adm5120: remove __dev{init,exit} annotations
[openwrt/svn-archive/archive.git] / target / linux / adm5120 / files / drivers / net / adm5120sw.c
1 /*
2 * ADM5120 built-in ethernet switch driver
3 *
4 * Copyright (C) 2007-2008 Gabor Juhos <juhosg@openwrt.org>
5 *
6 * This code was based on a driver for Linux 2.6.xx by Jeroen Vreeken.
7 * Copyright Jeroen Vreeken (pe1rxq@amsat.org), 2005
8 * NAPI extension for the Jeroen's driver
9 * Copyright Thomas Langer (Thomas.Langer@infineon.com), 2007
10 * Copyright Friedrich Beckmann (Friedrich.Beckmann@infineon.com), 2007
11 * Inspiration for the Jeroen's driver came from the ADMtek 2.4 driver.
12 * Copyright ADMtek Inc.
13 *
14 * This program is free software; you can redistribute it and/or modify it
15 * under the terms of the GNU General Public License version 2 as published
16 * by the Free Software Foundation.
17 *
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/spinlock.h>
26 #include <linux/platform_device.h>
27 #include <linux/io.h>
28 #include <linux/irq.h>
29
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/skbuff.h>
33
34 #include <asm/mipsregs.h>
35
36 #include <asm/mach-adm5120/adm5120_info.h>
37 #include <asm/mach-adm5120/adm5120_defs.h>
38 #include <asm/mach-adm5120/adm5120_switch.h>
39
40 #include "adm5120sw.h"
41 #include <linux/dma-mapping.h>
42
43 #define DRV_NAME "adm5120-switch"
44 #define DRV_DESC "ADM5120 built-in ethernet switch driver"
45 #define DRV_VERSION "0.1.1"
46
47 #define CONFIG_ADM5120_SWITCH_NAPI 1
48 #undef CONFIG_ADM5120_SWITCH_DEBUG
49
50 /* ------------------------------------------------------------------------ */
51
52 #ifdef CONFIG_ADM5120_SWITCH_DEBUG
53 #define SW_DBG(f, a...) printk(KERN_DEBUG "%s: " f, DRV_NAME , ## a)
54 #else
55 #define SW_DBG(f, a...) do {} while (0)
56 #endif
57 #define SW_ERR(f, a...) printk(KERN_ERR "%s: " f, DRV_NAME , ## a)
58 #define SW_INFO(f, a...) printk(KERN_INFO "%s: " f, DRV_NAME , ## a)
59
60 #define SWITCH_NUM_PORTS 6
61 #define ETH_CSUM_LEN 4
62
63 #define RX_MAX_PKTLEN 1550
64 #define RX_RING_SIZE 64
65
66 #define TX_RING_SIZE 32
67 #define TX_QUEUE_LEN 28 /* Limit ring entries actually used. */
68 #define TX_TIMEOUT (HZ * 400)
69
70 #define RX_DESCS_SIZE (RX_RING_SIZE * sizeof(struct dma_desc *))
71 #define RX_SKBS_SIZE (RX_RING_SIZE * sizeof(struct sk_buff *))
72 #define TX_DESCS_SIZE (TX_RING_SIZE * sizeof(struct dma_desc *))
73 #define TX_SKBS_SIZE (TX_RING_SIZE * sizeof(struct sk_buff *))
74
75 #define SKB_ALLOC_LEN (RX_MAX_PKTLEN + 32)
76 #define SKB_RESERVE_LEN (NET_IP_ALIGN + NET_SKB_PAD)
77
78 #define SWITCH_INTS_HIGH (SWITCH_INT_SHD | SWITCH_INT_RHD | SWITCH_INT_HDF)
79 #define SWITCH_INTS_LOW (SWITCH_INT_SLD | SWITCH_INT_RLD | SWITCH_INT_LDF)
80 #define SWITCH_INTS_ERR (SWITCH_INT_RDE | SWITCH_INT_SDE | SWITCH_INT_CPUH)
81 #define SWITCH_INTS_Q (SWITCH_INT_P0QF | SWITCH_INT_P1QF | SWITCH_INT_P2QF | \
82 SWITCH_INT_P3QF | SWITCH_INT_P4QF | SWITCH_INT_P5QF | \
83 SWITCH_INT_CPQF | SWITCH_INT_GQF)
84
85 #define SWITCH_INTS_ALL (SWITCH_INTS_HIGH | SWITCH_INTS_LOW | \
86 SWITCH_INTS_ERR | SWITCH_INTS_Q | \
87 SWITCH_INT_MD | SWITCH_INT_PSC)
88
89 #define SWITCH_INTS_USED (SWITCH_INTS_LOW | SWITCH_INT_PSC)
90 #define SWITCH_INTS_POLL (SWITCH_INT_RLD | SWITCH_INT_LDF | SWITCH_INT_SLD)
91
92 /* ------------------------------------------------------------------------ */
93
94 struct adm5120_if_priv {
95 struct net_device *dev;
96
97 unsigned int vlan_no;
98 unsigned int port_mask;
99
100 #ifdef CONFIG_ADM5120_SWITCH_NAPI
101 struct napi_struct napi;
102 #endif
103 };
104
105 struct dma_desc {
106 __u32 buf1;
107 #define DESC_OWN (1UL << 31) /* Owned by the switch */
108 #define DESC_EOR (1UL << 28) /* End of Ring */
109 #define DESC_ADDR_MASK 0x1FFFFFF
110 #define DESC_ADDR(x) ((__u32)(x) & DESC_ADDR_MASK)
111 __u32 buf2;
112 #define DESC_BUF2_EN (1UL << 31) /* Buffer 2 enable */
113 __u32 buflen;
114 __u32 misc;
115 /* definitions for tx/rx descriptors */
116 #define DESC_PKTLEN_SHIFT 16
117 #define DESC_PKTLEN_MASK 0x7FF
118 /* tx descriptor specific part */
119 #define DESC_CSUM (1UL << 31) /* Append checksum */
120 #define DESC_DSTPORT_SHIFT 8
121 #define DESC_DSTPORT_MASK 0x3F
122 #define DESC_VLAN_MASK 0x3F
123 /* rx descriptor specific part */
124 #define DESC_SRCPORT_SHIFT 12
125 #define DESC_SRCPORT_MASK 0x7
126 #define DESC_DA_MASK 0x3
127 #define DESC_DA_SHIFT 4
128 #define DESC_IPCSUM_FAIL (1UL << 3) /* IP checksum fail */
129 #define DESC_VLAN_TAG (1UL << 2) /* VLAN tag present */
130 #define DESC_TYPE_MASK 0x3 /* mask for Packet type */
131 #define DESC_TYPE_IP 0x0 /* IP packet */
132 #define DESC_TYPE_PPPoE 0x1 /* PPPoE packet */
133 } __attribute__ ((aligned(16)));
134
135 /* ------------------------------------------------------------------------ */
136
137 static int adm5120_nrdevs;
138
139 static struct net_device *adm5120_devs[SWITCH_NUM_PORTS];
140 /* Lookup table port -> device */
141 static struct net_device *adm5120_port[SWITCH_NUM_PORTS];
142
143 static struct dma_desc *txl_descs;
144 static struct dma_desc *rxl_descs;
145
146 static dma_addr_t txl_descs_dma;
147 static dma_addr_t rxl_descs_dma;
148
149 static struct sk_buff **txl_skbuff;
150 static struct sk_buff **rxl_skbuff;
151
152 static unsigned int cur_rxl, dirty_rxl; /* producer/consumer ring indices */
153 static unsigned int cur_txl, dirty_txl;
154
155 static unsigned int sw_used;
156
157 static DEFINE_SPINLOCK(tx_lock);
158
159 /* ------------------------------------------------------------------------ */
160
161 static inline u32 sw_read_reg(u32 reg)
162 {
163 return __raw_readl((void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
164 }
165
166 static inline void sw_write_reg(u32 reg, u32 val)
167 {
168 __raw_writel(val, (void __iomem *)KSEG1ADDR(ADM5120_SWITCH_BASE)+reg);
169 }
170
171 static inline void sw_int_mask(u32 mask)
172 {
173 u32 t;
174
175 t = sw_read_reg(SWITCH_REG_INT_MASK);
176 t |= mask;
177 sw_write_reg(SWITCH_REG_INT_MASK, t);
178 }
179
180 static inline void sw_int_unmask(u32 mask)
181 {
182 u32 t;
183
184 t = sw_read_reg(SWITCH_REG_INT_MASK);
185 t &= ~mask;
186 sw_write_reg(SWITCH_REG_INT_MASK, t);
187 }
188
189 static inline void sw_int_ack(u32 mask)
190 {
191 sw_write_reg(SWITCH_REG_INT_STATUS, mask);
192 }
193
194 static inline u32 sw_int_status(void)
195 {
196 u32 t;
197
198 t = sw_read_reg(SWITCH_REG_INT_STATUS);
199 t &= ~sw_read_reg(SWITCH_REG_INT_MASK);
200 return t;
201 }
202
203 static inline u32 desc_get_srcport(struct dma_desc *desc)
204 {
205 return (desc->misc >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK;
206 }
207
208 static inline u32 desc_get_pktlen(struct dma_desc *desc)
209 {
210 return (desc->misc >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK;
211 }
212
213 static inline int desc_ipcsum_fail(struct dma_desc *desc)
214 {
215 return ((desc->misc & DESC_IPCSUM_FAIL) != 0);
216 }
217
218 /* ------------------------------------------------------------------------ */
219
220 #ifdef CONFIG_ADM5120_SWITCH_DEBUG
221 static void sw_dump_desc(char *label, struct dma_desc *desc, int tx)
222 {
223 u32 t;
224
225 SW_DBG("%s %s desc/%p\n", label, tx ? "tx" : "rx", desc);
226
227 t = desc->buf1;
228 SW_DBG(" buf1 %08X addr=%08X; len=%08X %s%s\n", t,
229 t & DESC_ADDR_MASK,
230 desc->buflen,
231 (t & DESC_OWN) ? "SWITCH" : "CPU",
232 (t & DESC_EOR) ? " RE" : "");
233
234 t = desc->buf2;
235 SW_DBG(" buf2 %08X addr=%08X%s\n", desc->buf2,
236 t & DESC_ADDR_MASK,
237 (t & DESC_BUF2_EN) ? " EN" : "");
238
239 t = desc->misc;
240 if (tx)
241 SW_DBG(" misc %08X%s pktlen=%04X ports=%02X vlan=%02X\n", t,
242 (t & DESC_CSUM) ? " CSUM" : "",
243 (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
244 (t >> DESC_DSTPORT_SHIFT) & DESC_DSTPORT_MASK,
245 t & DESC_VLAN_MASK);
246 else
247 SW_DBG(" misc %08X pktlen=%04X port=%d DA=%d%s%s type=%d\n",
248 t,
249 (t >> DESC_PKTLEN_SHIFT) & DESC_PKTLEN_MASK,
250 (t >> DESC_SRCPORT_SHIFT) & DESC_SRCPORT_MASK,
251 (t >> DESC_DA_SHIFT) & DESC_DA_MASK,
252 (t & DESC_IPCSUM_FAIL) ? " IPCF" : "",
253 (t & DESC_VLAN_TAG) ? " VLAN" : "",
254 (t & DESC_TYPE_MASK));
255 }
256
257 static void sw_dump_intr_mask(char *label, u32 mask)
258 {
259 SW_DBG("%s %08X%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
260 label, mask,
261 (mask & SWITCH_INT_SHD) ? " SHD" : "",
262 (mask & SWITCH_INT_SLD) ? " SLD" : "",
263 (mask & SWITCH_INT_RHD) ? " RHD" : "",
264 (mask & SWITCH_INT_RLD) ? " RLD" : "",
265 (mask & SWITCH_INT_HDF) ? " HDF" : "",
266 (mask & SWITCH_INT_LDF) ? " LDF" : "",
267 (mask & SWITCH_INT_P0QF) ? " P0QF" : "",
268 (mask & SWITCH_INT_P1QF) ? " P1QF" : "",
269 (mask & SWITCH_INT_P2QF) ? " P2QF" : "",
270 (mask & SWITCH_INT_P3QF) ? " P3QF" : "",
271 (mask & SWITCH_INT_P4QF) ? " P4QF" : "",
272 (mask & SWITCH_INT_CPQF) ? " CPQF" : "",
273 (mask & SWITCH_INT_GQF) ? " GQF" : "",
274 (mask & SWITCH_INT_MD) ? " MD" : "",
275 (mask & SWITCH_INT_BCS) ? " BCS" : "",
276 (mask & SWITCH_INT_PSC) ? " PSC" : "",
277 (mask & SWITCH_INT_ID) ? " ID" : "",
278 (mask & SWITCH_INT_W0TE) ? " W0TE" : "",
279 (mask & SWITCH_INT_W1TE) ? " W1TE" : "",
280 (mask & SWITCH_INT_RDE) ? " RDE" : "",
281 (mask & SWITCH_INT_SDE) ? " SDE" : "",
282 (mask & SWITCH_INT_CPUH) ? " CPUH" : "");
283 }
284
285 static void sw_dump_regs(void)
286 {
287 u32 t;
288
289 t = sw_read_reg(SWITCH_REG_PHY_STATUS);
290 SW_DBG("phy_status: %08X\n", t);
291
292 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
293 SW_DBG("cpup_conf: %08X%s%s%s\n", t,
294 (t & CPUP_CONF_DCPUP) ? " DCPUP" : "",
295 (t & CPUP_CONF_CRCP) ? " CRCP" : "",
296 (t & CPUP_CONF_BTM) ? " BTM" : "");
297
298 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
299 SW_DBG("port_conf0: %08X\n", t);
300 t = sw_read_reg(SWITCH_REG_PORT_CONF1);
301 SW_DBG("port_conf1: %08X\n", t);
302 t = sw_read_reg(SWITCH_REG_PORT_CONF2);
303 SW_DBG("port_conf2: %08X\n", t);
304
305 t = sw_read_reg(SWITCH_REG_VLAN_G1);
306 SW_DBG("vlan g1: %08X\n", t);
307 t = sw_read_reg(SWITCH_REG_VLAN_G2);
308 SW_DBG("vlan g2: %08X\n", t);
309
310 t = sw_read_reg(SWITCH_REG_BW_CNTL0);
311 SW_DBG("bw_cntl0: %08X\n", t);
312 t = sw_read_reg(SWITCH_REG_BW_CNTL1);
313 SW_DBG("bw_cntl1: %08X\n", t);
314
315 t = sw_read_reg(SWITCH_REG_PHY_CNTL0);
316 SW_DBG("phy_cntl0: %08X\n", t);
317 t = sw_read_reg(SWITCH_REG_PHY_CNTL1);
318 SW_DBG("phy_cntl1: %08X\n", t);
319 t = sw_read_reg(SWITCH_REG_PHY_CNTL2);
320 SW_DBG("phy_cntl2: %08X\n", t);
321 t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
322 SW_DBG("phy_cntl3: %08X\n", t);
323 t = sw_read_reg(SWITCH_REG_PHY_CNTL4);
324 SW_DBG("phy_cntl4: %08X\n", t);
325
326 t = sw_read_reg(SWITCH_REG_INT_STATUS);
327 sw_dump_intr_mask("int_status: ", t);
328
329 t = sw_read_reg(SWITCH_REG_INT_MASK);
330 sw_dump_intr_mask("int_mask: ", t);
331
332 t = sw_read_reg(SWITCH_REG_SHDA);
333 SW_DBG("shda: %08X\n", t);
334 t = sw_read_reg(SWITCH_REG_SLDA);
335 SW_DBG("slda: %08X\n", t);
336 t = sw_read_reg(SWITCH_REG_RHDA);
337 SW_DBG("rhda: %08X\n", t);
338 t = sw_read_reg(SWITCH_REG_RLDA);
339 SW_DBG("rlda: %08X\n", t);
340 }
341 #else
342 static inline void sw_dump_desc(char *label, struct dma_desc *desc, int tx) {}
343 static void sw_dump_intr_mask(char *label, u32 mask) {}
344 static inline void sw_dump_regs(void) {}
345 #endif /* CONFIG_ADM5120_SWITCH_DEBUG */
346
347 /* ------------------------------------------------------------------------ */
348
349 static inline void adm5120_rx_dma_update(struct dma_desc *desc,
350 struct sk_buff *skb, int end)
351 {
352 desc->misc = 0;
353 desc->buf2 = 0;
354 desc->buflen = RX_MAX_PKTLEN;
355 desc->buf1 = DESC_ADDR(skb->data) |
356 DESC_OWN | (end ? DESC_EOR : 0);
357 }
358
359 static void adm5120_switch_rx_refill(void)
360 {
361 unsigned int entry;
362
363 for (; cur_rxl - dirty_rxl > 0; dirty_rxl++) {
364 struct dma_desc *desc;
365 struct sk_buff *skb;
366
367 entry = dirty_rxl % RX_RING_SIZE;
368 desc = &rxl_descs[entry];
369
370 skb = rxl_skbuff[entry];
371 if (skb == NULL) {
372 skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
373 if (skb) {
374 skb_reserve(skb, SKB_RESERVE_LEN);
375 rxl_skbuff[entry] = skb;
376 } else {
377 SW_ERR("no memory for skb\n");
378 desc->buflen = 0;
379 desc->buf2 = 0;
380 desc->misc = 0;
381 desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN;
382 break;
383 }
384 }
385
386 desc->buf2 = 0;
387 desc->buflen = RX_MAX_PKTLEN;
388 desc->misc = 0;
389 desc->buf1 = (desc->buf1 & DESC_EOR) | DESC_OWN |
390 DESC_ADDR(skb->data);
391 }
392 }
393
394 static int adm5120_switch_rx(int limit)
395 {
396 unsigned int done = 0;
397
398 SW_DBG("rx start, limit=%d, cur_rxl=%u, dirty_rxl=%u\n",
399 limit, cur_rxl, dirty_rxl);
400
401 while (done < limit) {
402 int entry = cur_rxl % RX_RING_SIZE;
403 struct dma_desc *desc = &rxl_descs[entry];
404 struct net_device *rdev;
405 unsigned int port;
406
407 if (desc->buf1 & DESC_OWN)
408 break;
409
410 if (dirty_rxl + RX_RING_SIZE == cur_rxl)
411 break;
412
413 port = desc_get_srcport(desc);
414 rdev = adm5120_port[port];
415
416 SW_DBG("rx descriptor %u, desc=%p, skb=%p\n", entry, desc,
417 rxl_skbuff[entry]);
418
419 if ((rdev) && netif_running(rdev)) {
420 struct sk_buff *skb = rxl_skbuff[entry];
421 int pktlen;
422
423 pktlen = desc_get_pktlen(desc);
424 pktlen -= ETH_CSUM_LEN;
425
426 if ((pktlen == 0) || desc_ipcsum_fail(desc)) {
427 rdev->stats.rx_errors++;
428 if (pktlen == 0)
429 rdev->stats.rx_length_errors++;
430 if (desc_ipcsum_fail(desc))
431 rdev->stats.rx_crc_errors++;
432 SW_DBG("rx error, recycling skb %u\n", entry);
433 } else {
434 skb_put(skb, pktlen);
435
436 skb->dev = rdev;
437 skb->protocol = eth_type_trans(skb, rdev);
438 skb->ip_summed = CHECKSUM_UNNECESSARY;
439
440 dma_cache_wback_inv((unsigned long)skb->data,
441 skb->len);
442
443 #ifdef CONFIG_ADM5120_SWITCH_NAPI
444 netif_receive_skb(skb);
445 #else
446 netif_rx(skb);
447 #endif
448
449 rdev->last_rx = jiffies;
450 rdev->stats.rx_packets++;
451 rdev->stats.rx_bytes += pktlen;
452
453 rxl_skbuff[entry] = NULL;
454 done++;
455 }
456 } else {
457 SW_DBG("no rx device, recycling skb %u\n", entry);
458 }
459
460 cur_rxl++;
461 if (cur_rxl - dirty_rxl > RX_RING_SIZE / 4)
462 adm5120_switch_rx_refill();
463 }
464
465 adm5120_switch_rx_refill();
466
467 SW_DBG("rx finished, cur_rxl=%u, dirty_rxl=%u, processed %d\n",
468 cur_rxl, dirty_rxl, done);
469
470 return done;
471 }
472
473 static void adm5120_switch_tx(void)
474 {
475 unsigned int entry;
476
477 spin_lock(&tx_lock);
478 entry = dirty_txl % TX_RING_SIZE;
479 while (dirty_txl != cur_txl) {
480 struct dma_desc *desc = &txl_descs[entry];
481 struct sk_buff *skb = txl_skbuff[entry];
482
483 if (desc->buf1 & DESC_OWN)
484 break;
485
486 if (netif_running(skb->dev)) {
487 skb->dev->stats.tx_bytes += skb->len;
488 skb->dev->stats.tx_packets++;
489 }
490
491 dev_kfree_skb_irq(skb);
492 txl_skbuff[entry] = NULL;
493 entry = (++dirty_txl) % TX_RING_SIZE;
494 }
495
496 if ((cur_txl - dirty_txl) < TX_QUEUE_LEN - 4) {
497 int i;
498 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
499 if (!adm5120_devs[i])
500 continue;
501 netif_wake_queue(adm5120_devs[i]);
502 }
503 }
504 spin_unlock(&tx_lock);
505 }
506
507 #ifdef CONFIG_ADM5120_SWITCH_NAPI
508 static int adm5120_if_poll(struct napi_struct *napi, int limit)
509 {
510 struct adm5120_if_priv *priv = container_of(napi,
511 struct adm5120_if_priv, napi);
512 struct net_device *dev __maybe_unused = priv->dev;
513 int done;
514 u32 status;
515
516 sw_int_ack(SWITCH_INTS_POLL);
517
518 SW_DBG("%s: processing TX ring\n", dev->name);
519 adm5120_switch_tx();
520
521 SW_DBG("%s: processing RX ring\n", dev->name);
522 done = adm5120_switch_rx(limit);
523
524 status = sw_int_status() & SWITCH_INTS_POLL;
525 if ((done < limit) && (!status)) {
526 SW_DBG("disable polling mode for %s\n", dev->name);
527 napi_complete(napi);
528 sw_int_unmask(SWITCH_INTS_POLL);
529 return 0;
530 }
531
532 SW_DBG("%s still in polling mode, done=%d, status=%x\n",
533 dev->name, done, status);
534 return 1;
535 }
536 #endif /* CONFIG_ADM5120_SWITCH_NAPI */
537
538
539 static irqreturn_t adm5120_switch_irq(int irq, void *dev_id)
540 {
541 u32 status;
542
543 status = sw_int_status();
544 status &= SWITCH_INTS_ALL;
545 if (!status)
546 return IRQ_NONE;
547
548 #ifdef CONFIG_ADM5120_SWITCH_NAPI
549 sw_int_ack(status & ~SWITCH_INTS_POLL);
550
551 if (status & SWITCH_INTS_POLL) {
552 struct net_device *dev = dev_id;
553 struct adm5120_if_priv *priv = netdev_priv(dev);
554
555 sw_dump_intr_mask("poll ints", status);
556 SW_DBG("enable polling mode for %s\n", dev->name);
557 sw_int_mask(SWITCH_INTS_POLL);
558 napi_schedule(&priv->napi);
559 }
560 #else
561 sw_int_ack(status);
562
563 if (status & (SWITCH_INT_RLD | SWITCH_INT_LDF))
564 adm5120_switch_rx(RX_RING_SIZE);
565
566 if (status & SWITCH_INT_SLD)
567 adm5120_switch_tx();
568 #endif
569
570 return IRQ_HANDLED;
571 }
572
573 static void adm5120_set_bw(char *matrix)
574 {
575 unsigned long val;
576
577 /* Port 0 to 3 are set using the bandwidth control 0 register */
578 val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
579 sw_write_reg(SWITCH_REG_BW_CNTL0, val);
580
581 /* Port 4 and 5 are set using the bandwidth control 1 register */
582 val = matrix[4];
583 if (matrix[5] == 1)
584 sw_write_reg(SWITCH_REG_BW_CNTL1, val | 0x80000000);
585 else
586 sw_write_reg(SWITCH_REG_BW_CNTL1, val & ~0x8000000);
587
588 SW_DBG("D: ctl0 0x%ux, ctl1 0x%ux\n", sw_read_reg(SWITCH_REG_BW_CNTL0),
589 sw_read_reg(SWITCH_REG_BW_CNTL1));
590 }
591
592 static void adm5120_switch_tx_ring_reset(struct dma_desc *desc,
593 struct sk_buff **skbl, int num)
594 {
595 memset(desc, 0, num * sizeof(*desc));
596 desc[num-1].buf1 |= DESC_EOR;
597 memset(skbl, 0, sizeof(struct skb *) * num);
598
599 cur_txl = 0;
600 dirty_txl = 0;
601 }
602
603 static void adm5120_switch_rx_ring_reset(struct dma_desc *desc,
604 struct sk_buff **skbl, int num)
605 {
606 int i;
607
608 memset(desc, 0, num * sizeof(*desc));
609 for (i = 0; i < num; i++) {
610 skbl[i] = dev_alloc_skb(SKB_ALLOC_LEN);
611 if (!skbl[i]) {
612 i = num;
613 break;
614 }
615 skb_reserve(skbl[i], SKB_RESERVE_LEN);
616 adm5120_rx_dma_update(&desc[i], skbl[i], (num - 1 == i));
617 }
618
619 cur_rxl = 0;
620 dirty_rxl = 0;
621 }
622
623 static int adm5120_switch_tx_ring_alloc(void)
624 {
625 int err;
626
627 txl_descs = dma_alloc_coherent(NULL, TX_DESCS_SIZE, &txl_descs_dma,
628 GFP_ATOMIC);
629 if (!txl_descs) {
630 err = -ENOMEM;
631 goto err;
632 }
633
634 txl_skbuff = kzalloc(TX_SKBS_SIZE, GFP_KERNEL);
635 if (!txl_skbuff) {
636 err = -ENOMEM;
637 goto err;
638 }
639
640 return 0;
641
642 err:
643 return err;
644 }
645
646 static void adm5120_switch_tx_ring_free(void)
647 {
648 int i;
649
650 if (txl_skbuff) {
651 for (i = 0; i < TX_RING_SIZE; i++)
652 if (txl_skbuff[i])
653 kfree_skb(txl_skbuff[i]);
654 kfree(txl_skbuff);
655 }
656
657 if (txl_descs)
658 dma_free_coherent(NULL, TX_DESCS_SIZE, txl_descs,
659 txl_descs_dma);
660 }
661
662 static int adm5120_switch_rx_ring_alloc(void)
663 {
664 int err;
665 int i;
666
667 /* init RX ring */
668 rxl_descs = dma_alloc_coherent(NULL, RX_DESCS_SIZE, &rxl_descs_dma,
669 GFP_ATOMIC);
670 if (!rxl_descs) {
671 err = -ENOMEM;
672 goto err;
673 }
674
675 rxl_skbuff = kzalloc(RX_SKBS_SIZE, GFP_KERNEL);
676 if (!rxl_skbuff) {
677 err = -ENOMEM;
678 goto err;
679 }
680
681 for (i = 0; i < RX_RING_SIZE; i++) {
682 struct sk_buff *skb;
683 skb = alloc_skb(SKB_ALLOC_LEN, GFP_ATOMIC);
684 if (!skb) {
685 err = -ENOMEM;
686 goto err;
687 }
688 rxl_skbuff[i] = skb;
689 skb_reserve(skb, SKB_RESERVE_LEN);
690 }
691
692 return 0;
693
694 err:
695 return err;
696 }
697
698 static void adm5120_switch_rx_ring_free(void)
699 {
700 int i;
701
702 if (rxl_skbuff) {
703 for (i = 0; i < RX_RING_SIZE; i++)
704 if (rxl_skbuff[i])
705 kfree_skb(rxl_skbuff[i]);
706 kfree(rxl_skbuff);
707 }
708
709 if (rxl_descs)
710 dma_free_coherent(NULL, RX_DESCS_SIZE, rxl_descs,
711 rxl_descs_dma);
712 }
713
714 static void adm5120_write_mac(struct net_device *dev)
715 {
716 struct adm5120_if_priv *priv = netdev_priv(dev);
717 unsigned char *mac = dev->dev_addr;
718 u32 t;
719
720 t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT) |
721 (mac[4] << MAC_WT1_MAC4_SHIFT) | (mac[5] << MAC_WT1_MAC5_SHIFT);
722 sw_write_reg(SWITCH_REG_MAC_WT1, t);
723
724 t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
725 MAC_WT0_MAWC | MAC_WT0_WVE | (priv->vlan_no<<3);
726
727 sw_write_reg(SWITCH_REG_MAC_WT0, t);
728
729 while (!(sw_read_reg(SWITCH_REG_MAC_WT0) & MAC_WT0_MWD))
730 ;
731 }
732
733 static void adm5120_set_vlan(char *matrix)
734 {
735 unsigned long val;
736 int vlan_port, port;
737
738 val = matrix[0] + (matrix[1]<<8) + (matrix[2]<<16) + (matrix[3]<<24);
739 sw_write_reg(SWITCH_REG_VLAN_G1, val);
740 val = matrix[4] + (matrix[5]<<8);
741 sw_write_reg(SWITCH_REG_VLAN_G2, val);
742
743 /* Now set/update the port vs. device lookup table */
744 for (port = 0; port < SWITCH_NUM_PORTS; port++) {
745 for (vlan_port = 0; vlan_port < SWITCH_NUM_PORTS && !(matrix[vlan_port] & (0x00000001 << port)); vlan_port++)
746 ;
747 if (vlan_port < SWITCH_NUM_PORTS)
748 adm5120_port[port] = adm5120_devs[vlan_port];
749 else
750 adm5120_port[port] = NULL;
751 }
752 }
753
754 static void adm5120_switch_set_vlan_mac(unsigned int vlan, unsigned char *mac)
755 {
756 u32 t;
757
758 t = mac[2] | (mac[3] << MAC_WT1_MAC3_SHIFT)
759 | (mac[4] << MAC_WT1_MAC4_SHIFT)
760 | (mac[5] << MAC_WT1_MAC5_SHIFT);
761 sw_write_reg(SWITCH_REG_MAC_WT1, t);
762
763 t = (mac[0] << MAC_WT0_MAC0_SHIFT) | (mac[1] << MAC_WT0_MAC1_SHIFT) |
764 MAC_WT0_MAWC | MAC_WT0_WVE | (vlan << MAC_WT0_WVN_SHIFT) |
765 (MAC_WT0_WAF_STATIC << MAC_WT0_WAF_SHIFT);
766 sw_write_reg(SWITCH_REG_MAC_WT0, t);
767
768 do {
769 t = sw_read_reg(SWITCH_REG_MAC_WT0);
770 } while ((t & MAC_WT0_MWD) == 0);
771 }
772
773 static void adm5120_switch_set_vlan_ports(unsigned int vlan, u32 ports)
774 {
775 unsigned int reg;
776 u32 t;
777
778 if (vlan < 4)
779 reg = SWITCH_REG_VLAN_G1;
780 else {
781 vlan -= 4;
782 reg = SWITCH_REG_VLAN_G2;
783 }
784
785 t = sw_read_reg(reg);
786 t &= ~(0xFF << (vlan*8));
787 t |= (ports << (vlan*8));
788 sw_write_reg(reg, t);
789 }
790
791 /* ------------------------------------------------------------------------ */
792
793 #ifdef CONFIG_ADM5120_SWITCH_NAPI
794 static inline void adm5120_if_napi_enable(struct net_device *dev)
795 {
796 struct adm5120_if_priv *priv = netdev_priv(dev);
797 napi_enable(&priv->napi);
798 }
799
800 static inline void adm5120_if_napi_disable(struct net_device *dev)
801 {
802 struct adm5120_if_priv *priv = netdev_priv(dev);
803 napi_disable(&priv->napi);
804 }
805 #else
806 static inline void adm5120_if_napi_enable(struct net_device *dev) {}
807 static inline void adm5120_if_napi_disable(struct net_device *dev) {}
808 #endif /* CONFIG_ADM5120_SWITCH_NAPI */
809
810 static int adm5120_if_open(struct net_device *dev)
811 {
812 u32 t;
813 int err;
814 int i;
815
816 adm5120_if_napi_enable(dev);
817
818 err = request_irq(dev->irq, adm5120_switch_irq, IRQF_SHARED,
819 dev->name, dev);
820 if (err) {
821 SW_ERR("unable to get irq for %s\n", dev->name);
822 goto err;
823 }
824
825 if (!sw_used++)
826 /* enable interrupts on first open */
827 sw_int_unmask(SWITCH_INTS_USED);
828
829 /* enable (additional) port */
830 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
831 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
832 if (dev == adm5120_devs[i])
833 t &= ~adm5120_eth_vlans[i];
834 }
835 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
836
837 netif_start_queue(dev);
838
839 return 0;
840
841 err:
842 adm5120_if_napi_disable(dev);
843 return err;
844 }
845
846 static int adm5120_if_stop(struct net_device *dev)
847 {
848 u32 t;
849 int i;
850
851 netif_stop_queue(dev);
852 adm5120_if_napi_disable(dev);
853
854 /* disable port if not assigned to other devices */
855 t = sw_read_reg(SWITCH_REG_PORT_CONF0);
856 t |= SWITCH_PORTS_NOCPU;
857 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
858 if ((dev != adm5120_devs[i]) && netif_running(adm5120_devs[i]))
859 t &= ~adm5120_eth_vlans[i];
860 }
861 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
862
863 if (!--sw_used)
864 sw_int_mask(SWITCH_INTS_USED);
865
866 free_irq(dev->irq, dev);
867
868 return 0;
869 }
870
871 static int adm5120_if_hard_start_xmit(struct sk_buff *skb,
872 struct net_device *dev)
873 {
874 struct dma_desc *desc;
875 struct adm5120_if_priv *priv = netdev_priv(dev);
876 unsigned int entry;
877 unsigned long data;
878 int i;
879
880 /* lock switch irq */
881 spin_lock_irq(&tx_lock);
882
883 /* calculate the next TX descriptor entry. */
884 entry = cur_txl % TX_RING_SIZE;
885
886 desc = &txl_descs[entry];
887 if (desc->buf1 & DESC_OWN) {
888 /* We want to write a packet but the TX queue is still
889 * occupied by the DMA. We are faster than the DMA... */
890 SW_DBG("%s unable to transmit, packet dopped\n", dev->name);
891 dev_kfree_skb(skb);
892 dev->stats.tx_dropped++;
893 return 0;
894 }
895
896 txl_skbuff[entry] = skb;
897 data = (desc->buf1 & DESC_EOR);
898 data |= DESC_ADDR(skb->data);
899
900 desc->misc =
901 ((skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len) << DESC_PKTLEN_SHIFT) |
902 (0x1 << priv->vlan_no);
903
904 desc->buflen = skb->len < ETH_ZLEN ? ETH_ZLEN : skb->len;
905
906 desc->buf1 = data | DESC_OWN;
907 sw_write_reg(SWITCH_REG_SEND_TRIG, SEND_TRIG_STL);
908
909 cur_txl++;
910 if (cur_txl == dirty_txl + TX_QUEUE_LEN) {
911 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
912 if (!adm5120_devs[i])
913 continue;
914 netif_stop_queue(adm5120_devs[i]);
915 }
916 }
917
918 dev->trans_start = jiffies;
919
920 spin_unlock_irq(&tx_lock);
921
922 return 0;
923 }
924
925 static void adm5120_if_tx_timeout(struct net_device *dev)
926 {
927 SW_INFO("TX timeout on %s\n", dev->name);
928 }
929
930 static void adm5120_if_set_rx_mode(struct net_device *dev)
931 {
932 struct adm5120_if_priv *priv = netdev_priv(dev);
933 u32 ports;
934 u32 t;
935
936 ports = adm5120_eth_vlans[priv->vlan_no] & SWITCH_PORTS_NOCPU;
937
938 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
939 if (dev->flags & IFF_PROMISC)
940 /* enable unknown packets */
941 t &= ~(ports << CPUP_CONF_DUNP_SHIFT);
942 else
943 /* disable unknown packets */
944 t |= (ports << CPUP_CONF_DUNP_SHIFT);
945
946 if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI ||
947 netdev_mc_count(dev))
948 /* enable multicast packets */
949 t &= ~(ports << CPUP_CONF_DMCP_SHIFT);
950 else
951 /* disable multicast packets */
952 t |= (ports << CPUP_CONF_DMCP_SHIFT);
953
954 /* If there is any port configured to be in promiscuous mode, then the */
955 /* Bridge Test Mode has to be activated. This will result in */
956 /* transporting also packets learned in another VLAN to be forwarded */
957 /* to the CPU. */
958 /* The difficult scenario is when we want to build a bridge on the CPU.*/
959 /* Assume we have port0 and the CPU port in VLAN0 and port1 and the */
960 /* CPU port in VLAN1. Now we build a bridge on the CPU between */
961 /* VLAN0 and VLAN1. Both ports of the VLANs are set in promisc mode. */
962 /* Now assume a packet with ethernet source address 99 enters port 0 */
963 /* It will be forwarded to the CPU because it is unknown. Then the */
964 /* bridge in the CPU will send it to VLAN1 and it goes out at port 1. */
965 /* When now a packet with ethernet destination address 99 comes in at */
966 /* port 1 in VLAN1, then the switch has learned that this address is */
967 /* located at port 0 in VLAN0. Therefore the switch will drop */
968 /* this packet. In order to avoid this and to send the packet still */
969 /* to the CPU, the Bridge Test Mode has to be activated. */
970
971 /* Check if there is any vlan in promisc mode. */
972 if (~t & (SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT))
973 t |= CPUP_CONF_BTM; /* Enable Bridge Testing Mode */
974 else
975 t &= ~CPUP_CONF_BTM; /* Disable Bridge Testing Mode */
976
977 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
978
979 }
980
981 static int adm5120_if_set_mac_address(struct net_device *dev, void *p)
982 {
983 int ret;
984
985 ret = eth_mac_addr(dev, p);
986 if (ret)
987 return ret;
988
989 adm5120_write_mac(dev);
990 return 0;
991 }
992
993 static int adm5120_if_do_ioctl(struct net_device *dev, struct ifreq *rq,
994 int cmd)
995 {
996 int err;
997 struct adm5120_sw_info info;
998 struct adm5120_if_priv *priv = netdev_priv(dev);
999
1000 switch (cmd) {
1001 case SIOCGADMINFO:
1002 info.magic = 0x5120;
1003 info.ports = adm5120_nrdevs;
1004 info.vlan = priv->vlan_no;
1005 err = copy_to_user(rq->ifr_data, &info, sizeof(info));
1006 if (err)
1007 return -EFAULT;
1008 break;
1009 case SIOCSMATRIX:
1010 if (!capable(CAP_NET_ADMIN))
1011 return -EPERM;
1012 err = copy_from_user(adm5120_eth_vlans, rq->ifr_data,
1013 sizeof(adm5120_eth_vlans));
1014 if (err)
1015 return -EFAULT;
1016 adm5120_set_vlan(adm5120_eth_vlans);
1017 break;
1018 case SIOCGMATRIX:
1019 err = copy_to_user(rq->ifr_data, adm5120_eth_vlans,
1020 sizeof(adm5120_eth_vlans));
1021 if (err)
1022 return -EFAULT;
1023 break;
1024 default:
1025 return -EOPNOTSUPP;
1026 }
1027 return 0;
1028 }
1029
1030 static const struct net_device_ops adm5120sw_netdev_ops = {
1031 .ndo_open = adm5120_if_open,
1032 .ndo_stop = adm5120_if_stop,
1033 .ndo_start_xmit = adm5120_if_hard_start_xmit,
1034 .ndo_set_rx_mode = adm5120_if_set_rx_mode,
1035 .ndo_do_ioctl = adm5120_if_do_ioctl,
1036 .ndo_tx_timeout = adm5120_if_tx_timeout,
1037 .ndo_validate_addr = eth_validate_addr,
1038 .ndo_change_mtu = eth_change_mtu,
1039 .ndo_set_mac_address = adm5120_if_set_mac_address,
1040 };
1041
1042 static struct net_device *adm5120_if_alloc(void)
1043 {
1044 struct net_device *dev;
1045 struct adm5120_if_priv *priv;
1046
1047 dev = alloc_etherdev(sizeof(*priv));
1048 if (!dev)
1049 return NULL;
1050
1051 priv = netdev_priv(dev);
1052 priv->dev = dev;
1053
1054 dev->irq = ADM5120_IRQ_SWITCH;
1055 dev->netdev_ops = &adm5120sw_netdev_ops;
1056 dev->watchdog_timeo = TX_TIMEOUT;
1057
1058 #ifdef CONFIG_ADM5120_SWITCH_NAPI
1059 netif_napi_add(dev, &priv->napi, adm5120_if_poll, 64);
1060 #endif
1061
1062 return dev;
1063 }
1064
1065 /* ------------------------------------------------------------------------ */
1066
1067 static void adm5120_switch_cleanup(void)
1068 {
1069 int i;
1070
1071 /* disable interrupts */
1072 sw_int_mask(SWITCH_INTS_ALL);
1073
1074 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
1075 struct net_device *dev = adm5120_devs[i];
1076 if (dev) {
1077 unregister_netdev(dev);
1078 free_netdev(dev);
1079 }
1080 }
1081
1082 adm5120_switch_tx_ring_free();
1083 adm5120_switch_rx_ring_free();
1084 }
1085
1086 static int adm5120_switch_probe(struct platform_device *pdev)
1087 {
1088 u32 t;
1089 int i, err;
1090
1091 adm5120_nrdevs = adm5120_eth_num_ports;
1092
1093 t = CPUP_CONF_DCPUP | CPUP_CONF_CRCP |
1094 SWITCH_PORTS_NOCPU << CPUP_CONF_DUNP_SHIFT |
1095 SWITCH_PORTS_NOCPU << CPUP_CONF_DMCP_SHIFT ;
1096 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
1097
1098 t = (SWITCH_PORTS_NOCPU << PORT_CONF0_EMCP_SHIFT) |
1099 (SWITCH_PORTS_NOCPU << PORT_CONF0_BP_SHIFT) |
1100 (SWITCH_PORTS_NOCPU);
1101 sw_write_reg(SWITCH_REG_PORT_CONF0, t);
1102
1103 /* setup ports to Autoneg/100M/Full duplex/Auto MDIX */
1104 t = SWITCH_PORTS_PHY |
1105 (SWITCH_PORTS_PHY << PHY_CNTL2_SC_SHIFT) |
1106 (SWITCH_PORTS_PHY << PHY_CNTL2_DC_SHIFT) |
1107 (SWITCH_PORTS_PHY << PHY_CNTL2_PHYR_SHIFT) |
1108 (SWITCH_PORTS_PHY << PHY_CNTL2_AMDIX_SHIFT) |
1109 PHY_CNTL2_RMAE;
1110 sw_write_reg(SWITCH_REG_PHY_CNTL2, t);
1111
1112 t = sw_read_reg(SWITCH_REG_PHY_CNTL3);
1113 t |= PHY_CNTL3_RNT;
1114 sw_write_reg(SWITCH_REG_PHY_CNTL3, t);
1115
1116 /* Force all the packets from all ports are low priority */
1117 sw_write_reg(SWITCH_REG_PRI_CNTL, 0);
1118
1119 sw_int_mask(SWITCH_INTS_ALL);
1120 sw_int_ack(SWITCH_INTS_ALL);
1121
1122 err = adm5120_switch_rx_ring_alloc();
1123 if (err)
1124 goto err;
1125
1126 err = adm5120_switch_tx_ring_alloc();
1127 if (err)
1128 goto err;
1129
1130 adm5120_switch_tx_ring_reset(txl_descs, txl_skbuff, TX_RING_SIZE);
1131 adm5120_switch_rx_ring_reset(rxl_descs, rxl_skbuff, RX_RING_SIZE);
1132
1133 sw_write_reg(SWITCH_REG_SHDA, 0);
1134 sw_write_reg(SWITCH_REG_SLDA, KSEG1ADDR(txl_descs));
1135 sw_write_reg(SWITCH_REG_RHDA, 0);
1136 sw_write_reg(SWITCH_REG_RLDA, KSEG1ADDR(rxl_descs));
1137
1138 for (i = 0; i < SWITCH_NUM_PORTS; i++) {
1139 struct net_device *dev;
1140 struct adm5120_if_priv *priv;
1141
1142 dev = adm5120_if_alloc();
1143 if (!dev) {
1144 err = -ENOMEM;
1145 goto err;
1146 }
1147
1148 adm5120_devs[i] = dev;
1149 priv = netdev_priv(dev);
1150
1151 priv->vlan_no = i;
1152 priv->port_mask = adm5120_eth_vlans[i];
1153
1154 memcpy(dev->dev_addr, adm5120_eth_macs[i], 6);
1155 adm5120_write_mac(dev);
1156
1157 err = register_netdev(dev);
1158 if (err) {
1159 SW_INFO("%s register failed, error=%d\n",
1160 dev->name, err);
1161 goto err;
1162 }
1163 }
1164
1165 /* setup vlan/port mapping after devs are filled up */
1166 adm5120_set_vlan(adm5120_eth_vlans);
1167
1168 /* enable CPU port */
1169 t = sw_read_reg(SWITCH_REG_CPUP_CONF);
1170 t &= ~CPUP_CONF_DCPUP;
1171 sw_write_reg(SWITCH_REG_CPUP_CONF, t);
1172
1173 return 0;
1174
1175 err:
1176 adm5120_switch_cleanup();
1177
1178 SW_ERR("init failed\n");
1179 return err;
1180 }
1181
1182 static int adm5120_switch_remove(struct platform_device *pdev)
1183 {
1184 adm5120_switch_cleanup();
1185 return 0;
1186 }
1187
1188 static struct platform_driver adm5120_switch_driver = {
1189 .probe = adm5120_switch_probe,
1190 .remove = adm5120_switch_remove,
1191 .driver = {
1192 .name = DRV_NAME,
1193 },
1194 };
1195
1196 /* -------------------------------------------------------------------------- */
1197
1198 static int __init adm5120_switch_mod_init(void)
1199 {
1200 int err;
1201
1202 pr_info(DRV_DESC " version " DRV_VERSION "\n");
1203 err = platform_driver_register(&adm5120_switch_driver);
1204
1205 return err;
1206 }
1207
1208 static void __exit adm5120_switch_mod_exit(void)
1209 {
1210 platform_driver_unregister(&adm5120_switch_driver);
1211 }
1212
1213 module_init(adm5120_switch_mod_init);
1214 module_exit(adm5120_switch_mod_exit);
1215
1216 MODULE_LICENSE("GPL v2");
1217 MODULE_AUTHOR("Gabor Juhos <juhosg@openwrt.org>");
1218 MODULE_DESCRIPTION(DRV_DESC);
1219 MODULE_VERSION(DRV_VERSION);