytes += stheend;
1788 ubsec_feed(sc);
1789
1790 #ifdef UBSEC_VERBOSE_DEBUG
1791 DPRINTF("spin_unlock_irqrestore\n");
1792 #endif
1793 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1794 //spin_unlock_irq(&sc->sc_ringmtx);
1795
1796 return (0);
1797
1798 errout:
1799 if (q != NULL) {
1800 #ifdef NOTYET
1801 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
1802 m_freem(q->q_dst_m);
1803 #endif
1804
1805 if ((q->q_has_dst == 1) && q->q_dst_len > 0) {
1806 #if 0
1807 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1808 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1809 #endif
1810 dma_unmap(sc, q->q_dst_map, q->q_dst_len);
1811 }
1812 if (q->q_src_len > 0) {
1813 #if 0
1814 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1815 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1816 #endif
1817 dma_unmap(sc, q->q_src_map, q->q_src_len);
1818 }
1819
1820 #ifdef UBSEC_VERBOSE_DEBUG
1821 DPRINTF("spin_lock_irqsave\n");
1822 #endif
1823 spin_lock_irqsave(&sc->sc_ringmtx, flags);
1824 //spin_lock_irq(&sc->sc_ringmtx);
1825
1826 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1827
1828 #ifdef UBSEC_VERBOSE_DEBUG
1829 DPRINTF("spin_unlock_irqrestore\n");
1830 #endif
1831 spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
1832 //spin_unlock_irq(&sc->sc_ringmtx);
1833
1834 }
1835 if (err == EINVAL)
1836 ubsecstats.hst_invalid++;
1837 else
1838 ubsecstats.hst_nomem++;
1839 errout2:
1840 crp->crp_etype = err;
1841 crypto_done(crp);
1842
1843 #ifdef UBSEC_DEBUG
1844 DPRINTF("%s() err = %x\n", __FUNCTION__, err);
1845 #endif
1846
1847 return (0);
1848 }
1849
1850 void
1851 ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
1852 {
1853 struct cryptop *crp = (struct cryptop *)q->q_crp;
1854 struct cryptodesc *crd;
1855 struct ubsec_dma *dmap = q->q_dma;
1856 int ivsize = 8;
1857
1858 #ifdef UBSEC_DEBUG
1859 DPRINTF("%s()\n", __FUNCTION__);
1860 #endif
1861
1862 ubsecstats.hst_opackets++;
1863 ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
1864
1865 #if 0
1866 bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
1867 dmap->d_alloc.dma_map->dm_mapsize,
1868 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
1869 if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
1870 bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
1871 0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
1872 bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
1873 bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
1874 }
1875 bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
1876 0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1877 bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
1878 bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
1879 #endif
1880
1881 if ((q->q_has_dst == 1) && q->q_dst_len > 0)
1882 dma_unmap(sc, q->q_dst_map, q->q_dst_len);
1883
1884 dma_unmap(sc, q->q_src_map, q->q_src_len);
1885
1886 #ifdef NOTYET
1887 if ((crp->crp_flags & CRYPTO_F_SKBUF) && (q->q_src_m != q->q_dst_m)) {
1888 m_freem(q->q_src_m);
1889 crp->crp_buf = (caddr_t)q->q_dst_m;
1890 }
1891 #endif
1892
1893 /* copy out IV for future use */
1894 if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
1895 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1896 if (crd->crd_alg != CRYPTO_DES_CBC &&
1897 crd->crd_alg != CRYPTO_3DES_CBC &&
1898 crd->crd_alg != CRYPTO_AES_CBC)
1899 continue;
1900
1901 if (crd->crd_alg == CRYPTO_AES_CBC)
1902 ivsize = 16;
1903 else
1904 ivsize = 8;
1905
1906 if (crp->crp_flags & CRYPTO_F_SKBUF)
1907 #if 0
1908 m_copydata((struct sk_buff *)crp->crp_buf,
1909 crd->crd_skip + crd->crd_len - 8, 8,
1910 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1911 #endif
1912 crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
1913 crd->crd_skip + crd->crd_len - ivsize, ivsize,
1914 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1915
1916 else if (crp->crp_flags & CRYPTO_F_IOV) {
1917 #if 0
1918 cuio_copydata((struct uio *)crp->crp_buf,
1919 crd->crd_skip + crd->crd_len - 8, 8,
1920 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1921 #endif
1922 crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
1923 crd->crd_skip + crd->crd_len - ivsize, ivsize,
1924 (caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
1925
1926 }
1927 break;
1928 }
1929 }
1930
1931 for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
1932 if (crd->crd_alg != CRYPTO_MD5_HMAC &&
1933 crd->crd_alg != CRYPTO_SHA1_HMAC)
1934 continue;
1935 #if 0
1936 if (crp->crp_flags & CRYPTO_F_SKBUF)
1937 m_copyback((struct sk_buff *)crp->crp_buf,
1938 crd->crd_inject, 12,
1939 dmap->d_dma->d_macbuf);
1940 #endif
1941 #if 0
1942 /* BUG? it does not honor the mac len.. */
1943 crypto_copyback(crp->crp_flags, crp->crp_buf,
1944 crd->crd_inject, 12,
1945 (caddr_t)dmap->d_dma->d_macbuf);
1946 #endif
1947 crypto_copyback(crp->crp_flags, crp->crp_buf,
1948 crd->crd_inject,
1949 sc->sc_sessions[q->q_sesn].ses_mlen,
1950 (caddr_t)dmap->d_dma->d_macbuf);
1951 #if 0
1952 else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
1953 bcopy((caddr_t)dmap->d_dma->d_macbuf,
1954 crp->crp_mac, 12);
1955 #endif
1956 break;
1957 }
1958 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
1959 crypto_done(crp);
1960 }
1961
1962 void
1963 ubsec_mcopy(struct sk_buff *srcm, struct sk_buff *dstm, int hoffset, int toffset)
1964 {
1965 int i, j, dlen, slen;
1966 caddr_t dptr, sptr;
1967
1968 j = 0;
1969 sptr = srcm->data;
1970 slen = srcm->len;
1971 dptr = dstm->data;
1972 dlen = dstm->len;
1973
1974 while (1) {
1975 for (i = 0; i < min(slen, dlen); i++) {
1976 if (j < hoffset || j >= toffset)
1977 *dptr++ = *sptr++;
1978 slen--;
1979 dlen--;
1980 j++;
1981 }
1982 if (slen == 0) {
1983 srcm = srcm->next;
1984 if (srcm == NULL)
1985 return;
1986 sptr = srcm->data;
1987 slen = srcm->len;
1988 }
1989 if (dlen == 0) {
1990 dstm = dstm->next;
1991 if (dstm == NULL)
1992 return;
1993 dptr = dstm->data;
1994 dlen = dstm->len;
1995 }
1996 }
1997 }
1998
1999 int
2000 ubsec_dma_malloc(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma,
2001 size_t size, int mapflags)
2002 {
2003 dma->dma_vaddr = dma_alloc_coherent(sc->sc_dv,
2004 size, &dma->dma_paddr, GFP_KERNEL);
2005
2006 if (likely(dma->dma_vaddr))
2007 {
2008 dma->dma_size = size;
2009 return (0);
2010 }
2011
2012 DPRINTF("could not allocate %d bytes of coherent memory.\n", size);
2013
2014 return (1);
2015 }
2016
2017 void
2018 ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
2019 {
2020 dma_free_coherent(sc->sc_dv, dma->dma_size, dma->dma_vaddr,
2021 dma->dma_paddr);
2022 }
2023
2024 /*
2025 * Resets the board. Values in the regesters are left as is
2026 * from the reset (i.e. initial values are assigned elsewhere).
2027 */
2028 void
2029 ubsec_reset_board(struct ubsec_softc *sc)
2030 {
2031 volatile u_int32_t ctrl;
2032
2033 #ifdef UBSEC_DEBUG
2034 DPRINTF("%s()\n", __FUNCTION__);
2035 #endif
2036 DPRINTF("Send reset signal to chip.\n");
2037
2038 ctrl = READ_REG(sc, BS_CTRL);
2039 ctrl |= BS_CTRL_RESET;
2040 WRITE_REG(sc, BS_CTRL, ctrl);
2041
2042 /*
2043 * Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
2044 */
2045 DELAY(10);
2046 }
2047
2048 /*
2049 * Init Broadcom registers
2050 */
2051 void
2052 ubsec_init_board(struct ubsec_softc *sc)
2053 {
2054 u_int32_t ctrl;
2055
2056 #ifdef UBSEC_DEBUG
2057 DPRINTF("%s()\n", __FUNCTION__);
2058 #endif
2059 DPRINTF("Initialize chip.\n");
2060
2061 ctrl = READ_REG(sc, BS_CTRL);
2062 ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
2063 ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT | BS_CTRL_DMAERR;
2064
2065 WRITE_REG(sc, BS_CTRL, ctrl);
2066
2067 /* Set chip capabilities (BCM5365P) */
2068 sc->sc_flags |= UBS_FLAGS_LONGCTX | UBS_FLAGS_AES;
2069 }
2070
2071 /*
2072 * Clean up after a chip crash.
2073 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2074 */
2075 void
2076 ubsec_cleanchip(struct ubsec_softc *sc)
2077 {
2078 struct ubsec_q *q;
2079
2080 #ifdef UBSEC_DEBUG
2081 DPRINTF("%s()\n", __FUNCTION__);
2082 #endif
2083 DPRINTF("Clean up queues after chip crash.\n");
2084
2085 while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
2086 q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
2087 BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
2088 ubsec_free_q(sc, q);
2089 }
2090 }
2091
2092 /*
2093 * free a ubsec_q
2094 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2095 */
2096 int
2097 ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
2098 {
2099 struct ubsec_q *q2;
2100 struct cryptop *crp;
2101 int npkts;
2102 int i;
2103
2104 #ifdef UBSEC_DEBUG
2105 DPRINTF("%s()\n", __FUNCTION__);
2106 #endif
2107
2108 npkts = q->q_nstacked_mcrs;
2109
2110 for (i = 0; i < npkts; i++) {
2111 if(q->q_stacked_mcr[i]) {
2112 q2 = q->q_stacked_mcr[i];
2113
2114 if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
2115 #ifdef NOTYET
2116 m_freem(q2->q_dst_m);
2117 #else
2118 printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
2119 #endif
2120
2121 crp = (struct cryptop *)q2->q_crp;
2122
2123 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
2124
2125 crp->crp_etype = EFAULT;
2126 crypto_done(crp);
2127 } else {
2128 break;
2129 }
2130 }
2131
2132 /*
2133 * Free header MCR
2134 */
2135 if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
2136 #ifdef NOTYET
2137 m_freem(q->q_dst_m);
2138 #else
2139 printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
2140 #endif
2141
2142 crp = (struct cryptop *)q->q_crp;
2143
2144 BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
2145
2146 crp->crp_etype = EFAULT;
2147 crypto_done(crp);
2148 return(0);
2149 }
2150
2151 /*
2152 * Routine to reset the chip and clean up.
2153 * It is assumed that the caller has spin_lock_irq(sc_ringmtx).
2154 */
2155 void
2156 ubsec_totalreset(struct ubsec_softc *sc)
2157 {
2158
2159 #ifdef UBSEC_DEBUG
2160 DPRINTF("%s()\n", __FUNCTION__);
2161 #endif
2162 DPRINTF("initiate total chip reset.. \n");
2163 ubsec_reset_board(sc);
2164 ubsec_init_board(sc);
2165 ubsec_cleanchip(sc);
2166 }
2167
2168 void
2169 ubsec_dump_pb(struct ubsec_pktbuf *pb)
2170 {
2171 printf("addr 0x%x (0x%x) next 0x%x\n",
2172 pb->pb_addr, pb->pb_len, pb->pb_next);
2173 }
2174
2175 void
2176 ubsec_dump_mcr(struct ubsec_mcr *mcr)
2177 {
2178 struct ubsec_mcr_add *ma;
2179 int i;
2180
2181 printf("MCR:\n");
2182 printf(" pkts: %u, flags 0x%x\n",
2183 letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
2184 ma = (struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
2185 for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
2186 printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
2187 letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
2188 letoh16(ma->mcr_reserved));
2189 printf(" %d: ipkt ", i);
2190 ubsec_dump_pb(&ma->mcr_ipktbuf);
2191 printf(" %d: opkt ", i);
2192 ubsec_dump_pb(&ma->mcr_opktbuf);
2193 ma++;
2194 }
2195 printf("END MCR\n");
2196 }
2197
2198 static int __init mod_init(void) {
2199 return ssb_driver_register(&ubsec_ssb_driver);
2200 }
2201
2202 static void __exit mod_exit(void) {
2203 ssb_driver_unregister(&ubsec_ssb_driver);
2204 }
2205
2206 module_init(mod_init);
2207 module_exit(mod_exit);
2208
2209 // Meta information
2210 MODULE_AUTHOR("Daniel Mueller <daniel@danm.de>");
2211 MODULE_LICENSE("BSD");
2212 MODULE_DESCRIPTION("OCF driver for BCM5365P IPSec Core");
2213 MODULE_VERSION(DRV_MODULE_VERSION);
2214