f1471169e5728fa383935a717a8daedf2416a58d
[openwrt/svn-archive/archive.git] / target / linux / lantiq / files / arch / mips / lantiq / svip / devices.c
1 #include <linux/init.h>
2 #include <linux/module.h>
3 #include <linux/types.h>
4 #include <linux/string.h>
5 #include <linux/mtd/physmap.h>
6 #include <linux/kernel.h>
7 #include <linux/reboot.h>
8 #include <linux/platform_device.h>
9 #include <linux/leds.h>
10 #include <linux/etherdevice.h>
11 #include <linux/reboot.h>
12 #include <linux/time.h>
13 #include <linux/io.h>
14 #include <linux/gpio.h>
15 #include <linux/leds.h>
16 #include <linux/spi/spi.h>
17 #include <linux/mtd/nand.h>
18
19 #include <asm/bootinfo.h>
20 #include <asm/irq.h>
21
22 #include <lantiq.h>
23
24 #include <base_reg.h>
25 #include <sys1_reg.h>
26 #include <sys2_reg.h>
27 #include <ebu_reg.h>
28
29 #include "devices.h"
30
31 #include <lantiq_soc.h>
32 #include <svip_mux.h>
33 #include <svip_pms.h>
34
35 /* ASC */
36 void __init svip_register_asc(int port)
37 {
38 switch (port) {
39 case 0:
40 ltq_register_asc(0);
41 svip_sys1_clk_enable(SYS1_CLKENR_ASC0);
42 break;
43 case 1:
44 ltq_register_asc(1);
45 svip_sys1_clk_enable(SYS1_CLKENR_ASC1);
46 break;
47 default:
48 break;
49 };
50 }
51
52 /* Ethernet */
53 static unsigned char svip_ethaddr[6] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
54
55 static struct platform_device ltq_mii = {
56 .name = "ifxmips_mii0",
57 .dev = {
58 .platform_data = svip_ethaddr,
59 },
60 };
61
62 static int __init svip_set_ethaddr(char *str)
63 {
64 sscanf(str, "%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx",
65 &svip_ethaddr[0], &svip_ethaddr[1], &svip_ethaddr[2],
66 &svip_ethaddr[3], &svip_ethaddr[4], &svip_ethaddr[5]);
67 return 0;
68 }
69 __setup("ethaddr=", svip_set_ethaddr);
70
71 void __init svip_register_eth(void)
72 {
73 if (!is_valid_ether_addr(svip_ethaddr))
74 random_ether_addr(svip_ethaddr);
75
76 platform_device_register(&ltq_mii);
77 svip_sys1_clk_enable(SYS1_CLKENR_ETHSW);
78 }
79
80 /* Virtual Ethernet */
81 static struct platform_device ltq_ve = {
82 .name = "ifxmips_svip_ve",
83 };
84
85 void __init svip_register_virtual_eth(void)
86 {
87 platform_device_register(&ltq_ve);
88 }
89
90 /* SPI */
91 static void __init ltq_register_ssc(int bus_num, unsigned long base, int irq_rx,
92 int irq_tx, int irq_err, int irq_frm)
93 {
94 struct resource res[] = {
95 {
96 .name = "regs",
97 .start = base,
98 .end = base + 0x20 - 1,
99 .flags = IORESOURCE_MEM,
100 }, {
101 .name = "rx",
102 .start = irq_rx,
103 .flags = IORESOURCE_IRQ,
104 }, {
105 .name = "tx",
106 .start = irq_tx,
107 .flags = IORESOURCE_IRQ,
108 }, {
109 .name = "err",
110 .start = irq_err,
111 .flags = IORESOURCE_IRQ,
112 }, {
113 .name = "frm",
114 .start = irq_frm,
115 .flags = IORESOURCE_IRQ,
116 },
117 };
118
119 platform_device_register_simple("ifx_ssc", bus_num, res,
120 ARRAY_SIZE(res));
121 }
122
123 static struct spi_board_info bdinfo[] __initdata = {
124 {
125 .modalias = "xt16",
126 .mode = SPI_MODE_3,
127 .irq = INT_NUM_IM5_IRL0 + 28,
128 .max_speed_hz = 1000000,
129 .bus_num = 0,
130 .chip_select = 1,
131 },
132 {
133 .modalias = "xt16",
134 .mode = SPI_MODE_3,
135 .irq = INT_NUM_IM5_IRL0 + 19,
136 .max_speed_hz = 1000000,
137 .bus_num = 0,
138 .chip_select = 2,
139 },
140 {
141 .modalias = "loop",
142 .mode = SPI_MODE_0 | SPI_LOOP,
143 .irq = -1,
144 .max_speed_hz = 10000000,
145 .bus_num = 0,
146 .chip_select = 3,
147 },
148 };
149
150 void __init svip_register_spi(void)
151 {
152
153 ltq_register_ssc(0, LTQ_SSC0_BASE, INT_NUM_IM1_IRL0 + 6,
154 INT_NUM_IM1_IRL0 + 7, INT_NUM_IM1_IRL0 + 8,
155 INT_NUM_IM1_IRL0 + 9);
156
157 ltq_register_ssc(1, LTQ_SSC1_BASE, INT_NUM_IM1_IRL0 + 10,
158 INT_NUM_IM1_IRL0 + 11, INT_NUM_IM1_IRL0 + 12,
159 INT_NUM_IM1_IRL0 + 13);
160
161 spi_register_board_info(bdinfo, ARRAY_SIZE(bdinfo));
162
163 svip_sys1_clk_enable(SYS1_CLKENR_SSC0 | SYS1_CLKENR_SSC1);
164 }
165
166 void __init svip_register_spi_flash(struct spi_board_info *bdinfo)
167 {
168 spi_register_board_info(bdinfo, 1);
169 }
170
171 /* GPIO */
172 static struct platform_device ltq_gpio = {
173 .name = "ifxmips_gpio",
174 };
175
176 static struct platform_device ltq_gpiodev = {
177 .name = "GPIODEV",
178 };
179
180 void __init svip_register_gpio(void)
181 {
182 platform_device_register(&ltq_gpio);
183 platform_device_register(&ltq_gpiodev);
184 }
185
186 /* MUX */
187 static struct ltq_mux_settings ltq_mux_settings;
188
189 static struct platform_device ltq_mux = {
190 .name = "ltq_mux",
191 .dev = {
192 .platform_data = &ltq_mux_settings,
193 }
194 };
195
196 void __init svip_register_mux(const struct ltq_mux_pin mux_p0[LTQ_MUX_P0_PINS],
197 const struct ltq_mux_pin mux_p1[LTQ_MUX_P1_PINS],
198 const struct ltq_mux_pin mux_p2[LTQ_MUX_P2_PINS],
199 const struct ltq_mux_pin mux_p3[LTQ_MUX_P3_PINS],
200 const struct ltq_mux_pin mux_p4[LTQ_MUX_P4_PINS])
201 {
202 ltq_mux_settings.mux_p0 = mux_p0;
203 ltq_mux_settings.mux_p1 = mux_p1;
204 ltq_mux_settings.mux_p2 = mux_p2;
205 ltq_mux_settings.mux_p3 = mux_p3;
206 ltq_mux_settings.mux_p4 = mux_p4;
207
208 if (mux_p0)
209 svip_sys1_clk_enable(SYS1_CLKENR_PORT0);
210
211 if (mux_p1)
212 svip_sys1_clk_enable(SYS1_CLKENR_PORT1);
213
214 if (mux_p2)
215 svip_sys1_clk_enable(SYS1_CLKENR_PORT2);
216
217 if (mux_p3)
218 svip_sys1_clk_enable(SYS1_CLKENR_PORT3);
219
220 if (mux_p4)
221 svip_sys2_clk_enable(SYS2_CLKENR_PORT4);
222
223 platform_device_register(&ltq_mux);
224 }
225
226 /* NAND */
227 #define NAND_ADDR_REGION_BASE (LTQ_EBU_SEG1_BASE)
228 #define NAND_CLE_BIT (1 << 3)
229 #define NAND_ALE_BIT (1 << 2)
230
231 static struct svip_reg_ebu *const ebu = (struct svip_reg_ebu *)LTQ_EBU_BASE;
232
233 static int svip_nand_probe(struct platform_device *pdev)
234 {
235 ebu_w32(LTQ_EBU_ADDR_SEL_0_BASE_VAL(CPHYSADDR(NAND_ADDR_REGION_BASE)
236 >> 12)
237 | LTQ_EBU_ADDR_SEL_0_MASK_VAL(15)
238 | LTQ_EBU_ADDR_SEL_0_MRME_VAL(0)
239 | LTQ_EBU_ADDR_SEL_0_REGEN_VAL(1),
240 addr_sel_0);
241
242 ebu_w32(LTQ_EBU_CON_0_WRDIS_VAL(0)
243 | LTQ_EBU_CON_0_ADSWP_VAL(1)
244 | LTQ_EBU_CON_0_AGEN_VAL(0x00)
245 | LTQ_EBU_CON_0_SETUP_VAL(1)
246 | LTQ_EBU_CON_0_WAIT_VAL(0x00)
247 | LTQ_EBU_CON_0_WINV_VAL(0)
248 | LTQ_EBU_CON_0_PW_VAL(0x00)
249 | LTQ_EBU_CON_0_ALEC_VAL(0)
250 | LTQ_EBU_CON_0_BCGEN_VAL(0x01)
251 | LTQ_EBU_CON_0_WAITWRC_VAL(1)
252 | LTQ_EBU_CON_0_WAITRDC_VAL(1)
253 | LTQ_EBU_CON_0_HOLDC_VAL(1)
254 | LTQ_EBU_CON_0_RECOVC_VAL(0)
255 | LTQ_EBU_CON_0_CMULT_VAL(0x01),
256 con_0);
257
258 /*
259 * ECC disabled
260 * CLE, ALE and CS are pulse, all other signal are latches based
261 * CLE and ALE are active high, PRE, WP, SE and CS/CE are active low
262 * OUT_CS_S is disabled
263 * NAND mode is disabled
264 */
265 ebu_w32(LTQ_EBU_NAND_CON_ECC_ON_VAL(0)
266 | LTQ_EBU_NAND_CON_LAT_EN_VAL(0x38)
267 | LTQ_EBU_NAND_CON_OUT_CS_S_VAL(0)
268 | LTQ_EBU_NAND_CON_IN_CS_S_VAL(0)
269 | LTQ_EBU_NAND_CON_PRE_P_VAL(1)
270 | LTQ_EBU_NAND_CON_WP_P_VAL(1)
271 | LTQ_EBU_NAND_CON_SE_P_VAL(1)
272 | LTQ_EBU_NAND_CON_CS_P_VAL(1)
273 | LTQ_EBU_NAND_CON_CLE_P_VAL(0)
274 | LTQ_EBU_NAND_CON_ALE_P_VAL(0)
275 | LTQ_EBU_NAND_CON_CSMUX_E_VAL(0)
276 | LTQ_EBU_NAND_CON_NANDMODE_VAL(0),
277 nand_con);
278
279 return 0;
280 }
281
282 static void svip_nand_hwcontrol(struct mtd_info *mtd, int cmd,
283 unsigned int ctrl)
284 {
285 struct nand_chip *this = mtd->priv;
286
287 if (ctrl & NAND_CTRL_CHANGE) {
288 unsigned long adr;
289 /* Coming here means to change either the enable state or
290 * the address for controlling ALE or CLE */
291
292 /* NAND_NCE: Select the chip by setting nCE to low.
293 * This is done in CON register */
294 if (ctrl & NAND_NCE)
295 ebu_w32_mask(0, LTQ_EBU_NAND_CON_NANDMODE_VAL(1),
296 nand_con);
297 else
298 ebu_w32_mask(LTQ_EBU_NAND_CON_NANDMODE_VAL(1),
299 0, nand_con);
300
301 /* The addressing of CLE or ALE is done via different addresses.
302 We are now changing the address depending on the given action
303 SVIPs NAND_CLE_BIT = (1 << 3), NAND_CLE = 0x02
304 NAND_ALE_BIT = (1 << 2) = NAND_ALE (0x04) */
305 adr = (unsigned long)this->IO_ADDR_W;
306 adr &= ~(NAND_CLE_BIT | NAND_ALE_BIT);
307 adr |= (ctrl & NAND_CLE) << 2 | (ctrl & NAND_ALE);
308 this->IO_ADDR_W = (void __iomem *)adr;
309 }
310
311 if (cmd != NAND_CMD_NONE)
312 writeb(cmd, this->IO_ADDR_W);
313 }
314
315 static int svip_nand_ready(struct mtd_info *mtd)
316 {
317 return (ebu_r32(nand_wait) & 0x01) == 0x01;
318 }
319
320 static inline void svip_nand_wait(void)
321 {
322 static const int nops = 150;
323 int i;
324
325 for (i = 0; i < nops; i++)
326 asm("nop");
327 }
328
329 static void svip_nand_write_buf(struct mtd_info *mtd,
330 const u_char *buf, int len)
331 {
332 int i;
333 struct nand_chip *this = mtd->priv;
334
335 for (i = 0; i < len; i++) {
336 writeb(buf[i], this->IO_ADDR_W);
337 svip_nand_wait();
338 }
339 }
340
341 static void svip_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
342 {
343 int i;
344 struct nand_chip *this = mtd->priv;
345
346 for (i = 0; i < len; i++) {
347 buf[i] = readb(this->IO_ADDR_R);
348 svip_nand_wait();
349 }
350 }
351
352 static const char *part_probes[] = { "cmdlinepart", NULL };
353
354 static struct platform_nand_data svip_flash_nand_data = {
355 .chip = {
356 .nr_chips = 1,
357 .part_probe_types = part_probes,
358 },
359 .ctrl = {
360 .probe = svip_nand_probe,
361 .cmd_ctrl = svip_nand_hwcontrol,
362 .dev_ready = svip_nand_ready,
363 .write_buf = svip_nand_write_buf,
364 .read_buf = svip_nand_read_buf,
365 }
366 };
367
368 static struct resource svip_nand_resources[] = {
369 MEM_RES("nand", LTQ_FLASH_START, LTQ_FLASH_MAX),
370 };
371
372 static struct platform_device svip_flash_nand = {
373 .name = "gen_nand",
374 .id = -1,
375 .num_resources = ARRAY_SIZE(svip_nand_resources),
376 .resource = svip_nand_resources,
377 .dev = {
378 .platform_data = &svip_flash_nand_data,
379 },
380 };
381
382 void __init svip_register_nand(void)
383 {
384 platform_device_register(&svip_flash_nand);
385 }