major cleanup of the ar531x code, improved hardware detection and support for multipl...
[openwrt/svn-archive/archive.git] / target / linux / atheros-2.6 / files / drivers / net / ar2313 / ar2313.c
1 /*
2 * ar2313.c: Linux driver for the Atheros AR231x Ethernet device.
3 *
4 * Copyright (C) 2004 by Sameer Dekate <sdekate@arubanetworks.com>
5 * Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
6 * Copyright (C) 2006-2007 Felix Fietkau <nbd@openwrt.org>
7 *
8 * Thanks to Atheros for providing hardware and documentation
9 * enabling me to write this driver.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * Additional credits:
17 * This code is taken from John Taylor's Sibyte driver and then
18 * modified for the AR2313.
19 */
20
21 #include <linux/autoconf.h>
22 #include <linux/module.h>
23 #include <linux/version.h>
24 #include <linux/types.h>
25 #include <linux/errno.h>
26 #include <linux/ioport.h>
27 #include <linux/pci.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/mm.h>
34 #include <linux/highmem.h>
35 #include <linux/sockios.h>
36 #include <linux/pkt_sched.h>
37 #include <linux/compile.h>
38 #include <linux/mii.h>
39 #include <linux/ethtool.h>
40 #include <linux/ctype.h>
41 #include <linux/platform_device.h>
42
43 #include <net/sock.h>
44 #include <net/ip.h>
45
46 #include <asm/system.h>
47 #include <asm/io.h>
48 #include <asm/irq.h>
49 #include <asm/byteorder.h>
50 #include <asm/uaccess.h>
51 #include <asm/bootinfo.h>
52
53 #define AR2313_MTU 1692
54 #define AR2313_PRIOS 1
55 #define AR2313_QUEUES (2*AR2313_PRIOS)
56 #define AR2313_DESCR_ENTRIES 64
57
58 #undef INDEX_DEBUG
59 #define DEBUG 0
60 #define DEBUG_TX 0
61 #define DEBUG_RX 0
62 #define DEBUG_INT 0
63 #define DEBUG_MC 0
64 #define DEBUG_ERR 1
65
66 #ifndef min
67 #define min(a,b) (((a)<(b))?(a):(b))
68 #endif
69
70 #ifndef SMP_CACHE_BYTES
71 #define SMP_CACHE_BYTES L1_CACHE_BYTES
72 #endif
73
74 #define AR2313_MBOX_SET_BIT 0x8
75
76 #define BOARD_IDX_STATIC 0
77 #define BOARD_IDX_OVERFLOW -1
78
79 #include "platform.h"
80 #include "dma.h"
81 #include "ar2313.h"
82
83 /*
84 * New interrupt handler strategy:
85 *
86 * An old interrupt handler worked using the traditional method of
87 * replacing an skbuff with a new one when a packet arrives. However
88 * the rx rings do not need to contain a static number of buffer
89 * descriptors, thus it makes sense to move the memory allocation out
90 * of the main interrupt handler and do it in a bottom half handler
91 * and only allocate new buffers when the number of buffers in the
92 * ring is below a certain threshold. In order to avoid starving the
93 * NIC under heavy load it is however necessary to force allocation
94 * when hitting a minimum threshold. The strategy for alloction is as
95 * follows:
96 *
97 * RX_LOW_BUF_THRES - allocate buffers in the bottom half
98 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate
99 * the buffers in the interrupt handler
100 * RX_RING_THRES - maximum number of buffers in the rx ring
101 *
102 * One advantagous side effect of this allocation approach is that the
103 * entire rx processing can be done without holding any spin lock
104 * since the rx rings and registers are totally independent of the tx
105 * ring and its registers. This of course includes the kmalloc's of
106 * new skb's. Thus start_xmit can run in parallel with rx processing
107 * and the memory allocation on SMP systems.
108 *
109 * Note that running the skb reallocation in a bottom half opens up
110 * another can of races which needs to be handled properly. In
111 * particular it can happen that the interrupt handler tries to run
112 * the reallocation while the bottom half is either running on another
113 * CPU or was interrupted on the same CPU. To get around this the
114 * driver uses bitops to prevent the reallocation routines from being
115 * reentered.
116 *
117 * TX handling can also be done without holding any spin lock, wheee
118 * this is fun! since tx_csm is only written to by the interrupt
119 * handler.
120 */
121
122 /*
123 * Threshold values for RX buffer allocation - the low water marks for
124 * when to start refilling the rings are set to 75% of the ring
125 * sizes. It seems to make sense to refill the rings entirely from the
126 * intrrupt handler once it gets below the panic threshold, that way
127 * we don't risk that the refilling is moved to another CPU when the
128 * one running the interrupt handler just got the slab code hot in its
129 * cache.
130 */
131 #define RX_RING_SIZE AR2313_DESCR_ENTRIES
132 #define RX_PANIC_THRES (RX_RING_SIZE/4)
133 #define RX_LOW_THRES ((3*RX_RING_SIZE)/4)
134 #define CRC_LEN 4
135 #define RX_OFFSET 2
136
137 #define AR2313_BUFSIZE (AR2313_MTU + ETH_HLEN + CRC_LEN + RX_OFFSET)
138
139 #ifdef MODULE
140 MODULE_AUTHOR("Sameer Dekate <sdekate@arubanetworks.com>, Imre Kaloz <kaloz@openwrt.org>, Felix Fietkau <nbd@openwrt.org>");
141 MODULE_DESCRIPTION("AR2313 Ethernet driver");
142 #endif
143
144 #define virt_to_phys(x) ((u32)(x) & 0x1fffffff)
145
146 // prototypes
147 static short armiiread(struct net_device *dev, short phy, short reg);
148 static void armiiwrite(struct net_device *dev, short phy, short reg, short data);
149 #ifdef TX_TIMEOUT
150 static void ar2313_tx_timeout(struct net_device *dev);
151 #endif
152 static void ar2313_halt(struct net_device *dev);
153 static void rx_tasklet_func(unsigned long data);
154 static void ar2313_multicast_list(struct net_device *dev);
155
156 #ifndef ERR
157 #define ERR(fmt, args...) printk("%s: " fmt, __func__, ##args)
158 #endif
159
160
161 int __init ar2313_probe(struct platform_device *pdev)
162 {
163 struct net_device *dev;
164 struct ar2313_private *sp;
165 struct resource *res;
166 unsigned long ar_eth_base;
167 char buf[64] ;
168
169 dev = alloc_etherdev(sizeof(struct ar2313_private));
170
171 if (dev == NULL) {
172 printk(KERN_ERR "ar2313: Unable to allocate net_device structure!\n");
173 return -ENOMEM;
174 }
175
176 SET_MODULE_OWNER(dev);
177 platform_set_drvdata(pdev, dev);
178
179 sp = dev->priv;
180 sp->dev = dev;
181 sp->cfg = pdev->dev.platform_data;
182
183 sprintf(buf, "eth%d_membase", pdev->id);
184 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, buf);
185 if (!res)
186 return -ENODEV;
187
188 sp->link = 0;
189 ar_eth_base = res->start;
190 sp->phy = sp->cfg->phy;
191
192 sprintf(buf, "eth%d_irq", pdev->id);
193 dev->irq = platform_get_irq_byname(pdev, buf);
194
195 spin_lock_init(&sp->lock);
196
197 /* initialize func pointers */
198 dev->open = &ar2313_open;
199 dev->stop = &ar2313_close;
200 dev->hard_start_xmit = &ar2313_start_xmit;
201
202 dev->get_stats = &ar2313_get_stats;
203 dev->set_multicast_list = &ar2313_multicast_list;
204 #ifdef TX_TIMEOUT
205 dev->tx_timeout = ar2313_tx_timeout;
206 dev->watchdog_timeo = AR2313_TX_TIMEOUT;
207 #endif
208 dev->do_ioctl = &ar2313_ioctl;
209
210 // SAMEER: do we need this?
211 dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA;
212
213 tasklet_init(&sp->rx_tasklet, rx_tasklet_func, (unsigned long) dev);
214 tasklet_disable(&sp->rx_tasklet);
215
216 sp->eth_regs = ioremap_nocache(virt_to_phys(ar_eth_base), sizeof(*sp->eth_regs));
217 if (!sp->eth_regs) {
218 printk("Can't remap eth registers\n");
219 return(-ENXIO);
220 }
221
222 /*
223 * When there's only one MAC, PHY regs are typically on ENET0,
224 * even though the MAC might be on ENET1.
225 * Needto remap PHY regs separately in this case
226 */
227 if (virt_to_phys(ar_eth_base) == virt_to_phys(sp->phy_regs))
228 sp->phy_regs = sp->eth_regs;
229 else {
230 sp->phy_regs = ioremap_nocache(virt_to_phys(sp->cfg->phy_base), sizeof(*sp->phy_regs));
231 if (!sp->phy_regs) {
232 printk("Can't remap phy registers\n");
233 return(-ENXIO);
234 }
235 }
236
237 sp->dma_regs = ioremap_nocache(virt_to_phys(ar_eth_base + 0x1000), sizeof(*sp->dma_regs));
238 dev->base_addr = (unsigned int) sp->dma_regs;
239 if (!sp->dma_regs) {
240 printk("Can't remap DMA registers\n");
241 return(-ENXIO);
242 }
243
244 sp->int_regs = ioremap_nocache(virt_to_phys(sp->cfg->reset_base), 4);
245 if (!sp->int_regs) {
246 printk("Can't remap INTERRUPT registers\n");
247 return(-ENXIO);
248 }
249
250 strncpy(sp->name, "Atheros AR231x", sizeof (sp->name) - 1);
251 sp->name [sizeof (sp->name) - 1] = '\0';
252 memcpy(dev->dev_addr, sp->cfg->macaddr, 6);
253 sp->board_idx = BOARD_IDX_STATIC;
254
255 if (ar2313_init(dev)) {
256 /*
257 * ar2313_init() calls ar2313_init_cleanup() on error.
258 */
259 kfree(dev);
260 return -ENODEV;
261 }
262
263 if (register_netdev(dev)){
264 printk("%s: register_netdev failed\n", __func__);
265 return -1;
266 }
267
268 printk("%s: %s: %02x:%02x:%02x:%02x:%02x:%02x, irq %d\n",
269 dev->name, sp->name,
270 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
271 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5],
272 dev->irq);
273
274 /* start link poll timer */
275 ar2313_setup_timer(dev);
276
277 return 0;
278 }
279
280 #if 0
281 static void ar2313_dump_regs(struct net_device *dev)
282 {
283 unsigned int *ptr, i;
284 struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
285
286 ptr = (unsigned int *)sp->eth_regs;
287 for(i=0; i< (sizeof(ETHERNET_STRUCT)/ sizeof(unsigned int)); i++, ptr++) {
288 printk("ENET: %08x = %08x\n", (int)ptr, *ptr);
289 }
290
291 ptr = (unsigned int *)sp->dma_regs;
292 for(i=0; i< (sizeof(DMA)/ sizeof(unsigned int)); i++, ptr++) {
293 printk("DMA: %08x = %08x\n", (int)ptr, *ptr);
294 }
295
296 ptr = (unsigned int *)sp->int_regs;
297 for(i=0; i< (sizeof(INTERRUPT)/ sizeof(unsigned int)); i++, ptr++){
298 printk("INT: %08x = %08x\n", (int)ptr, *ptr);
299 }
300
301 for (i = 0; i < AR2313_DESCR_ENTRIES; i++) {
302 ar2313_descr_t *td = &sp->tx_ring[i];
303 printk("Tx desc %2d: %08x %08x %08x %08x\n", i,
304 td->status, td->devcs, td->addr, td->descr);
305 }
306 }
307 #endif
308
309 #ifdef TX_TIMEOUT
310 static void
311 ar2313_tx_timeout(struct net_device *dev)
312 {
313 struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
314 unsigned long flags;
315
316 #if DEBUG_TX
317 printk("Tx timeout\n");
318 #endif
319 spin_lock_irqsave(&sp->lock, flags);
320 ar2313_restart(dev);
321 spin_unlock_irqrestore(&sp->lock, flags);
322 }
323 #endif
324
325 #if DEBUG_MC
326 static void
327 printMcList(struct net_device *dev)
328 {
329 struct dev_mc_list *list = dev->mc_list;
330 int num=0, i;
331 while(list){
332 printk("%d MC ADDR ", num);
333 for(i=0;i<list->dmi_addrlen;i++) {
334 printk(":%02x", list->dmi_addr[i]);
335 }
336 list = list->next;
337 printk("\n");
338 }
339 }
340 #endif
341
342 /*
343 * Set or clear the multicast filter for this adaptor.
344 * THIS IS ABSOLUTE CRAP, disabled
345 */
346 static void
347 ar2313_multicast_list(struct net_device *dev)
348 {
349 /*
350 * Always listen to broadcasts and
351 * treat IFF bits independently
352 */
353 struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
354 unsigned int recognise;
355
356 recognise = sp->eth_regs->mac_control;
357
358 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
359 recognise |= MAC_CONTROL_PR;
360 } else {
361 recognise &= ~MAC_CONTROL_PR;
362 }
363
364 if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
365 #if DEBUG_MC
366 printMcList(dev);
367 printk("%s: all MULTICAST mc_count %d\n", __FUNCTION__, dev->mc_count);
368 #endif
369 recognise |= MAC_CONTROL_PM;/* all multicast */
370 } else if (dev->mc_count > 0) {
371 #if DEBUG_MC
372 printMcList(dev);
373 printk("%s: mc_count %d\n", __FUNCTION__, dev->mc_count);
374 #endif
375 recognise |= MAC_CONTROL_PM; /* for the time being */
376 }
377 #if DEBUG_MC
378 printk("%s: setting %08x to %08x\n", __FUNCTION__, (int)sp->eth_regs, recognise);
379 #endif
380
381 sp->eth_regs->mac_control = recognise;
382 }
383
384 static void rx_tasklet_cleanup(struct net_device *dev)
385 {
386 struct ar2313_private *sp = dev->priv;
387
388 /*
389 * Tasklet may be scheduled. Need to get it removed from the list
390 * since we're about to free the struct.
391 */
392
393 sp->unloading = 1;
394 tasklet_enable(&sp->rx_tasklet);
395 tasklet_kill(&sp->rx_tasklet);
396 }
397
398 static int __exit ar2313_remove(struct platform_device *pdev)
399 {
400 struct net_device *dev = platform_get_drvdata(pdev);
401 rx_tasklet_cleanup(dev);
402 ar2313_init_cleanup(dev);
403 unregister_netdev(dev);
404 kfree(dev);
405 return 0;
406 }
407
408
409 /*
410 * Restart the AR2313 ethernet controller.
411 */
412 static int ar2313_restart(struct net_device *dev)
413 {
414 /* disable interrupts */
415 disable_irq(dev->irq);
416
417 /* stop mac */
418 ar2313_halt(dev);
419
420 /* initialize */
421 ar2313_init(dev);
422
423 /* enable interrupts */
424 enable_irq(dev->irq);
425
426 return 0;
427 }
428
429 static struct platform_driver ar2313_driver = {
430 .driver.name = "ar531x-eth",
431 .probe = ar2313_probe,
432 .remove = ar2313_remove,
433 };
434
435 int __init ar2313_module_init(void)
436 {
437 return platform_driver_register(&ar2313_driver);
438 }
439
440 void __exit ar2313_module_cleanup(void)
441 {
442 platform_driver_unregister(&ar2313_driver);
443 }
444
445 module_init(ar2313_module_init);
446 module_exit(ar2313_module_cleanup);
447
448
449 static void ar2313_free_descriptors(struct net_device *dev)
450 {
451 struct ar2313_private *sp = dev->priv;
452 if (sp->rx_ring != NULL) {
453 kfree((void*)KSEG0ADDR(sp->rx_ring));
454 sp->rx_ring = NULL;
455 sp->tx_ring = NULL;
456 }
457 }
458
459
460 static int ar2313_allocate_descriptors(struct net_device *dev)
461 {
462 struct ar2313_private *sp = dev->priv;
463 int size;
464 int j;
465 ar2313_descr_t *space;
466
467 if(sp->rx_ring != NULL){
468 printk("%s: already done.\n", __FUNCTION__);
469 return 0;
470 }
471
472 size = (sizeof(ar2313_descr_t) * (AR2313_DESCR_ENTRIES * AR2313_QUEUES));
473 space = kmalloc(size, GFP_KERNEL);
474 if (space == NULL)
475 return 1;
476
477 /* invalidate caches */
478 dma_cache_inv((unsigned int)space, size);
479
480 /* now convert pointer to KSEG1 */
481 space = (ar2313_descr_t *)KSEG1ADDR(space);
482
483 memset((void *)space, 0, size);
484
485 sp->rx_ring = space;
486 space += AR2313_DESCR_ENTRIES;
487
488 sp->tx_ring = space;
489 space += AR2313_DESCR_ENTRIES;
490
491 /* Initialize the transmit Descriptors */
492 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
493 ar2313_descr_t *td = &sp->tx_ring[j];
494 td->status = 0;
495 td->devcs = DMA_TX1_CHAINED;
496 td->addr = 0;
497 td->descr = virt_to_phys(&sp->tx_ring[(j+1) & (AR2313_DESCR_ENTRIES-1)]);
498 }
499
500 return 0;
501 }
502
503
504 /*
505 * Generic cleanup handling data allocated during init. Used when the
506 * module is unloaded or if an error occurs during initialization
507 */
508 static void ar2313_init_cleanup(struct net_device *dev)
509 {
510 struct ar2313_private *sp = dev->priv;
511 struct sk_buff *skb;
512 int j;
513
514 ar2313_free_descriptors(dev);
515
516 if (sp->eth_regs) iounmap((void*)sp->eth_regs);
517 if (sp->dma_regs) iounmap((void*)sp->dma_regs);
518
519 if (sp->rx_skb) {
520 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
521 skb = sp->rx_skb[j];
522 if (skb) {
523 sp->rx_skb[j] = NULL;
524 dev_kfree_skb(skb);
525 }
526 }
527 kfree(sp->rx_skb);
528 sp->rx_skb = NULL;
529 }
530
531 if (sp->tx_skb) {
532 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
533 skb = sp->tx_skb[j];
534 if (skb) {
535 sp->tx_skb[j] = NULL;
536 dev_kfree_skb(skb);
537 }
538 }
539 kfree(sp->tx_skb);
540 sp->tx_skb = NULL;
541 }
542 }
543
544 static int ar2313_setup_timer(struct net_device *dev)
545 {
546 struct ar2313_private *sp = dev->priv;
547
548 init_timer(&sp->link_timer);
549
550 sp->link_timer.function = ar2313_link_timer_fn;
551 sp->link_timer.data = (int) dev;
552 sp->link_timer.expires = jiffies + HZ;
553
554 add_timer(&sp->link_timer);
555 return 0;
556
557 }
558
559 static void ar2313_link_timer_fn(unsigned long data)
560 {
561 struct net_device *dev = (struct net_device *) data;
562 struct ar2313_private *sp = dev->priv;
563
564 // see if the link status changed
565 // This was needed to make sure we set the PHY to the
566 // autonegotiated value of half or full duplex.
567 ar2313_check_link(dev);
568
569 // Loop faster when we don't have link.
570 // This was needed to speed up the AP bootstrap time.
571 if(sp->link == 0) {
572 mod_timer(&sp->link_timer, jiffies + HZ/2);
573 } else {
574 mod_timer(&sp->link_timer, jiffies + LINK_TIMER);
575 }
576 }
577
578 static void ar2313_check_link(struct net_device *dev)
579 {
580 struct ar2313_private *sp = dev->priv;
581 u16 phyData;
582
583 phyData = armiiread(dev, sp->phy, MII_BMSR);
584 if (sp->phyData != phyData) {
585 if (phyData & BMSR_LSTATUS) {
586 /* link is present, ready link partner ability to deterine duplexity */
587 int duplex = 0;
588 u16 reg;
589
590 sp->link = 1;
591 reg = armiiread(dev, sp->phy, MII_BMCR);
592 if (reg & BMCR_ANENABLE) {
593 /* auto neg enabled */
594 reg = armiiread(dev, sp->phy, MII_LPA);
595 duplex = (reg & (LPA_100FULL|LPA_10FULL))? 1:0;
596 } else {
597 /* no auto neg, just read duplex config */
598 duplex = (reg & BMCR_FULLDPLX)? 1:0;
599 }
600
601 printk(KERN_INFO "%s: Configuring MAC for %s duplex\n", dev->name,
602 (duplex)? "full":"half");
603
604 if (duplex) {
605 /* full duplex */
606 sp->eth_regs->mac_control = ((sp->eth_regs->mac_control | MAC_CONTROL_F) &
607 ~MAC_CONTROL_DRO);
608 } else {
609 /* half duplex */
610 sp->eth_regs->mac_control = ((sp->eth_regs->mac_control | MAC_CONTROL_DRO) &
611 ~MAC_CONTROL_F);
612 }
613 } else {
614 /* no link */
615 sp->link = 0;
616 }
617 sp->phyData = phyData;
618 }
619 }
620
621 static int
622 ar2313_reset_reg(struct net_device *dev)
623 {
624 struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
625 unsigned int ethsal, ethsah;
626 unsigned int flags;
627
628 *sp->int_regs |= sp->cfg->reset_mac;
629 mdelay(10);
630 *sp->int_regs &= ~sp->cfg->reset_mac;
631 mdelay(10);
632 *sp->int_regs |= sp->cfg->reset_phy;
633 mdelay(10);
634 *sp->int_regs &= ~sp->cfg->reset_phy;
635 mdelay(10);
636
637 sp->dma_regs->bus_mode = (DMA_BUS_MODE_SWR);
638 mdelay(10);
639 sp->dma_regs->bus_mode = ((32 << DMA_BUS_MODE_PBL_SHIFT) | DMA_BUS_MODE_BLE);
640
641 /* enable interrupts */
642 sp->dma_regs->intr_ena = (DMA_STATUS_AIS |
643 DMA_STATUS_NIS |
644 DMA_STATUS_RI |
645 DMA_STATUS_TI |
646 DMA_STATUS_FBE);
647 sp->dma_regs->xmt_base = virt_to_phys(sp->tx_ring);
648 sp->dma_regs->rcv_base = virt_to_phys(sp->rx_ring);
649 sp->dma_regs->control = (DMA_CONTROL_SR | DMA_CONTROL_ST | DMA_CONTROL_SF);
650
651 sp->eth_regs->flow_control = (FLOW_CONTROL_FCE);
652 sp->eth_regs->vlan_tag = (0x8100);
653
654 /* Enable Ethernet Interface */
655 flags = (MAC_CONTROL_TE | /* transmit enable */
656 MAC_CONTROL_PM | /* pass mcast */
657 MAC_CONTROL_F | /* full duplex */
658 MAC_CONTROL_HBD); /* heart beat disabled */
659
660 if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
661 flags |= MAC_CONTROL_PR;
662 }
663 sp->eth_regs->mac_control = flags;
664
665 /* Set all Ethernet station address registers to their initial values */
666 ethsah = ((((u_int)(dev->dev_addr[5]) << 8) & (u_int)0x0000FF00) |
667 (((u_int)(dev->dev_addr[4]) << 0) & (u_int)0x000000FF));
668
669 ethsal = ((((u_int)(dev->dev_addr[3]) << 24) & (u_int)0xFF000000) |
670 (((u_int)(dev->dev_addr[2]) << 16) & (u_int)0x00FF0000) |
671 (((u_int)(dev->dev_addr[1]) << 8) & (u_int)0x0000FF00) |
672 (((u_int)(dev->dev_addr[0]) << 0) & (u_int)0x000000FF) );
673
674 sp->eth_regs->mac_addr[0] = ethsah;
675 sp->eth_regs->mac_addr[1] = ethsal;
676
677 mdelay(10);
678
679 return(0);
680 }
681
682
683 static int ar2313_init(struct net_device *dev)
684 {
685 struct ar2313_private *sp = dev->priv;
686 int ecode=0;
687
688 /*
689 * Allocate descriptors
690 */
691 if (ar2313_allocate_descriptors(dev)) {
692 printk("%s: %s: ar2313_allocate_descriptors failed\n",
693 dev->name, __FUNCTION__);
694 ecode = -EAGAIN;
695 goto init_error;
696 }
697
698 /*
699 * Get the memory for the skb rings.
700 */
701 if(sp->rx_skb == NULL) {
702 sp->rx_skb = kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES, GFP_KERNEL);
703 if (!(sp->rx_skb)) {
704 printk("%s: %s: rx_skb kmalloc failed\n",
705 dev->name, __FUNCTION__);
706 ecode = -EAGAIN;
707 goto init_error;
708 }
709 }
710 memset(sp->rx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
711
712 if(sp->tx_skb == NULL) {
713 sp->tx_skb = kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES, GFP_KERNEL);
714 if (!(sp->tx_skb)) {
715 printk("%s: %s: tx_skb kmalloc failed\n",
716 dev->name, __FUNCTION__);
717 ecode = -EAGAIN;
718 goto init_error;
719 }
720 }
721 memset(sp->tx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
722
723 /*
724 * Set tx_csm before we start receiving interrupts, otherwise
725 * the interrupt handler might think it is supposed to process
726 * tx ints before we are up and running, which may cause a null
727 * pointer access in the int handler.
728 */
729 sp->rx_skbprd = 0;
730 sp->cur_rx = 0;
731 sp->tx_prd = 0;
732 sp->tx_csm = 0;
733
734 /*
735 * Zero the stats before starting the interface
736 */
737 memset(&sp->stats, 0, sizeof(sp->stats));
738
739 /*
740 * We load the ring here as there seem to be no way to tell the
741 * firmware to wipe the ring without re-initializing it.
742 */
743 ar2313_load_rx_ring(dev, RX_RING_SIZE);
744
745 /*
746 * Init hardware
747 */
748 ar2313_reset_reg(dev);
749
750 /*
751 * Get the IRQ
752 */
753 ecode = request_irq(dev->irq, &ar2313_interrupt, IRQF_SHARED | IRQF_DISABLED | IRQF_SAMPLE_RANDOM, dev->name, dev);
754 if (ecode) {
755 printk(KERN_WARNING "%s: %s: Requested IRQ %d is busy\n",
756 dev->name, __FUNCTION__, dev->irq);
757 goto init_error;
758 }
759
760
761 tasklet_enable(&sp->rx_tasklet);
762
763 return 0;
764
765 init_error:
766 ar2313_init_cleanup(dev);
767 return ecode;
768 }
769
770 /*
771 * Load the rx ring.
772 *
773 * Loading rings is safe without holding the spin lock since this is
774 * done only before the device is enabled, thus no interrupts are
775 * generated and by the interrupt handler/tasklet handler.
776 */
777 static void ar2313_load_rx_ring(struct net_device *dev, int nr_bufs)
778 {
779
780 struct ar2313_private *sp = ((struct net_device *)dev)->priv;
781 short i, idx;
782
783 idx = sp->rx_skbprd;
784
785 for (i = 0; i < nr_bufs; i++) {
786 struct sk_buff *skb;
787 ar2313_descr_t *rd;
788
789 if (sp->rx_skb[idx]) {
790 #if DEBUG_RX
791 printk(KERN_INFO "ar2313 rx refill full\n");
792 #endif /* DEBUG */
793 break;
794 }
795
796 // partha: create additional room for the second GRE fragment
797 skb = alloc_skb(AR2313_BUFSIZE+128, GFP_ATOMIC);
798 if (!skb) {
799 printk("\n\n\n\n %s: No memory in system\n\n\n\n", __FUNCTION__);
800 break;
801 }
802 // partha: create additional room in the front for tx pkt capture
803 skb_reserve(skb, 32);
804
805 /*
806 * Make sure IP header starts on a fresh cache line.
807 */
808 skb->dev = dev;
809 skb_reserve(skb, RX_OFFSET);
810 sp->rx_skb[idx] = skb;
811
812 rd = (ar2313_descr_t *) &sp->rx_ring[idx];
813
814 /* initialize dma descriptor */
815 rd->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
816 DMA_RX1_CHAINED);
817 rd->addr = virt_to_phys(skb->data);
818 rd->descr = virt_to_phys(&sp->rx_ring[(idx+1) & (AR2313_DESCR_ENTRIES-1)]);
819 rd->status = DMA_RX_OWN;
820
821 idx = DSC_NEXT(idx);
822 }
823
824 if (!i) {
825 #if DEBUG_ERR
826 printk(KERN_INFO "Out of memory when allocating standard receive buffers\n");
827 #endif /* DEBUG */
828 } else {
829 sp->rx_skbprd = idx;
830 }
831
832 return;
833 }
834
835 #define AR2313_MAX_PKTS_PER_CALL 64
836
837 static int ar2313_rx_int(struct net_device *dev)
838 {
839 struct ar2313_private *sp = dev->priv;
840 struct sk_buff *skb, *skb_new;
841 ar2313_descr_t *rxdesc;
842 unsigned int status;
843 u32 idx;
844 int pkts = 0;
845 int rval;
846
847 idx = sp->cur_rx;
848
849 /* process at most the entire ring and then wait for another interrupt */
850 while(1) {
851
852 rxdesc = &sp->rx_ring[idx];
853 status = rxdesc->status;
854 if (status & DMA_RX_OWN) {
855 /* SiByte owns descriptor or descr not yet filled in */
856 rval = 0;
857 break;
858 }
859
860 if (++pkts > AR2313_MAX_PKTS_PER_CALL) {
861 rval = 1;
862 break;
863 }
864
865 #if DEBUG_RX
866 printk("index %d\n", idx);
867 printk("RX status %08x\n", rxdesc->status);
868 printk("RX devcs %08x\n", rxdesc->devcs );
869 printk("RX addr %08x\n", rxdesc->addr );
870 printk("RX descr %08x\n", rxdesc->descr );
871 #endif
872
873 if ((status & (DMA_RX_ERROR|DMA_RX_ERR_LENGTH)) &&
874 (!(status & DMA_RX_LONG))){
875 #if DEBUG_RX
876 printk("%s: rx ERROR %08x\n", __FUNCTION__, status);
877 #endif
878 sp->stats.rx_errors++;
879 sp->stats.rx_dropped++;
880
881 /* add statistics counters */
882 if (status & DMA_RX_ERR_CRC) sp->stats.rx_crc_errors++;
883 if (status & DMA_RX_ERR_COL) sp->stats.rx_over_errors++;
884 if (status & DMA_RX_ERR_LENGTH)
885 sp->stats.rx_length_errors++;
886 if (status & DMA_RX_ERR_RUNT) sp->stats.rx_over_errors++;
887 if (status & DMA_RX_ERR_DESC) sp->stats.rx_over_errors++;
888
889 } else {
890 /* alloc new buffer. */
891 skb_new = dev_alloc_skb(AR2313_BUFSIZE + RX_OFFSET + 128);
892 if (skb_new != NULL) {
893
894 skb = sp->rx_skb[idx];
895 /* set skb */
896 skb_put(skb, ((status >> DMA_RX_LEN_SHIFT) & 0x3fff) - CRC_LEN);
897
898 sp->stats.rx_bytes += skb->len;
899 skb->protocol = eth_type_trans(skb, dev);
900 /* pass the packet to upper layers */
901 netif_rx(skb);
902
903 skb_new->dev = dev;
904 /* 16 bit align */
905 skb_reserve(skb_new, RX_OFFSET+32);
906 /* reset descriptor's curr_addr */
907 rxdesc->addr = virt_to_phys(skb_new->data);
908
909 sp->stats.rx_packets++;
910 sp->rx_skb[idx] = skb_new;
911 } else {
912 sp->stats.rx_dropped++;
913 }
914 }
915
916 rxdesc->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
917 DMA_RX1_CHAINED);
918 rxdesc->status = DMA_RX_OWN;
919
920 idx = DSC_NEXT(idx);
921 }
922
923 sp->cur_rx = idx;
924
925 return rval;
926 }
927
928
929 static void ar2313_tx_int(struct net_device *dev)
930 {
931 struct ar2313_private *sp = dev->priv;
932 u32 idx;
933 struct sk_buff *skb;
934 ar2313_descr_t *txdesc;
935 unsigned int status=0;
936
937 idx = sp->tx_csm;
938
939 while (idx != sp->tx_prd) {
940
941 txdesc = &sp->tx_ring[idx];
942
943 #if DEBUG_TX
944 printk("%s: TXINT: csm=%d idx=%d prd=%d status=%x devcs=%x addr=%08x descr=%x\n",
945 dev->name, sp->tx_csm, idx, sp->tx_prd,
946 txdesc->status, txdesc->devcs, txdesc->addr, txdesc->descr);
947 #endif /* DEBUG */
948
949 if ((status = txdesc->status) & DMA_TX_OWN) {
950 /* ar2313 dma still owns descr */
951 break;
952 }
953 /* done with this descriptor */
954 dma_unmap_single(NULL, txdesc->addr, txdesc->devcs & DMA_TX1_BSIZE_MASK, DMA_TO_DEVICE);
955 txdesc->status = 0;
956
957 if (status & DMA_TX_ERROR){
958 sp->stats.tx_errors++;
959 sp->stats.tx_dropped++;
960 if(status & DMA_TX_ERR_UNDER)
961 sp->stats.tx_fifo_errors++;
962 if(status & DMA_TX_ERR_HB)
963 sp->stats.tx_heartbeat_errors++;
964 if(status & (DMA_TX_ERR_LOSS |
965 DMA_TX_ERR_LINK))
966 sp->stats.tx_carrier_errors++;
967 if (status & (DMA_TX_ERR_LATE|
968 DMA_TX_ERR_COL |
969 DMA_TX_ERR_JABBER |
970 DMA_TX_ERR_DEFER))
971 sp->stats.tx_aborted_errors++;
972 } else {
973 /* transmit OK */
974 sp->stats.tx_packets++;
975 }
976
977 skb = sp->tx_skb[idx];
978 sp->tx_skb[idx] = NULL;
979 idx = DSC_NEXT(idx);
980 sp->stats.tx_bytes += skb->len;
981 dev_kfree_skb_irq(skb);
982 }
983
984 sp->tx_csm = idx;
985
986 return;
987 }
988
989
990 static void
991 rx_tasklet_func(unsigned long data)
992 {
993 struct net_device *dev = (struct net_device *) data;
994 struct ar2313_private *sp = dev->priv;
995
996 if (sp->unloading) {
997 return;
998 }
999
1000 if (ar2313_rx_int(dev)) {
1001 tasklet_hi_schedule(&sp->rx_tasklet);
1002 }
1003 else {
1004 unsigned long flags;
1005 spin_lock_irqsave(&sp->lock, flags);
1006 sp->dma_regs->intr_ena |= DMA_STATUS_RI;
1007 spin_unlock_irqrestore(&sp->lock, flags);
1008 }
1009 }
1010
1011 static void
1012 rx_schedule(struct net_device *dev)
1013 {
1014 struct ar2313_private *sp = dev->priv;
1015
1016 sp->dma_regs->intr_ena &= ~DMA_STATUS_RI;
1017
1018 tasklet_hi_schedule(&sp->rx_tasklet);
1019 }
1020
1021 static irqreturn_t ar2313_interrupt(int irq, void *dev_id)
1022 {
1023 struct net_device *dev = (struct net_device *)dev_id;
1024 struct ar2313_private *sp = dev->priv;
1025 unsigned int status, enabled;
1026
1027 /* clear interrupt */
1028 /*
1029 * Don't clear RI bit if currently disabled.
1030 */
1031 status = sp->dma_regs->status;
1032 enabled = sp->dma_regs->intr_ena;
1033 sp->dma_regs->status = status & enabled;
1034
1035 if (status & DMA_STATUS_NIS) {
1036 /* normal status */
1037 /*
1038 * Don't schedule rx processing if interrupt
1039 * is already disabled.
1040 */
1041 if (status & enabled & DMA_STATUS_RI) {
1042 /* receive interrupt */
1043 rx_schedule(dev);
1044 }
1045 if (status & DMA_STATUS_TI) {
1046 /* transmit interrupt */
1047 ar2313_tx_int(dev);
1048 }
1049 }
1050
1051 if (status & DMA_STATUS_AIS) {
1052 #if DEBUG_INT
1053 printk("%s: AIS set %08x & %x\n", __FUNCTION__,
1054 status, (DMA_STATUS_FBE | DMA_STATUS_TPS));
1055 #endif
1056 /* abnormal status */
1057 if (status & (DMA_STATUS_FBE | DMA_STATUS_TPS)) {
1058 ar2313_restart(dev);
1059 }
1060 }
1061 return IRQ_HANDLED;
1062 }
1063
1064
1065 static int ar2313_open(struct net_device *dev)
1066 {
1067 struct ar2313_private *sp;
1068
1069 sp = dev->priv;
1070
1071 dev->mtu = 1500;
1072 netif_start_queue(dev);
1073
1074 sp->eth_regs->mac_control |= MAC_CONTROL_RE;
1075
1076 return 0;
1077 }
1078
1079 static void ar2313_halt(struct net_device *dev)
1080 {
1081 struct ar2313_private *sp = dev->priv;
1082 int j;
1083
1084 tasklet_disable(&sp->rx_tasklet);
1085
1086 /* kill the MAC */
1087 sp->eth_regs->mac_control &= ~(MAC_CONTROL_RE | /* disable Receives */
1088 MAC_CONTROL_TE); /* disable Transmits */
1089 /* stop dma */
1090 sp->dma_regs->control = 0;
1091 sp->dma_regs->bus_mode = DMA_BUS_MODE_SWR;
1092
1093 /* place phy and MAC in reset */
1094 *sp->int_regs |= (sp->cfg->reset_mac | sp->cfg->reset_phy);
1095
1096 /* free buffers on tx ring */
1097 for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
1098 struct sk_buff *skb;
1099 ar2313_descr_t *txdesc;
1100
1101 txdesc = &sp->tx_ring[j];
1102 txdesc->descr = 0;
1103
1104 skb = sp->tx_skb[j];
1105 if (skb) {
1106 dev_kfree_skb(skb);
1107 sp->tx_skb[j] = NULL;
1108 }
1109 }
1110 }
1111
1112 /*
1113 * close should do nothing. Here's why. It's called when
1114 * 'ifconfig bond0 down' is run. If it calls free_irq then
1115 * the irq is gone forever ! When bond0 is made 'up' again,
1116 * the ar2313_open () does not call request_irq (). Worse,
1117 * the call to ar2313_halt() generates a WDOG reset due to
1118 * the write to 'sp->int_regs' and the box reboots.
1119 * Commenting this out is good since it allows the
1120 * system to resume when bond0 is made up again.
1121 */
1122 static int ar2313_close(struct net_device *dev)
1123 {
1124 #if 0
1125 /*
1126 * Disable interrupts
1127 */
1128 disable_irq(dev->irq);
1129
1130 /*
1131 * Without (or before) releasing irq and stopping hardware, this
1132 * is an absolute non-sense, by the way. It will be reset instantly
1133 * by the first irq.
1134 */
1135 netif_stop_queue(dev);
1136
1137 /* stop the MAC and DMA engines */
1138 ar2313_halt(dev);
1139
1140 /* release the interrupt */
1141 free_irq(dev->irq, dev);
1142
1143 #endif
1144 return 0;
1145 }
1146
1147 static int ar2313_start_xmit(struct sk_buff *skb, struct net_device *dev)
1148 {
1149 struct ar2313_private *sp = dev->priv;
1150 ar2313_descr_t *td;
1151 u32 idx;
1152
1153 idx = sp->tx_prd;
1154 td = &sp->tx_ring[idx];
1155
1156 if (td->status & DMA_TX_OWN) {
1157 #if DEBUG_TX
1158 printk("%s: No space left to Tx\n", __FUNCTION__);
1159 #endif
1160 /* free skbuf and lie to the caller that we sent it out */
1161 sp->stats.tx_dropped++;
1162 dev_kfree_skb(skb);
1163
1164 /* restart transmitter in case locked */
1165 sp->dma_regs->xmt_poll = 0;
1166 return 0;
1167 }
1168
1169 /* Setup the transmit descriptor. */
1170 td->devcs = ((skb->len << DMA_TX1_BSIZE_SHIFT) |
1171 (DMA_TX1_LS|DMA_TX1_IC|DMA_TX1_CHAINED));
1172 td->addr = dma_map_single(NULL, skb->data, skb->len, DMA_TO_DEVICE);
1173 td->status = DMA_TX_OWN;
1174
1175 /* kick transmitter last */
1176 sp->dma_regs->xmt_poll = 0;
1177
1178 #if DEBUG_TX
1179 printk("index %d\n", idx);
1180 printk("TX status %08x\n", td->status);
1181 printk("TX devcs %08x\n", td->devcs );
1182 printk("TX addr %08x\n", td->addr );
1183 printk("TX descr %08x\n", td->descr );
1184 #endif
1185
1186 sp->tx_skb[idx] = skb;
1187 idx = DSC_NEXT(idx);
1188 sp->tx_prd = idx;
1189
1190 return 0;
1191 }
1192
1193 static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
1194 {
1195 struct ar2313_private *np = dev->priv;
1196 u32 tmp;
1197
1198 ecmd->supported =
1199 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
1200 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
1201 SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
1202
1203 ecmd->port = PORT_TP;
1204 /* only supports internal transceiver */
1205 ecmd->transceiver = XCVR_INTERNAL;
1206 /* not sure what this is for */
1207 ecmd->phy_address = 1;
1208
1209 ecmd->advertising = ADVERTISED_MII;
1210 tmp = armiiread(dev, np->phy, MII_ADVERTISE);
1211 if (tmp & ADVERTISE_10HALF)
1212 ecmd->advertising |= ADVERTISED_10baseT_Half;
1213 if (tmp & ADVERTISE_10FULL)
1214 ecmd->advertising |= ADVERTISED_10baseT_Full;
1215 if (tmp & ADVERTISE_100HALF)
1216 ecmd->advertising |= ADVERTISED_100baseT_Half;
1217 if (tmp & ADVERTISE_100FULL)
1218 ecmd->advertising |= ADVERTISED_100baseT_Full;
1219
1220 tmp = armiiread(dev, np->phy, MII_BMCR);
1221 if (tmp & BMCR_ANENABLE) {
1222 ecmd->advertising |= ADVERTISED_Autoneg;
1223 ecmd->autoneg = AUTONEG_ENABLE;
1224 } else {
1225 ecmd->autoneg = AUTONEG_DISABLE;
1226 }
1227
1228 if (ecmd->autoneg == AUTONEG_ENABLE) {
1229 tmp = armiiread(dev, np->phy, MII_LPA);
1230 if (tmp & (LPA_100FULL|LPA_10FULL)) {
1231 ecmd->duplex = DUPLEX_FULL;
1232 } else {
1233 ecmd->duplex = DUPLEX_HALF;
1234 }
1235 if (tmp & (LPA_100FULL|LPA_100HALF)) {
1236 ecmd->speed = SPEED_100;
1237 } else {
1238 ecmd->speed = SPEED_10;
1239 }
1240 } else {
1241 if (tmp & BMCR_FULLDPLX) {
1242 ecmd->duplex = DUPLEX_FULL;
1243 } else {
1244 ecmd->duplex = DUPLEX_HALF;
1245 }
1246 if (tmp & BMCR_SPEED100) {
1247 ecmd->speed = SPEED_100;
1248 } else {
1249 ecmd->speed = SPEED_10;
1250 }
1251 }
1252
1253 /* ignore maxtxpkt, maxrxpkt for now */
1254
1255 return 0;
1256 }
1257
1258 static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
1259 {
1260 struct ar2313_private *np = dev->priv;
1261 u32 tmp;
1262
1263 if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
1264 return -EINVAL;
1265 if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
1266 return -EINVAL;
1267 if (ecmd->port != PORT_TP)
1268 return -EINVAL;
1269 if (ecmd->transceiver != XCVR_INTERNAL)
1270 return -EINVAL;
1271 if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
1272 return -EINVAL;
1273 /* ignore phy_address, maxtxpkt, maxrxpkt for now */
1274
1275 /* WHEW! now lets bang some bits */
1276
1277 tmp = armiiread(dev, np->phy, MII_BMCR);
1278 if (ecmd->autoneg == AUTONEG_ENABLE) {
1279 /* turn on autonegotiation */
1280 tmp |= BMCR_ANENABLE;
1281 printk("%s: Enabling auto-neg\n", dev->name);
1282 } else {
1283 /* turn off auto negotiation, set speed and duplexity */
1284 tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1285 if (ecmd->speed == SPEED_100)
1286 tmp |= BMCR_SPEED100;
1287 if (ecmd->duplex == DUPLEX_FULL)
1288 tmp |= BMCR_FULLDPLX;
1289 printk("%s: Hard coding %d/%s\n", dev->name,
1290 (ecmd->speed == SPEED_100)? 100:10,
1291 (ecmd->duplex == DUPLEX_FULL)? "full":"half");
1292 }
1293 armiiwrite(dev, np->phy, MII_BMCR, tmp);
1294 np->phyData = 0;
1295 return 0;
1296 }
1297
1298 static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr)
1299 {
1300 struct ar2313_private *np = dev->priv;
1301 u32 cmd;
1302
1303 if (get_user(cmd, (u32 *)useraddr))
1304 return -EFAULT;
1305
1306 switch (cmd) {
1307 /* get settings */
1308 case ETHTOOL_GSET: {
1309 struct ethtool_cmd ecmd = { ETHTOOL_GSET };
1310 spin_lock_irq(&np->lock);
1311 netdev_get_ecmd(dev, &ecmd);
1312 spin_unlock_irq(&np->lock);
1313 if (copy_to_user(useraddr, &ecmd, sizeof(ecmd)))
1314 return -EFAULT;
1315 return 0;
1316 }
1317 /* set settings */
1318 case ETHTOOL_SSET: {
1319 struct ethtool_cmd ecmd;
1320 int r;
1321 if (copy_from_user(&ecmd, useraddr, sizeof(ecmd)))
1322 return -EFAULT;
1323 spin_lock_irq(&np->lock);
1324 r = netdev_set_ecmd(dev, &ecmd);
1325 spin_unlock_irq(&np->lock);
1326 return r;
1327 }
1328 /* restart autonegotiation */
1329 case ETHTOOL_NWAY_RST: {
1330 int tmp;
1331 int r = -EINVAL;
1332 /* if autoneg is off, it's an error */
1333 tmp = armiiread(dev, np->phy, MII_BMCR);
1334 if (tmp & BMCR_ANENABLE) {
1335 tmp |= (BMCR_ANRESTART);
1336 armiiwrite(dev, np->phy, MII_BMCR, tmp);
1337 r = 0;
1338 }
1339 return r;
1340 }
1341 /* get link status */
1342 case ETHTOOL_GLINK: {
1343 struct ethtool_value edata = {ETHTOOL_GLINK};
1344 edata.data = (armiiread(dev, np->phy, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
1345 if (copy_to_user(useraddr, &edata, sizeof(edata)))
1346 return -EFAULT;
1347 return 0;
1348 }
1349 }
1350
1351 return -EOPNOTSUPP;
1352 }
1353
1354 static int ar2313_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1355 {
1356 struct mii_ioctl_data *data = (struct mii_ioctl_data *)&ifr->ifr_data;
1357
1358 switch (cmd) {
1359
1360 case SIOCETHTOOL:
1361 return netdev_ethtool_ioctl(dev, (void *) ifr->ifr_data);
1362
1363 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
1364 data->phy_id = 1;
1365 /* Fall Through */
1366
1367 case SIOCGMIIREG: /* Read MII PHY register. */
1368 data->val_out = armiiread(dev, data->phy_id & 0x1f,
1369 data->reg_num & 0x1f);
1370 return 0;
1371 case SIOCSMIIREG: /* Write MII PHY register. */
1372 if (!capable(CAP_NET_ADMIN))
1373 return -EPERM;
1374 armiiwrite(dev, data->phy_id & 0x1f,
1375 data->reg_num & 0x1f, data->val_in);
1376 return 0;
1377
1378 case SIOCSIFHWADDR:
1379 if (copy_from_user(dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
1380 return -EFAULT;
1381 return 0;
1382
1383 case SIOCGIFHWADDR:
1384 if (copy_to_user(ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
1385 return -EFAULT;
1386 return 0;
1387
1388 default:
1389 break;
1390 }
1391
1392 return -EOPNOTSUPP;
1393 }
1394
1395 static struct net_device_stats *ar2313_get_stats(struct net_device *dev)
1396 {
1397 struct ar2313_private *sp = dev->priv;
1398 return &sp->stats;
1399 }
1400
1401
1402 #define MII_ADDR(phy, reg) \
1403 ((reg << MII_ADDR_REG_SHIFT) | (phy << MII_ADDR_PHY_SHIFT))
1404
1405 static short
1406 armiiread(struct net_device *dev, short phy, short reg)
1407 {
1408 struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
1409 volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1410
1411 ethernet->mii_addr = MII_ADDR(phy, reg);
1412 while (ethernet->mii_addr & MII_ADDR_BUSY);
1413 return (ethernet->mii_data >> MII_DATA_SHIFT);
1414 }
1415
1416 static void
1417 armiiwrite(struct net_device *dev, short phy, short reg, short data)
1418 {
1419 struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
1420 volatile ETHERNET_STRUCT *ethernet = sp->phy_regs;
1421
1422 while (ethernet->mii_addr & MII_ADDR_BUSY);
1423 ethernet->mii_data = data << MII_DATA_SHIFT;
1424 ethernet->mii_addr = MII_ADDR(phy, reg) | MII_ADDR_WRITE;
1425 }
1426