bcm53xx: add upstream PCIe driver
[openwrt/openwrt.git] / target / linux / bcm53xx / patches-4.1 / 420-mtd-bcm5301x_nand.patch
1 --- a/drivers/mtd/nand/Kconfig
2 +++ b/drivers/mtd/nand/Kconfig
3 @@ -530,4 +530,10 @@ config MTD_NAND_HISI504
4 help
5 Enables support for NAND controller on Hisilicon SoC Hip04.
6
7 +config MTD_NAND_BCM
8 + tristate "Support for NAND on some Broadcom SoC"
9 + help
10 + This driver is currently used for the NAND flash controller on the
11 + Broadcom BCM5301X (NorthStar) SoCs.
12 +
13 endif # MTD_NAND
14 --- a/drivers/mtd/nand/Makefile
15 +++ b/drivers/mtd/nand/Makefile
16 @@ -52,5 +52,6 @@ obj-$(CONFIG_MTD_NAND_XWAY) += xway_nan
17 obj-$(CONFIG_MTD_NAND_BCM47XXNFLASH) += bcm47xxnflash/
18 obj-$(CONFIG_MTD_NAND_SUNXI) += sunxi_nand.o
19 obj-$(CONFIG_MTD_NAND_HISI504) += hisi504_nand.o
20 +obj-$(CONFIG_MTD_NAND_BCM) += bcm_nand.o
21
22 nand-objs := nand_base.o nand_bbt.o nand_timings.o
23 --- /dev/null
24 +++ b/drivers/mtd/nand/bcm_nand.c
25 @@ -0,0 +1,1583 @@
26 +/*
27 + * Nortstar NAND controller driver
28 + *
29 + * (c) Broadcom, Inc. 2012 All Rights Reserved.
30 + * Copyright 2014 Hauke Mehrtens <hauke@hauke-m.de>
31 + *
32 + * Licensed under the GNU/GPL. See COPYING for details.
33 + *
34 + * This module interfaces the NAND controller and hardware ECC capabilities
35 + * tp the generic NAND chip support in the NAND library.
36 + *
37 + * Notes:
38 + * This driver depends on generic NAND driver, but works at the
39 + * page level for operations.
40 + *
41 + * When a page is written, the ECC calculated also protects the OOB
42 + * bytes not taken by ECC, and so the OOB must be combined with any
43 + * OOB data that preceded the page-write operation in order for the
44 + * ECC to be calculated correctly.
45 + * Also, when the page is erased, but OOB data is not, HW ECC will
46 + * indicate an error, because it checks OOB too, which calls for some
47 + * help from the software in this driver.
48 + *
49 + * TBD:
50 + * Block locking/unlocking support, OTP support
51 + */
52 +
53 +
54 +#include <linux/kernel.h>
55 +#include <linux/module.h>
56 +#include <linux/io.h>
57 +#include <linux/ioport.h>
58 +#include <linux/interrupt.h>
59 +#include <linux/delay.h>
60 +#include <linux/err.h>
61 +#include <linux/slab.h>
62 +#include <linux/bcma/bcma.h>
63 +#include <linux/of_irq.h>
64 +
65 +#include <linux/mtd/mtd.h>
66 +#include <linux/mtd/nand.h>
67 +#include <linux/mtd/partitions.h>
68 +
69 +#define NANDC_MAX_CHIPS 2 /* Only 2 CSn supported in NorthStar */
70 +
71 +/*
72 + * Driver private control structure
73 + */
74 +struct bcmnand_ctrl {
75 + struct mtd_info mtd;
76 + struct nand_chip nand;
77 + struct bcma_device *core;
78 +
79 + struct completion op_completion;
80 +
81 + struct nand_ecclayout ecclayout;
82 + int cmd_ret; /* saved error code */
83 + unsigned char oob_index;
84 + unsigned char id_byte_index;
85 + unsigned char chip_num;
86 + unsigned char last_cmd;
87 + unsigned char ecc_level;
88 + unsigned char sector_size_shift;
89 + unsigned char sec_per_page_shift;
90 +};
91 +
92 +
93 +/*
94 + * IRQ numbers - offset from first irq in nandc_irq resource
95 + */
96 +#define NANDC_IRQ_RD_MISS 0
97 +#define NANDC_IRQ_ERASE_COMPLETE 1
98 +#define NANDC_IRQ_COPYBACK_COMPLETE 2
99 +#define NANDC_IRQ_PROGRAM_COMPLETE 3
100 +#define NANDC_IRQ_CONTROLLER_RDY 4
101 +#define NANDC_IRQ_RDBSY_RDY 5
102 +#define NANDC_IRQ_ECC_UNCORRECTABLE 6
103 +#define NANDC_IRQ_ECC_CORRECTABLE 7
104 +#define NANDC_IRQ_NUM 8
105 +
106 +struct bcmnand_reg_field {
107 + unsigned int reg;
108 + unsigned int pos;
109 + unsigned int width;
110 +};
111 +
112 +/*
113 + * REGISTERS
114 + *
115 + * Individual bit-fields aof registers are specificed here
116 + * for clarity, and the rest of the code will access each field
117 + * as if it was its own register.
118 + *
119 + * Following registers are off <reg_base>:
120 + */
121 +#define REG_BIT_FIELD(r, p, w) ((struct bcmnand_reg_field){(r), (p), (w)})
122 +
123 +#define NANDC_8KB_PAGE_SUPPORT REG_BIT_FIELD(0x0, 31, 1)
124 +#define NANDC_REV_MAJOR REG_BIT_FIELD(0x0, 8, 8)
125 +#define NANDC_REV_MINOR REG_BIT_FIELD(0x0, 0, 8)
126 +
127 +#define NANDC_CMD_START_OPCODE REG_BIT_FIELD(0x4, 24, 5)
128 +
129 +#define NANDC_CMD_CS_SEL REG_BIT_FIELD(0x8, 16, 3)
130 +#define NANDC_CMD_EXT_ADDR REG_BIT_FIELD(0x8, 0, 16)
131 +
132 +#define NANDC_CMD_ADDRESS REG_BIT_FIELD(0xc, 0, 32)
133 +#define NANDC_CMD_END_ADDRESS REG_BIT_FIELD(0x10, 0, 32)
134 +
135 +#define NANDC_INT_STATUS REG_BIT_FIELD(0x14, 0, 32)
136 +#define NANDC_INT_STAT_CTLR_RDY REG_BIT_FIELD(0x14, 31, 1)
137 +#define NANDC_INT_STAT_FLASH_RDY REG_BIT_FIELD(0x14, 30, 1)
138 +#define NANDC_INT_STAT_CACHE_VALID REG_BIT_FIELD(0x14, 29, 1)
139 +#define NANDC_INT_STAT_SPARE_VALID REG_BIT_FIELD(0x14, 28, 1)
140 +#define NANDC_INT_STAT_ERASED REG_BIT_FIELD(0x14, 27, 1)
141 +#define NANDC_INT_STAT_PLANE_RDY REG_BIT_FIELD(0x14, 26, 1)
142 +#define NANDC_INT_STAT_FLASH_STATUS REG_BIT_FIELD(0x14, 0, 8)
143 +
144 +#define NANDC_CS_LOCK REG_BIT_FIELD(0x18, 31, 1)
145 +#define NANDC_CS_AUTO_CONFIG REG_BIT_FIELD(0x18, 30, 1)
146 +#define NANDC_CS_NAND_WP REG_BIT_FIELD(0x18, 29, 1)
147 +#define NANDC_CS_BLK0_WP REG_BIT_FIELD(0x18, 28, 1)
148 +#define NANDC_CS_SW_USING_CS(n) REG_BIT_FIELD(0x18, 8+(n), 1)
149 +#define NANDC_CS_MAP_SEL_CS(n) REG_BIT_FIELD(0x18, 0+(n), 1)
150 +
151 +#define NANDC_XOR_ADDR_BLK0_ONLY REG_BIT_FIELD(0x1c, 31, 1)
152 +#define NANDC_XOR_ADDR_CS(n) REG_BIT_FIELD(0x1c, 0+(n), 1)
153 +
154 +#define NANDC_LL_OP_RET_IDLE REG_BIT_FIELD(0x20, 31, 1)
155 +#define NANDC_LL_OP_CLE REG_BIT_FIELD(0x20, 19, 1)
156 +#define NANDC_LL_OP_ALE REG_BIT_FIELD(0x20, 18, 1)
157 +#define NANDC_LL_OP_WE REG_BIT_FIELD(0x20, 17, 1)
158 +#define NANDC_LL_OP_RE REG_BIT_FIELD(0x20, 16, 1)
159 +#define NANDC_LL_OP_DATA REG_BIT_FIELD(0x20, 0, 16)
160 +
161 +#define NANDC_MPLANE_ADDR_EXT REG_BIT_FIELD(0x24, 0, 16)
162 +#define NANDC_MPLANE_ADDR REG_BIT_FIELD(0x28, 0, 32)
163 +
164 +#define NANDC_ACC_CTRL_CS(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 32)
165 +#define NANDC_ACC_CTRL_RD_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 31, 1)
166 +#define NANDC_ACC_CTRL_WR_ECC(n) REG_BIT_FIELD(0x50+((n)<<4), 30, 1)
167 +#define NANDC_ACC_CTRL_CE_CARE(n) REG_BIT_FIELD(0x50+((n)<<4), 29, 1)
168 +#define NANDC_ACC_CTRL_PGM_RDIN(n) REG_BIT_FIELD(0x50+((n)<<4), 28, 1)
169 +#define NANDC_ACC_CTRL_ERA_ECC_ERR(n) REG_BIT_FIELD(0x50+((n)<<4), 27, 1)
170 +#define NANDC_ACC_CTRL_PGM_PARTIAL(n) REG_BIT_FIELD(0x50+((n)<<4), 26, 1)
171 +#define NANDC_ACC_CTRL_WR_PREEMPT(n) REG_BIT_FIELD(0x50+((n)<<4), 25, 1)
172 +#define NANDC_ACC_CTRL_PG_HIT(n) REG_BIT_FIELD(0x50+((n)<<4), 24, 1)
173 +#define NANDC_ACC_CTRL_PREFETCH(n) REG_BIT_FIELD(0x50+((n)<<4), 23, 1)
174 +#define NANDC_ACC_CTRL_CACHE_MODE(n) REG_BIT_FIELD(0x50+((n)<<4), 22, 1)
175 +#define NANDC_ACC_CTRL_CACHE_LASTPG(n) REG_BIT_FIELD(0x50+((n)<<4), 21, 1)
176 +#define NANDC_ACC_CTRL_ECC_LEVEL(n) REG_BIT_FIELD(0x50+((n)<<4), 16, 5)
177 +#define NANDC_ACC_CTRL_SECTOR_1K(n) REG_BIT_FIELD(0x50+((n)<<4), 7, 1)
178 +#define NANDC_ACC_CTRL_SPARE_SIZE(n) REG_BIT_FIELD(0x50+((n)<<4), 0, 7)
179 +
180 +#define NANDC_CONFIG_CS(n) REG_BIT_FIELD(0x54+((n)<<4), 0, 32)
181 +#define NANDC_CONFIG_LOCK(n) REG_BIT_FIELD(0x54+((n)<<4), 31, 1)
182 +#define NANDC_CONFIG_BLK_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 28, 3)
183 +#define NANDC_CONFIG_CHIP_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 24, 4)
184 +#define NANDC_CONFIG_CHIP_WIDTH(n) REG_BIT_FIELD(0x54+((n)<<4), 23, 1)
185 +#define NANDC_CONFIG_PAGE_SIZE(n) REG_BIT_FIELD(0x54+((n)<<4), 20, 2)
186 +#define NANDC_CONFIG_FUL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 16, 3)
187 +#define NANDC_CONFIG_COL_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 12, 3)
188 +#define NANDC_CONFIG_BLK_ADDR_BYTES(n) REG_BIT_FIELD(0x54+((n)<<4), 8, 3)
189 +
190 +#define NANDC_TIMING_1_CS(n) REG_BIT_FIELD(0x58+((n)<<4), 0, 32)
191 +#define NANDC_TIMING_2_CS(n) REG_BIT_FIELD(0x5c+((n)<<4), 0, 32)
192 + /* Individual bits for Timing registers - TBD */
193 +
194 +#define NANDC_CORR_STAT_THRESH_CS(n) REG_BIT_FIELD(0xc0, 6*(n), 6)
195 +
196 +#define NANDC_BLK_WP_END_ADDR REG_BIT_FIELD(0xc8, 0, 32)
197 +
198 +#define NANDC_MPLANE_ERASE_CYC2_OPCODE REG_BIT_FIELD(0xcc, 24, 8)
199 +#define NANDC_MPLANE_READ_STAT_OPCODE REG_BIT_FIELD(0xcc, 16, 8)
200 +#define NANDC_MPLANE_PROG_ODD_OPCODE REG_BIT_FIELD(0xcc, 8, 8)
201 +#define NANDC_MPLANE_PROG_TRL_OPCODE REG_BIT_FIELD(0xcc, 0, 8)
202 +
203 +#define NANDC_MPLANE_PGCACHE_TRL_OPCODE REG_BIT_FIELD(0xd0, 24, 8)
204 +#define NANDC_MPLANE_READ_STAT2_OPCODE REG_BIT_FIELD(0xd0, 16, 8)
205 +#define NANDC_MPLANE_READ_EVEN_OPCODE REG_BIT_FIELD(0xd0, 8, 8)
206 +#define NANDC_MPLANE_READ_ODD__OPCODE REG_BIT_FIELD(0xd0, 0, 8)
207 +
208 +#define NANDC_MPLANE_CTRL_ERASE_CYC2_EN REG_BIT_FIELD(0xd4, 31, 1)
209 +#define NANDC_MPLANE_CTRL_RD_ADDR_SIZE REG_BIT_FIELD(0xd4, 30, 1)
210 +#define NANDC_MPLANE_CTRL_RD_CYC_ADDR REG_BIT_FIELD(0xd4, 29, 1)
211 +#define NANDC_MPLANE_CTRL_RD_COL_ADDR REG_BIT_FIELD(0xd4, 28, 1)
212 +
213 +#define NANDC_UNCORR_ERR_COUNT REG_BIT_FIELD(0xfc, 0, 32)
214 +
215 +#define NANDC_CORR_ERR_COUNT REG_BIT_FIELD(0x100, 0, 32)
216 +
217 +#define NANDC_READ_CORR_BIT_COUNT REG_BIT_FIELD(0x104, 0, 32)
218 +
219 +#define NANDC_BLOCK_LOCK_STATUS REG_BIT_FIELD(0x108, 0, 8)
220 +
221 +#define NANDC_ECC_CORR_ADDR_CS REG_BIT_FIELD(0x10c, 16, 3)
222 +#define NANDC_ECC_CORR_ADDR_EXT REG_BIT_FIELD(0x10c, 0, 16)
223 +
224 +#define NANDC_ECC_CORR_ADDR REG_BIT_FIELD(0x110, 0, 32)
225 +
226 +#define NANDC_ECC_UNC_ADDR_CS REG_BIT_FIELD(0x114, 16, 3)
227 +#define NANDC_ECC_UNC_ADDR_EXT REG_BIT_FIELD(0x114, 0, 16)
228 +
229 +#define NANDC_ECC_UNC_ADDR REG_BIT_FIELD(0x118, 0, 32)
230 +
231 +#define NANDC_READ_ADDR_CS REG_BIT_FIELD(0x11c, 16, 3)
232 +#define NANDC_READ_ADDR_EXT REG_BIT_FIELD(0x11c, 0, 16)
233 +#define NANDC_READ_ADDR REG_BIT_FIELD(0x120, 0, 32)
234 +
235 +#define NANDC_PROG_ADDR_CS REG_BIT_FIELD(0x124, 16, 3)
236 +#define NANDC_PROG_ADDR_EXT REG_BIT_FIELD(0x124, 0, 16)
237 +#define NANDC_PROG_ADDR REG_BIT_FIELD(0x128, 0, 32)
238 +
239 +#define NANDC_CPYBK_ADDR_CS REG_BIT_FIELD(0x12c, 16, 3)
240 +#define NANDC_CPYBK_ADDR_EXT REG_BIT_FIELD(0x12c, 0, 16)
241 +#define NANDC_CPYBK_ADDR REG_BIT_FIELD(0x130, 0, 32)
242 +
243 +#define NANDC_ERASE_ADDR_CS REG_BIT_FIELD(0x134, 16, 3)
244 +#define NANDC_ERASE_ADDR_EXT REG_BIT_FIELD(0x134, 0, 16)
245 +#define NANDC_ERASE_ADDR REG_BIT_FIELD(0x138, 0, 32)
246 +
247 +#define NANDC_INV_READ_ADDR_CS REG_BIT_FIELD(0x13c, 16, 3)
248 +#define NANDC_INV_READ_ADDR_EXT REG_BIT_FIELD(0x13c, 0, 16)
249 +#define NANDC_INV_READ_ADDR REG_BIT_FIELD(0x140, 0, 32)
250 +
251 +#define NANDC_INIT_STAT REG_BIT_FIELD(0x144, 0, 32)
252 +#define NANDC_INIT_ONFI_DONE REG_BIT_FIELD(0x144, 31, 1)
253 +#define NANDC_INIT_DEVID_DONE REG_BIT_FIELD(0x144, 30, 1)
254 +#define NANDC_INIT_SUCCESS REG_BIT_FIELD(0x144, 29, 1)
255 +#define NANDC_INIT_FAIL REG_BIT_FIELD(0x144, 28, 1)
256 +#define NANDC_INIT_BLANK REG_BIT_FIELD(0x144, 27, 1)
257 +#define NANDC_INIT_TIMEOUT REG_BIT_FIELD(0x144, 26, 1)
258 +#define NANDC_INIT_UNC_ERROR REG_BIT_FIELD(0x144, 25, 1)
259 +#define NANDC_INIT_CORR_ERROR REG_BIT_FIELD(0x144, 24, 1)
260 +#define NANDC_INIT_PARAM_RDY REG_BIT_FIELD(0x144, 23, 1)
261 +#define NANDC_INIT_AUTH_FAIL REG_BIT_FIELD(0x144, 22, 1)
262 +
263 +#define NANDC_ONFI_STAT REG_BIT_FIELD(0x148, 0, 32)
264 +#define NANDC_ONFI_DEBUG REG_BIT_FIELD(0x148, 28, 4)
265 +#define NANDC_ONFI_PRESENT REG_BIT_FIELD(0x148, 27, 1)
266 +#define NANDC_ONFI_BADID_PG2 REG_BIT_FIELD(0x148, 5, 1)
267 +#define NANDC_ONFI_BADID_PG1 REG_BIT_FIELD(0x148, 4, 1)
268 +#define NANDC_ONFI_BADID_PG0 REG_BIT_FIELD(0x148, 3, 1)
269 +#define NANDC_ONFI_BADCRC_PG2 REG_BIT_FIELD(0x148, 2, 1)
270 +#define NANDC_ONFI_BADCRC_PG1 REG_BIT_FIELD(0x148, 1, 1)
271 +#define NANDC_ONFI_BADCRC_PG0 REG_BIT_FIELD(0x148, 0, 1)
272 +
273 +#define NANDC_ONFI_DEBUG_DATA REG_BIT_FIELD(0x14c, 0, 32)
274 +
275 +#define NANDC_SEMAPHORE REG_BIT_FIELD(0x150, 0, 8)
276 +
277 +#define NANDC_DEVID_BYTE(b) REG_BIT_FIELD(0x194+((b)&0x4), \
278 + 24-(((b)&3)<<3), 8)
279 +
280 +#define NANDC_LL_RDDATA REG_BIT_FIELD(0x19c, 0, 16)
281 +
282 +#define NANDC_INT_N_REG(n) REG_BIT_FIELD(0xf00|((n)<<2), 0, 1)
283 +#define NANDC_INT_DIREC_READ_MISS REG_BIT_FIELD(0xf00, 0, 1)
284 +#define NANDC_INT_ERASE_DONE REG_BIT_FIELD(0xf04, 0, 1)
285 +#define NANDC_INT_CPYBK_DONE REG_BIT_FIELD(0xf08, 0, 1)
286 +#define NANDC_INT_PROGRAM_DONE REG_BIT_FIELD(0xf0c, 0, 1)
287 +#define NANDC_INT_CONTROLLER_RDY REG_BIT_FIELD(0xf10, 0, 1)
288 +#define NANDC_INT_RDBSY_RDY REG_BIT_FIELD(0xf14, 0, 1)
289 +#define NANDC_INT_ECC_UNCORRECTABLE REG_BIT_FIELD(0xf18, 0, 1)
290 +#define NANDC_INT_ECC_CORRECTABLE REG_BIT_FIELD(0xf1c, 0, 1)
291 +
292 +/*
293 + * Following registers are treated as contigous IO memory, offset is from
294 + * <reg_base>, and the data is in big-endian byte order
295 + */
296 +#define NANDC_SPARE_AREA_READ_OFF 0x200
297 +#define NANDC_SPARE_AREA_WRITE_OFF 0x280
298 +#define NANDC_CACHE_OFF 0x400
299 +#define NANDC_CACHE_SIZE (128*4)
300 +
301 +struct bcmnand_areg_field {
302 + unsigned int reg;
303 + unsigned int pos;
304 + unsigned int width;
305 +};
306 +
307 +/*
308 + * Following are IDM (a.k.a. Slave Wrapper) registers are off <idm_base>:
309 + */
310 +#define IDMREG_BIT_FIELD(r, p, w) ((struct bcmnand_areg_field){(r), (p), (w)})
311 +
312 +#define NANDC_IDM_AXI_BIG_ENDIAN IDMREG_BIT_FIELD(0x408, 28, 1)
313 +#define NANDC_IDM_APB_LITTLE_ENDIAN IDMREG_BIT_FIELD(0x408, 24, 1)
314 +#define NANDC_IDM_TM IDMREG_BIT_FIELD(0x408, 16, 5)
315 +#define NANDC_IDM_IRQ_CORRECABLE_EN IDMREG_BIT_FIELD(0x408, 9, 1)
316 +#define NANDC_IDM_IRQ_UNCORRECABLE_EN IDMREG_BIT_FIELD(0x408, 8, 1)
317 +#define NANDC_IDM_IRQ_RDYBSY_RDY_EN IDMREG_BIT_FIELD(0x408, 7, 1)
318 +#define NANDC_IDM_IRQ_CONTROLLER_RDY_EN IDMREG_BIT_FIELD(0x408, 6, 1)
319 +#define NANDC_IDM_IRQ_PRPOGRAM_COMP_EN IDMREG_BIT_FIELD(0x408, 5, 1)
320 +#define NANDC_IDM_IRQ_COPYBK_COMP_EN IDMREG_BIT_FIELD(0x408, 4, 1)
321 +#define NANDC_IDM_IRQ_ERASE_COMP_EN IDMREG_BIT_FIELD(0x408, 3, 1)
322 +#define NANDC_IDM_IRQ_READ_MISS_EN IDMREG_BIT_FIELD(0x408, 2, 1)
323 +#define NANDC_IDM_IRQ_N_EN(n) IDMREG_BIT_FIELD(0x408, 2+(n), 1)
324 +
325 +#define NANDC_IDM_CLOCK_EN IDMREG_BIT_FIELD(0x408, 0, 1)
326 +
327 +#define NANDC_IDM_IO_ECC_CORR IDMREG_BIT_FIELD(0x500, 3, 1)
328 +#define NANDC_IDM_IO_ECC_UNCORR IDMREG_BIT_FIELD(0x500, 2, 1)
329 +#define NANDC_IDM_IO_RDYBSY IDMREG_BIT_FIELD(0x500, 1, 1)
330 +#define NANDC_IDM_IO_CTRL_RDY IDMREG_BIT_FIELD(0x500, 0, 1)
331 +
332 +#define NANDC_IDM_RESET IDMREG_BIT_FIELD(0x800, 0, 1)
333 + /* Remaining IDM registers do not seem to be useful, skipped */
334 +
335 +/*
336 + * NAND Controller has its own command opcodes
337 + * different from opcodes sent to the actual flash chip
338 + */
339 +#define NANDC_CMD_OPCODE_NULL 0
340 +#define NANDC_CMD_OPCODE_PAGE_READ 1
341 +#define NANDC_CMD_OPCODE_SPARE_READ 2
342 +#define NANDC_CMD_OPCODE_STATUS_READ 3
343 +#define NANDC_CMD_OPCODE_PAGE_PROG 4
344 +#define NANDC_CMD_OPCODE_SPARE_PROG 5
345 +#define NANDC_CMD_OPCODE_DEVID_READ 7
346 +#define NANDC_CMD_OPCODE_BLOCK_ERASE 8
347 +#define NANDC_CMD_OPCODE_FLASH_RESET 9
348 +
349 +/*
350 + * NAND Controller hardware ECC data size
351 + *
352 + * The following table contains the number of bytes needed for
353 + * each of the ECC levels, per "sector", which is either 512 or 1024 bytes.
354 + * The actual layout is as follows:
355 + * The entire spare area is equally divided into as many sections as there
356 + * are sectors per page, and the ECC data is located at the end of each
357 + * of these sections.
358 + * For example, given a 2K per page and 64 bytes spare device, configured for
359 + * sector size 1k and ECC level of 4, the spare area will be divided into 2
360 + * sections 32 bytes each, and the last 14 bytes of 32 in each section will
361 + * be filled with ECC data.
362 + * Note: the name of the algorythm and the number of error bits it can correct
363 + * is of no consequence to this driver, therefore omitted.
364 + */
365 +struct bcmnand_ecc_size_s {
366 + unsigned char sector_size_shift;
367 + unsigned char ecc_level;
368 + unsigned char ecc_bytes_per_sec;
369 + unsigned char reserved;
370 +};
371 +
372 +static const struct bcmnand_ecc_size_s bcmnand_ecc_sizes[] = {
373 + { 9, 0, 0 },
374 + { 10, 0, 0 },
375 + { 9, 1, 2 },
376 + { 10, 1, 4 },
377 + { 9, 2, 4 },
378 + { 10, 2, 7 },
379 + { 9, 3, 6 },
380 + { 10, 3, 11 },
381 + { 9, 4, 7 },
382 + { 10, 4, 14 },
383 + { 9, 5, 9 },
384 + { 10, 5, 18 },
385 + { 9, 6, 11 },
386 + { 10, 6, 21 },
387 + { 9, 7, 13 },
388 + { 10, 7, 25 },
389 + { 9, 8, 14 },
390 + { 10, 8, 28 },
391 +
392 + { 9, 9, 16 },
393 + { 9, 10, 18 },
394 + { 9, 11, 20 },
395 + { 9, 12, 21 },
396 +
397 + { 10, 9, 32 },
398 + { 10, 10, 35 },
399 + { 10, 11, 39 },
400 + { 10, 12, 42 },
401 +};
402 +
403 +/*
404 + * Populate the various fields that depend on how
405 + * the hardware ECC data is located in the spare area
406 + *
407 + * For this controiller, it is easier to fill-in these
408 + * structures at run time.
409 + *
410 + * The bad-block marker is assumed to occupy one byte
411 + * at chip->badblockpos, which must be in the first
412 + * sector of the spare area, namely it is either
413 + * at offset 0 or 5.
414 + * Some chips use both for manufacturer's bad block
415 + * markers, but we ingore that issue here, and assume only
416 + * one byte is used as bad-block marker always.
417 + */
418 +static int bcmnand_hw_ecc_layout(struct bcmnand_ctrl *ctrl)
419 +{
420 + struct nand_ecclayout *layout;
421 + struct device *dev = &ctrl->core->dev;
422 + unsigned int i, j, k;
423 + unsigned int ecc_per_sec, oob_per_sec;
424 + unsigned int bbm_pos = ctrl->nand.badblockpos;
425 +
426 + /* Caclculate spare area per sector size */
427 + oob_per_sec = ctrl->mtd.oobsize >> ctrl->sec_per_page_shift;
428 +
429 + /* Try to calculate the amount of ECC bytes per sector with a formula */
430 + if (ctrl->sector_size_shift == 9)
431 + ecc_per_sec = ((ctrl->ecc_level * 14) + 7) >> 3;
432 + else if (ctrl->sector_size_shift == 10)
433 + ecc_per_sec = ((ctrl->ecc_level * 14) + 3) >> 2;
434 + else
435 + ecc_per_sec = oob_per_sec + 1; /* cause an error if not in table */
436 +
437 + /* Now find out the answer according to the table */
438 + for (i = 0; i < ARRAY_SIZE(bcmnand_ecc_sizes); i++) {
439 + if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level &&
440 + bcmnand_ecc_sizes[i].sector_size_shift ==
441 + ctrl->sector_size_shift) {
442 + break;
443 + }
444 + }
445 +
446 + /* Table match overrides formula */
447 + if (bcmnand_ecc_sizes[i].ecc_level == ctrl->ecc_level &&
448 + bcmnand_ecc_sizes[i].sector_size_shift == ctrl->sector_size_shift)
449 + ecc_per_sec = bcmnand_ecc_sizes[i].ecc_bytes_per_sec;
450 +
451 + /* Return an error if calculated ECC leaves no room for OOB */
452 + if ((ctrl->sec_per_page_shift != 0 && ecc_per_sec >= oob_per_sec) ||
453 + (ctrl->sec_per_page_shift == 0 && ecc_per_sec >= (oob_per_sec - 1))) {
454 + dev_err(dev, "ECC level %d too high, leaves no room for OOB data\n",
455 + ctrl->ecc_level);
456 + return -EINVAL;
457 + }
458 +
459 + /* Fill in the needed fields */
460 + ctrl->nand.ecc.size = ctrl->mtd.writesize >> ctrl->sec_per_page_shift;
461 + ctrl->nand.ecc.bytes = ecc_per_sec;
462 + ctrl->nand.ecc.steps = 1 << ctrl->sec_per_page_shift;
463 + ctrl->nand.ecc.total = ecc_per_sec << ctrl->sec_per_page_shift;
464 + ctrl->nand.ecc.strength = ctrl->ecc_level;
465 +
466 + /* Build an ecc layout data structure */
467 + layout = &ctrl->ecclayout;
468 + memset(layout, 0, sizeof(*layout));
469 +
470 + /* Total number of bytes used by HW ECC */
471 + layout->eccbytes = ecc_per_sec << ctrl->sec_per_page_shift;
472 +
473 + /* Location for each of the HW ECC bytes */
474 + for (i = j = 0, k = 1;
475 + i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes;
476 + i++, j++) {
477 + /* switch sector # */
478 + if (j == ecc_per_sec) {
479 + j = 0;
480 + k++;
481 + }
482 + /* save position of each HW-generated ECC byte */
483 + layout->eccpos[i] = (oob_per_sec * k) - ecc_per_sec + j;
484 +
485 + /* Check that HW ECC does not overlap bad-block marker */
486 + if (bbm_pos == layout->eccpos[i]) {
487 + dev_err(dev, "ECC level %d too high, HW ECC collides with bad-block marker position\n",
488 + ctrl->ecc_level);
489 + return -EINVAL;
490 + }
491 + }
492 +
493 + /* Location of all user-available OOB byte-ranges */
494 + for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++) {
495 + struct nand_oobfree *oobfree = &layout->oobfree[i];
496 +
497 + if (i >= (1 << ctrl->sec_per_page_shift))
498 + break;
499 + oobfree->offset = oob_per_sec * i;
500 + oobfree->length = oob_per_sec - ecc_per_sec;
501 +
502 + /* Bad-block marker must be in the first sector spare area */
503 + if (WARN_ON(bbm_pos >= (oobfree->offset + oobfree->length)))
504 + return -EINVAL;
505 +
506 + if (i != 0)
507 + continue;
508 +
509 + /* Remove bad-block marker from available byte range */
510 + if (bbm_pos == oobfree->offset) {
511 + oobfree->offset += 1;
512 + oobfree->length -= 1;
513 + } else if (bbm_pos == (oobfree->offset + oobfree->length - 1)) {
514 + oobfree->length -= 1;
515 + } else {
516 + layout->oobfree[i + 1].offset = bbm_pos + 1;
517 + layout->oobfree[i + 1].length =
518 + oobfree->length - bbm_pos - 1;
519 + oobfree->length = bbm_pos;
520 + i++;
521 + }
522 + }
523 +
524 + layout->oobavail = ((oob_per_sec - ecc_per_sec)
525 + << ctrl->sec_per_page_shift) - 1;
526 +
527 + ctrl->mtd.oobavail = layout->oobavail;
528 + ctrl->nand.ecc.layout = layout;
529 +
530 + /* Output layout for debugging */
531 + dev_dbg(dev, "Spare area=%d eccbytes %d, ecc bytes located at:\n",
532 + ctrl->mtd.oobsize, layout->eccbytes);
533 + for (i = j = 0;
534 + i < ARRAY_SIZE(layout->eccpos) && i < layout->eccbytes; i++)
535 + pr_debug(" %d", layout->eccpos[i]);
536 + pr_debug("\n");
537 +
538 + dev_dbg(dev, "Available %d bytes at (off,len):\n", layout->oobavail);
539 + for (i = 0; i < ARRAY_SIZE(layout->oobfree); i++)
540 + pr_debug("(%d,%d) ", layout->oobfree[i].offset,
541 + layout->oobfree[i].length);
542 + pr_debug("\n");
543 +
544 + return 0;
545 +}
546 +
547 +/*
548 + * Register bit-field manipulation routines
549 + */
550 +
551 +static inline unsigned int bcmnand_reg_read(struct bcmnand_ctrl *ctrl,
552 + struct bcmnand_reg_field rbf)
553 +{
554 + u32 val;
555 +
556 + val = bcma_read32(ctrl->core, rbf.reg);
557 + val >>= rbf.pos;
558 + val &= (1 << rbf.width) - 1;
559 +
560 + return val;
561 +}
562 +
563 +static inline void bcmnand_reg_write(struct bcmnand_ctrl *ctrl,
564 + struct bcmnand_reg_field rbf,
565 + unsigned newval)
566 +{
567 + u32 val, msk;
568 +
569 + msk = (1 << rbf.width) - 1;
570 + msk <<= rbf.pos;
571 + newval <<= rbf.pos;
572 + newval &= msk;
573 +
574 + val = bcma_read32(ctrl->core, rbf.reg);
575 + val &= ~msk;
576 + val |= newval;
577 + bcma_write32(ctrl->core, rbf.reg, val);
578 +}
579 +
580 +static inline unsigned int bcmnand_reg_aread(struct bcmnand_ctrl *ctrl,
581 + struct bcmnand_areg_field rbf)
582 +{
583 + u32 val;
584 +
585 + val = bcma_aread32(ctrl->core, rbf.reg);
586 + val >>= rbf.pos;
587 + val &= (1 << rbf.width) - 1;
588 +
589 + return val;
590 +}
591 +
592 +static inline void bcmnand_reg_awrite(struct bcmnand_ctrl *ctrl,
593 + struct bcmnand_areg_field rbf,
594 + unsigned int newval)
595 +{
596 + u32 val, msk;
597 +
598 + msk = (1 << rbf.width) - 1;
599 + msk <<= rbf.pos;
600 + newval <<= rbf.pos;
601 + newval &= msk;
602 +
603 + val = bcma_aread32(ctrl->core, rbf.reg);
604 + val &= ~msk;
605 + val |= newval;
606 + bcma_awrite32(ctrl->core, rbf.reg, val);
607 +}
608 +
609 +/*
610 + * NAND Interface - dev_ready
611 + *
612 + * Return 1 iff device is ready, 0 otherwise
613 + */
614 +static int bcmnand_dev_ready(struct mtd_info *mtd)
615 +{
616 + struct nand_chip *chip = mtd->priv;
617 + struct bcmnand_ctrl *ctrl = chip->priv;
618 +
619 + return bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY);
620 +}
621 +
622 +/*
623 + * Interrupt service routines
624 + */
625 +static irqreturn_t bcmnand_isr(int irq, void *dev_id)
626 +{
627 + struct bcmnand_ctrl *ctrl = dev_id;
628 + int irq_off;
629 +
630 + irq_off = irq - ctrl->core->irq;
631 + WARN_ON(irq_off < 0 || irq_off >= NANDC_IRQ_NUM);
632 +
633 + if (!bcmnand_reg_read(ctrl, NANDC_INT_N_REG(irq_off)))
634 + return IRQ_NONE;
635 +
636 + /* Acknowledge interrupt */
637 + bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1);
638 +
639 + /* Wake up task */
640 + complete(&ctrl->op_completion);
641 +
642 + return IRQ_HANDLED;
643 +}
644 +
645 +static int bcmnand_wait_interrupt(struct bcmnand_ctrl *ctrl,
646 + unsigned int irq_off,
647 + unsigned int timeout_usec)
648 +{
649 + long timeout_jiffies;
650 + int ret = 0;
651 +
652 + reinit_completion(&ctrl->op_completion);
653 +
654 + /* Acknowledge interrupt */
655 + bcmnand_reg_write(ctrl, NANDC_INT_N_REG(irq_off), 1);
656 +
657 + /* Enable IRQ to wait on */
658 + bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 1);
659 +
660 + timeout_jiffies = 1 + usecs_to_jiffies(timeout_usec);
661 +
662 + if (irq_off != NANDC_IRQ_CONTROLLER_RDY ||
663 + 0 == bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY)) {
664 +
665 + timeout_jiffies = wait_for_completion_timeout(
666 + &ctrl->op_completion, timeout_jiffies);
667 +
668 + if (timeout_jiffies < 0)
669 + ret = timeout_jiffies;
670 + if (timeout_jiffies == 0)
671 + ret = -ETIME;
672 + }
673 +
674 + /* Disable IRQ, we're done waiting */
675 + bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0);
676 +
677 + if (bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY))
678 + ret = 0;
679 +
680 + return ret;
681 +}
682 +
683 +/*
684 + * wait for command completion
685 + */
686 +static int bcmnand_wait_cmd(struct bcmnand_ctrl *ctrl, unsigned int timeout_usec)
687 +{
688 + unsigned int retries;
689 +
690 + if (bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY))
691 + return 0;
692 +
693 + /* If the timeout is long, wait for interrupt */
694 + if (timeout_usec >= jiffies_to_usecs(1) >> 4)
695 + return bcmnand_wait_interrupt(
696 + ctrl, NANDC_IRQ_CONTROLLER_RDY, timeout_usec);
697 +
698 + /* Wait for completion of the prior command */
699 + retries = (timeout_usec >> 3) + 1;
700 +
701 + while (retries-- &&
702 + 0 == bcmnand_reg_read(ctrl, NANDC_INT_STAT_CTLR_RDY)) {
703 + cpu_relax();
704 + udelay(6);
705 + }
706 +
707 + if (retries == 0)
708 + return -ETIME;
709 +
710 + return 0;
711 +}
712 +
713 +
714 +/*
715 + * NAND Interface - waitfunc
716 + */
717 +static int bcmnand_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
718 +{
719 + struct bcmnand_ctrl *ctrl = chip->priv;
720 + unsigned int to;
721 + int ret;
722 +
723 + /* figure out timeout based on what command is on */
724 + switch (ctrl->last_cmd) {
725 + default:
726 + case NAND_CMD_ERASE1:
727 + case NAND_CMD_ERASE2:
728 + to = 1 << 16;
729 + break;
730 + case NAND_CMD_STATUS:
731 + case NAND_CMD_RESET:
732 + to = 256;
733 + break;
734 + case NAND_CMD_READID:
735 + to = 1024;
736 + break;
737 + case NAND_CMD_READ1:
738 + case NAND_CMD_READ0:
739 + to = 2048;
740 + break;
741 + case NAND_CMD_PAGEPROG:
742 + to = 4096;
743 + break;
744 + case NAND_CMD_READOOB:
745 + to = 512;
746 + break;
747 + }
748 +
749 + /* deliver deferred error code if any */
750 + ret = ctrl->cmd_ret;
751 + if (ret < 0)
752 + ctrl->cmd_ret = 0;
753 + else
754 + ret = bcmnand_wait_cmd(ctrl, to);
755 +
756 + /* Timeout */
757 + if (ret < 0)
758 + return NAND_STATUS_FAIL;
759 +
760 + ret = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS);
761 +
762 + return ret;
763 +}
764 +
765 +/*
766 + * NAND Interface - read_oob
767 + */
768 +static int bcmnand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
769 + int page)
770 +{
771 + struct bcmnand_ctrl *ctrl = chip->priv;
772 + unsigned int n = ctrl->chip_num;
773 + void __iomem *ctrl_spare;
774 + unsigned int spare_per_sec, sector;
775 + u64 nand_addr;
776 +
777 + ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF;
778 +
779 + /* Set the page address for the following commands */
780 + nand_addr = ((u64)page << chip->page_shift);
781 + bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
782 +
783 + spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
784 +
785 + /* Disable ECC validation for spare area reads */
786 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), 0);
787 +
788 + /* Loop all sectors in page */
789 + for (sector = 0; sector < (1<<ctrl->sec_per_page_shift); sector++) {
790 + unsigned int col;
791 +
792 + col = (sector << ctrl->sector_size_shift);
793 +
794 + /* Issue command to read partial page */
795 + bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col);
796 +
797 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
798 + NANDC_CMD_OPCODE_SPARE_READ);
799 +
800 + /* Wait for the command to complete */
801 + if (bcmnand_wait_cmd(ctrl, (sector == 0) ? 10000 : 100))
802 + return -EIO;
803 +
804 + if (!bcmnand_reg_read(ctrl, NANDC_INT_STAT_SPARE_VALID))
805 + return -EIO;
806 +
807 + /* Set controller to Little Endian mode for copying */
808 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
809 +
810 + memcpy(chip->oob_poi + sector * spare_per_sec,
811 + ctrl_spare, spare_per_sec);
812 +
813 + /* Return to Big Endian mode for commands etc */
814 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
815 + }
816 +
817 + return 0;
818 +}
819 +
820 +/*
821 + * NAND Interface - write_oob
822 + */
823 +static int bcmnand_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
824 + int page)
825 +{
826 + struct bcmnand_ctrl *ctrl = chip->priv;
827 + unsigned int n = ctrl->chip_num;
828 + void __iomem *ctrl_spare;
829 + unsigned int spare_per_sec, sector, num_sec;
830 + u64 nand_addr;
831 + int to, status = 0;
832 +
833 + ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF;
834 +
835 + /* Disable ECC generation for spare area writes */
836 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), 0);
837 +
838 + spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
839 +
840 + /* Set the page address for the following commands */
841 + nand_addr = ((u64)page << chip->page_shift);
842 + bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
843 +
844 + /* Must allow partial programming to change spare area only */
845 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 1);
846 +
847 + num_sec = 1 << ctrl->sec_per_page_shift;
848 + /* Loop all sectors in page */
849 + for (sector = 0; sector < num_sec; sector++) {
850 + unsigned int col;
851 +
852 + /* Spare area accessed by the data sector offset */
853 + col = (sector << ctrl->sector_size_shift);
854 +
855 + bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr + col);
856 +
857 + /* Set controller to Little Endian mode for copying */
858 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
859 +
860 + memcpy(ctrl_spare, chip->oob_poi + sector * spare_per_sec,
861 + spare_per_sec);
862 +
863 + /* Return to Big Endian mode for commands etc */
864 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
865 +
866 + /* Push spare bytes into internal buffer, last goes to flash */
867 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
868 + NANDC_CMD_OPCODE_SPARE_PROG);
869 +
870 + if (sector == (num_sec - 1))
871 + to = 1 << 16;
872 + else
873 + to = 1 << 10;
874 +
875 + if (bcmnand_wait_cmd(ctrl, to))
876 + return -EIO;
877 + }
878 +
879 + /* Restore partial programming inhibition */
880 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PGM_PARTIAL(n), 0);
881 +
882 + status = bcmnand_waitfunc(mtd, chip);
883 + return status & NAND_STATUS_FAIL ? -EIO : 0;
884 +}
885 +
886 +/*
887 + * verify that a buffer is all erased
888 + */
889 +static bool bcmnand_buf_erased(const void *buf, unsigned int len)
890 +{
891 + unsigned int i;
892 + const u32 *p = buf;
893 +
894 + for (i = 0; i < (len >> 2); i++) {
895 + if (p[i] != 0xffffffff)
896 + return false;
897 + }
898 + return true;
899 +}
900 +
901 +/*
902 + * read a page, with or without ECC checking
903 + */
904 +static int bcmnand_read_page_do(struct mtd_info *mtd, struct nand_chip *chip,
905 + uint8_t *buf, int page, bool ecc)
906 +{
907 + struct bcmnand_ctrl *ctrl = chip->priv;
908 + unsigned int n = ctrl->chip_num;
909 + void __iomem *ctrl_cache;
910 + void __iomem *ctrl_spare;
911 + unsigned int data_bytes;
912 + unsigned int spare_per_sec;
913 + unsigned int sector, to = 1 << 16;
914 + u32 err_soft_reg, err_hard_reg;
915 + unsigned int hard_err_count = 0;
916 + int ret;
917 + u64 nand_addr;
918 +
919 + ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF;
920 + ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_READ_OFF;
921 +
922 + /* Reset ECC error stats */
923 + err_hard_reg = bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT);
924 + err_soft_reg = bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT);
925 +
926 + spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
927 +
928 + /* Set the page address for the following commands */
929 + nand_addr = ((u64)page << chip->page_shift);
930 + bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
931 +
932 + /* Enable ECC validation for ecc page reads */
933 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_RD_ECC(n), ecc);
934 +
935 + /* Loop all sectors in page */
936 + for (sector = 0; sector < (1 << ctrl->sec_per_page_shift); sector++) {
937 + data_bytes = 0;
938 +
939 + /* Copy partial sectors sized by cache reg */
940 + while (data_bytes < (1<<ctrl->sector_size_shift)) {
941 + unsigned int col;
942 +
943 + col = data_bytes + (sector << ctrl->sector_size_shift);
944 +
945 + bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS,
946 + nand_addr + col);
947 +
948 + /* Issue command to read partial page */
949 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
950 + NANDC_CMD_OPCODE_PAGE_READ);
951 +
952 + /* Wait for the command to complete */
953 + ret = bcmnand_wait_cmd(ctrl, to);
954 + if (ret < 0)
955 + return ret;
956 +
957 + /* Set controller to Little Endian mode for copying */
958 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 1);
959 +
960 + if (data_bytes == 0) {
961 + memcpy(chip->oob_poi + sector * spare_per_sec,
962 + ctrl_spare, spare_per_sec);
963 + }
964 +
965 + memcpy(buf + col, ctrl_cache, NANDC_CACHE_SIZE);
966 + data_bytes += NANDC_CACHE_SIZE;
967 +
968 + /* Return to Big Endian mode for commands etc */
969 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
970 +
971 + /* Next iterations should go fast */
972 + to = 1 << 10;
973 +
974 + /* capture hard errors for each partial */
975 + if (err_hard_reg != bcmnand_reg_read(ctrl, NANDC_UNCORR_ERR_COUNT)) {
976 + int era = bcmnand_reg_read(ctrl, NANDC_INT_STAT_ERASED);
977 +
978 + if (!era &&
979 + !bcmnand_buf_erased(buf + col, NANDC_CACHE_SIZE))
980 + hard_err_count++;
981 +
982 + err_hard_reg = bcmnand_reg_read(ctrl,
983 + NANDC_UNCORR_ERR_COUNT);
984 + }
985 + }
986 + }
987 +
988 + if (!ecc)
989 + return 0;
990 +
991 + /* Report hard ECC errors */
992 + if (hard_err_count)
993 + mtd->ecc_stats.failed++;
994 +
995 + /* Get ECC soft error stats */
996 + mtd->ecc_stats.corrected += err_soft_reg -
997 + bcmnand_reg_read(ctrl, NANDC_READ_CORR_BIT_COUNT);
998 +
999 + return 0;
1000 +}
1001 +
1002 +/*
1003 + * NAND Interface - read_page_ecc
1004 + */
1005 +static int bcmnand_read_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
1006 + uint8_t *buf, int oob_required, int page)
1007 +{
1008 + return bcmnand_read_page_do(mtd, chip, buf, page, true);
1009 +}
1010 +
1011 +/*
1012 + * NAND Interface - read_page_raw
1013 + */
1014 +static int bcmnand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1015 + uint8_t *buf, int oob_required, int page)
1016 +{
1017 + return bcmnand_read_page_do(mtd, chip, buf, page, true);
1018 +}
1019 +
1020 +/*
1021 + * do page write, with or without ECC generation enabled
1022 + */
1023 +static int bcmnand_write_page_do(struct mtd_info *mtd, struct nand_chip *chip,
1024 + const uint8_t *buf, bool ecc)
1025 +{
1026 + struct bcmnand_ctrl *ctrl = chip->priv;
1027 + unsigned int n = ctrl->chip_num;
1028 + void __iomem *ctrl_cache;
1029 + void __iomem *ctrl_spare;
1030 + unsigned int spare_per_sec, sector, num_sec;
1031 + unsigned int data_bytes, spare_bytes;
1032 + int i, to;
1033 + uint8_t *tmp_poi;
1034 + u32 nand_addr;
1035 +
1036 + ctrl_cache = ctrl->core->io_addr + NANDC_CACHE_OFF;
1037 + ctrl_spare = ctrl->core->io_addr + NANDC_SPARE_AREA_WRITE_OFF;
1038 +
1039 + /* Get start-of-page address */
1040 + nand_addr = bcmnand_reg_read(ctrl, NANDC_CMD_ADDRESS);
1041 +
1042 + tmp_poi = kmalloc(mtd->oobsize, GFP_KERNEL);
1043 + if (!tmp_poi)
1044 + return -ENOMEM;
1045 +
1046 + /* Retreive pre-existing OOB values */
1047 + memcpy(tmp_poi, chip->oob_poi, mtd->oobsize);
1048 + ctrl->cmd_ret = bcmnand_read_oob(mtd, chip,
1049 + nand_addr >> chip->page_shift);
1050 + if (ctrl->cmd_ret < 0) {
1051 + kfree(tmp_poi);
1052 + return ctrl->cmd_ret;
1053 + }
1054 +
1055 + /* Apply new OOB data bytes just like they would end up on the chip */
1056 + for (i = 0; i < mtd->oobsize; i++)
1057 + chip->oob_poi[i] &= tmp_poi[i];
1058 + kfree(tmp_poi);
1059 +
1060 + spare_per_sec = mtd->oobsize >> ctrl->sec_per_page_shift;
1061 +
1062 + /* Enable ECC generation for ecc page write, if requested */
1063 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_WR_ECC(n), ecc);
1064 +
1065 + spare_bytes = 0;
1066 + num_sec = 1 << ctrl->sec_per_page_shift;
1067 +
1068 + /* Loop all sectors in page */
1069 + for (sector = 0; sector < num_sec; sector++) {
1070 + data_bytes = 0;
1071 +
1072 + /* Copy partial sectors sized by cache reg */
1073 + while (data_bytes < (1<<ctrl->sector_size_shift)) {
1074 + unsigned int col;
1075 +
1076 + col = data_bytes +
1077 + (sector << ctrl->sector_size_shift);
1078 +
1079 + /* Set address of 512-byte sub-page */
1080 + bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS,
1081 + nand_addr + col);
1082 +
1083 + /* Set controller to Little Endian mode for copying */
1084 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN,
1085 + 1);
1086 +
1087 + /* Set spare area is written at each sector start */
1088 + if (data_bytes == 0) {
1089 + memcpy(ctrl_spare,
1090 + chip->oob_poi + spare_bytes,
1091 + spare_per_sec);
1092 + spare_bytes += spare_per_sec;
1093 + }
1094 +
1095 + /* Copy sub-page data */
1096 + memcpy(ctrl_cache, buf + col, NANDC_CACHE_SIZE);
1097 + data_bytes += NANDC_CACHE_SIZE;
1098 +
1099 + /* Return to Big Endian mode for commands etc */
1100 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
1101 +
1102 + /* Push data into internal cache */
1103 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
1104 + NANDC_CMD_OPCODE_PAGE_PROG);
1105 +
1106 + /* Wait for the command to complete */
1107 + if (sector == (num_sec - 1))
1108 + to = 1 << 16;
1109 + else
1110 + to = 1 << 10;
1111 + ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to);
1112 + if (ctrl->cmd_ret < 0)
1113 + return ctrl->cmd_ret;
1114 + }
1115 + }
1116 + return 0;
1117 +}
1118 +
1119 +/*
1120 + * NAND Interface = write_page_ecc
1121 + */
1122 +static int bcmnand_write_page_ecc(struct mtd_info *mtd, struct nand_chip *chip,
1123 + const uint8_t *buf, int oob_required)
1124 +{
1125 + return bcmnand_write_page_do(mtd, chip, buf, true);
1126 +}
1127 +
1128 +/*
1129 + * NAND Interface = write_page_raw
1130 + */
1131 +static int bcmnand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1132 + const uint8_t *buf, int oob_required)
1133 +{
1134 + return bcmnand_write_page_do(mtd, chip, buf, false);
1135 +}
1136 +
1137 +/*
1138 + * MTD Interface - read_byte
1139 + *
1140 + * This function emulates simple controllers behavior
1141 + * for just a few relevant commands
1142 + */
1143 +static uint8_t bcmnand_read_byte(struct mtd_info *mtd)
1144 +{
1145 + struct nand_chip *nand = mtd->priv;
1146 + struct bcmnand_ctrl *ctrl = nand->priv;
1147 + struct device *dev = &ctrl->core->dev;
1148 + uint8_t b = ~0;
1149 +
1150 + switch (ctrl->last_cmd) {
1151 + case NAND_CMD_READID:
1152 + if (ctrl->id_byte_index < 8) {
1153 + b = bcmnand_reg_read(ctrl, NANDC_DEVID_BYTE(
1154 + ctrl->id_byte_index));
1155 + ctrl->id_byte_index++;
1156 + }
1157 + break;
1158 + case NAND_CMD_READOOB:
1159 + if (ctrl->oob_index < mtd->oobsize)
1160 + b = nand->oob_poi[ctrl->oob_index++];
1161 + break;
1162 + case NAND_CMD_STATUS:
1163 + b = bcmnand_reg_read(ctrl, NANDC_INT_STAT_FLASH_STATUS);
1164 + break;
1165 + default:
1166 + dev_err(dev, "got unkown command: 0x%x in read_byte\n",
1167 + ctrl->last_cmd);
1168 + }
1169 + return b;
1170 +}
1171 +
1172 +/*
1173 + * MTD Interface - read_word
1174 + *
1175 + * Can not be tested without x16 chip, but the SoC does not support x16 i/f.
1176 + */
1177 +static u16 bcmnand_read_word(struct mtd_info *mtd)
1178 +{
1179 + u16 w = ~0;
1180 +
1181 + w = bcmnand_read_byte(mtd);
1182 + barrier();
1183 + w |= bcmnand_read_byte(mtd) << 8;
1184 +
1185 + return w;
1186 +}
1187 +
1188 +/*
1189 + * MTD Interface - select a chip from an array
1190 + */
1191 +static void bcmnand_select_chip(struct mtd_info *mtd, int chip)
1192 +{
1193 + struct nand_chip *nand = mtd->priv;
1194 + struct bcmnand_ctrl *ctrl = nand->priv;
1195 +
1196 + ctrl->chip_num = chip;
1197 + bcmnand_reg_write(ctrl, NANDC_CMD_CS_SEL, chip);
1198 +}
1199 +
1200 +/*
1201 + * NAND Interface - emulate low-level NAND commands
1202 + *
1203 + * Only a few low-level commands are really needed by generic NAND,
1204 + * and they do not call for CMD_LL operations the controller can support.
1205 + */
1206 +static void bcmnand_cmdfunc(struct mtd_info *mtd, unsigned int command,
1207 + int column, int page_addr)
1208 +{
1209 + struct nand_chip *nand = mtd->priv;
1210 + struct bcmnand_ctrl *ctrl = nand->priv;
1211 + struct device *dev = &ctrl->core->dev;
1212 + u64 nand_addr;
1213 + unsigned int to = 1;
1214 +
1215 + ctrl->last_cmd = command;
1216 +
1217 + /* Set address for some commands */
1218 + switch (command) {
1219 + case NAND_CMD_ERASE1:
1220 + column = 0;
1221 + /*FALLTHROUGH*/
1222 + case NAND_CMD_SEQIN:
1223 + case NAND_CMD_READ0:
1224 + case NAND_CMD_READ1:
1225 + WARN_ON(column >= mtd->writesize);
1226 + nand_addr = (u64) column |
1227 + ((u64)page_addr << nand->page_shift);
1228 + bcmnand_reg_write(ctrl, NANDC_CMD_EXT_ADDR, nand_addr >> 32);
1229 + bcmnand_reg_write(ctrl, NANDC_CMD_ADDRESS, nand_addr);
1230 + break;
1231 + case NAND_CMD_ERASE2:
1232 + case NAND_CMD_RESET:
1233 + case NAND_CMD_READID:
1234 + case NAND_CMD_READOOB:
1235 + case NAND_CMD_PAGEPROG:
1236 + default:
1237 + /* Do nothing, address not used */
1238 + break;
1239 + }
1240 +
1241 + /* Issue appropriate command to controller */
1242 + switch (command) {
1243 + case NAND_CMD_SEQIN:
1244 + /* Only need to load command address, done */
1245 + return;
1246 +
1247 + case NAND_CMD_RESET:
1248 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
1249 + NANDC_CMD_OPCODE_FLASH_RESET);
1250 + to = 1 << 8;
1251 + break;
1252 +
1253 + case NAND_CMD_READID:
1254 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
1255 + NANDC_CMD_OPCODE_DEVID_READ);
1256 + ctrl->id_byte_index = 0;
1257 + to = 1 << 8;
1258 + break;
1259 +
1260 + case NAND_CMD_READ0:
1261 + case NAND_CMD_READ1:
1262 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
1263 + NANDC_CMD_OPCODE_PAGE_READ);
1264 + to = 1 << 15;
1265 + break;
1266 + case NAND_CMD_STATUS:
1267 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
1268 + NANDC_CMD_OPCODE_STATUS_READ);
1269 + to = 1 << 8;
1270 + break;
1271 + case NAND_CMD_ERASE1:
1272 + return;
1273 +
1274 + case NAND_CMD_ERASE2:
1275 + bcmnand_reg_write(ctrl, NANDC_CMD_START_OPCODE,
1276 + NANDC_CMD_OPCODE_BLOCK_ERASE);
1277 + to = 1 << 18;
1278 + break;
1279 +
1280 + case NAND_CMD_PAGEPROG:
1281 + /* Cmd already set from write_page */
1282 + return;
1283 +
1284 + case NAND_CMD_READOOB:
1285 + /* Emulate simple interface */
1286 + bcmnand_read_oob(mtd, nand, page_addr);
1287 + ctrl->oob_index = 0;
1288 + return;
1289 +
1290 + default:
1291 + dev_err(dev, "got unkown command: 0x%x in cmdfunc\n",
1292 + ctrl->last_cmd);
1293 + }
1294 +
1295 + /* Wait for command to complete */
1296 + ctrl->cmd_ret = bcmnand_wait_cmd(ctrl, to);
1297 +
1298 +}
1299 +
1300 +static int bcmnand_scan(struct mtd_info *mtd)
1301 +{
1302 + struct nand_chip *nand = mtd->priv;
1303 + struct bcmnand_ctrl *ctrl = nand->priv;
1304 + struct device *dev = &ctrl->core->dev;
1305 + bool sector_1k = false;
1306 + unsigned int chip_num = 0;
1307 + int ecc_level = 0;
1308 + int ret;
1309 +
1310 + ret = nand_scan_ident(mtd, NANDC_MAX_CHIPS, NULL);
1311 + if (ret)
1312 + return ret;
1313 +
1314 + /* Get configuration from first chip */
1315 + sector_1k = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_SECTOR_1K(0));
1316 + ecc_level = bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(0));
1317 + mtd->writesize_shift = nand->page_shift;
1318 +
1319 + ctrl->ecc_level = ecc_level;
1320 + ctrl->sector_size_shift = sector_1k ? 10 : 9;
1321 +
1322 + /* Configure spare area, tweak as needed */
1323 + do {
1324 + ctrl->sec_per_page_shift =
1325 + mtd->writesize_shift - ctrl->sector_size_shift;
1326 +
1327 + /* will return -EINVAL if OOB space exhausted */
1328 + ret = bcmnand_hw_ecc_layout(ctrl);
1329 +
1330 + /* First try to bump sector size to 1k, then decrease level */
1331 + if (ret && nand->page_shift > 9 && ctrl->sector_size_shift < 10)
1332 + ctrl->sector_size_shift = 10;
1333 + else if (ret)
1334 + ctrl->ecc_level--;
1335 +
1336 + } while (ret && ctrl->ecc_level > 0);
1337 +
1338 + if (WARN_ON(ctrl->ecc_level == 0))
1339 + return -ENOENT;
1340 +
1341 + if ((ctrl->sector_size_shift > 9) != (sector_1k == 1)) {
1342 + dev_info(dev, "sector size adjusted to 1k\n");
1343 + sector_1k = 1;
1344 + }
1345 +
1346 + if (ecc_level != ctrl->ecc_level) {
1347 + dev_info(dev, "ECC level adjusted from %u to %u\n",
1348 + ecc_level, ctrl->ecc_level);
1349 + ecc_level = ctrl->ecc_level;
1350 + }
1351 +
1352 + /* handle the hardware chip config registers */
1353 + for (chip_num = 0; chip_num < nand->numchips; chip_num++) {
1354 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_SECTOR_1K(chip_num),
1355 + sector_1k);
1356 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip_num),
1357 + ecc_level);
1358 +
1359 + /* Large pages: no partial page programming */
1360 + if (mtd->writesize > 512) {
1361 + bcmnand_reg_write(ctrl,
1362 + NANDC_ACC_CTRL_PGM_RDIN(chip_num), 0);
1363 + bcmnand_reg_write(ctrl,
1364 + NANDC_ACC_CTRL_PGM_PARTIAL(chip_num), 0);
1365 + }
1366 +
1367 + /* Do not raise ECC error when reading erased pages */
1368 + /* This bit has only partial effect, driver needs to help */
1369 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_ERA_ECC_ERR(chip_num),
1370 + 0);
1371 +
1372 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PG_HIT(chip_num), 0);
1373 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_PREFETCH(chip_num), 0);
1374 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_MODE(chip_num), 0);
1375 + bcmnand_reg_write(ctrl, NANDC_ACC_CTRL_CACHE_LASTPG(chip_num),
1376 + 0);
1377 +
1378 + /* TBD: consolidate or at least verify the s/w and h/w geometries agree */
1379 + }
1380 +
1381 + /* Allow writing on device */
1382 + if (!(nand->options & NAND_ROM))
1383 + bcmnand_reg_write(ctrl, NANDC_CS_NAND_WP, 0);
1384 +
1385 + dev_dbg(dev, "layout.oobavail=%d\n", nand->ecc.layout->oobavail);
1386 +
1387 + ret = nand_scan_tail(mtd);
1388 +
1389 + if (nand->badblockbits == 0)
1390 + nand->badblockbits = 8;
1391 + if (WARN_ON((1 << nand->page_shift) != mtd->writesize))
1392 + return -EIO;
1393 +
1394 + /* Spit out some key chip parameters as detected by nand_base */
1395 + dev_dbg(dev, "erasesize=%d writesize=%d oobsize=%d page_shift=%d badblockpos=%d badblockbits=%d\n",
1396 + mtd->erasesize, mtd->writesize, mtd->oobsize,
1397 + nand->page_shift, nand->badblockpos, nand->badblockbits);
1398 +
1399 + return ret;
1400 +}
1401 +
1402 +/*
1403 + * main intiailization function
1404 + */
1405 +static int bcmnand_ctrl_init(struct bcmnand_ctrl *ctrl)
1406 +{
1407 + unsigned int chip;
1408 + struct nand_chip *nand;
1409 + struct mtd_info *mtd;
1410 + struct device *dev = &ctrl->core->dev;
1411 + int ret;
1412 +
1413 + /* Software variables init */
1414 + nand = &ctrl->nand;
1415 + mtd = &ctrl->mtd;
1416 +
1417 + init_completion(&ctrl->op_completion);
1418 +
1419 + mtd->priv = nand;
1420 + mtd->owner = THIS_MODULE;
1421 + mtd->name = KBUILD_MODNAME;
1422 +
1423 + nand->priv = ctrl;
1424 +
1425 + nand->chip_delay = 5; /* not used */
1426 + nand->IO_ADDR_R = nand->IO_ADDR_W = (void *)~0L;
1427 +
1428 + if (bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_WIDTH(0)))
1429 + nand->options |= NAND_BUSWIDTH_16;
1430 + nand->options |= NAND_SKIP_BBTSCAN; /* Dont need BBTs */
1431 +
1432 + nand->options |= NAND_NO_SUBPAGE_WRITE; /* Subpages unsupported */
1433 +
1434 + nand->dev_ready = bcmnand_dev_ready;
1435 + nand->read_byte = bcmnand_read_byte;
1436 + nand->read_word = bcmnand_read_word;
1437 + nand->select_chip = bcmnand_select_chip;
1438 + nand->cmdfunc = bcmnand_cmdfunc;
1439 + nand->waitfunc = bcmnand_waitfunc;
1440 +
1441 + nand->ecc.mode = NAND_ECC_HW;
1442 + nand->ecc.read_page_raw = bcmnand_read_page_raw;
1443 + nand->ecc.write_page_raw = bcmnand_write_page_raw;
1444 + nand->ecc.read_page = bcmnand_read_page_ecc;
1445 + nand->ecc.write_page = bcmnand_write_page_ecc;
1446 + nand->ecc.read_oob = bcmnand_read_oob;
1447 + nand->ecc.write_oob = bcmnand_write_oob;
1448 +
1449 + /* Set AUTO_CNFIG bit - try to auto-detect chips */
1450 + bcmnand_reg_write(ctrl, NANDC_CS_AUTO_CONFIG, 1);
1451 +
1452 + usleep_range(1000, 1500);
1453 +
1454 + /* Print out current chip config */
1455 + for (chip = 0; chip < NANDC_MAX_CHIPS; chip++) {
1456 + dev_dbg(dev, "chip[%d]: size=%#x block=%#x page=%#x ecc_level=%#x\n",
1457 + chip,
1458 + bcmnand_reg_read(ctrl, NANDC_CONFIG_CHIP_SIZE(chip)),
1459 + bcmnand_reg_read(ctrl, NANDC_CONFIG_BLK_SIZE(chip)),
1460 + bcmnand_reg_read(ctrl, NANDC_CONFIG_PAGE_SIZE(chip)),
1461 + bcmnand_reg_read(ctrl, NANDC_ACC_CTRL_ECC_LEVEL(chip)));
1462 + }
1463 +
1464 + dev_dbg(dev, "Nand controller is reads=%d\n",
1465 + bcmnand_reg_aread(ctrl, NANDC_IDM_IO_CTRL_RDY));
1466 +
1467 + ret = bcmnand_scan(mtd);
1468 + if (ret) {
1469 + dev_err(dev, "scanning the nand flash chip failed with %i\n",
1470 + ret);
1471 + return ret;
1472 + }
1473 +
1474 + return 0;
1475 +}
1476 +
1477 +static int bcmnand_idm_init(struct bcmnand_ctrl *ctrl)
1478 +{
1479 + int irq_off;
1480 + unsigned int retries = 0x1000;
1481 + struct device *dev = &ctrl->core->dev;
1482 +
1483 + if (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET))
1484 + dev_info(dev, "stuck in reset\n");
1485 +
1486 + bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 1);
1487 + if (!bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) {
1488 + dev_err(dev, "reset of failed\n");
1489 + return -EIO;
1490 + }
1491 +
1492 + while (bcmnand_reg_aread(ctrl, NANDC_IDM_RESET)) {
1493 + bcmnand_reg_awrite(ctrl, NANDC_IDM_RESET, 0);
1494 + cpu_relax();
1495 + usleep_range(100, 150);
1496 + if (!(retries--)) {
1497 + dev_err(dev, "did not came back from reset\n");
1498 + return -ETIMEDOUT;
1499 + }
1500 + }
1501 +
1502 + bcmnand_reg_awrite(ctrl, NANDC_IDM_CLOCK_EN, 1);
1503 + bcmnand_reg_awrite(ctrl, NANDC_IDM_APB_LITTLE_ENDIAN, 0);
1504 + udelay(10);
1505 +
1506 + dev_info(dev, "NAND Controller rev %d.%02d\n",
1507 + bcmnand_reg_read(ctrl, NANDC_REV_MAJOR),
1508 + bcmnand_reg_read(ctrl, NANDC_REV_MINOR));
1509 +
1510 + usleep_range(250, 350);
1511 +
1512 + /* Disable all IRQs */
1513 + for (irq_off = 0; irq_off < NANDC_IRQ_NUM; irq_off++)
1514 + bcmnand_reg_awrite(ctrl, NANDC_IDM_IRQ_N_EN(irq_off), 0);
1515 +
1516 + return 0;
1517 +}
1518 +
1519 +static const char * const part_probes[] = { "ofpart", "bcm47xxpart", NULL };
1520 +
1521 +/*
1522 + * Top-level init function
1523 + */
1524 +static int bcmnand_probe(struct bcma_device *core)
1525 +{
1526 + struct mtd_part_parser_data parser_data;
1527 + struct device *dev = &core->dev;
1528 + struct bcmnand_ctrl *ctrl;
1529 + int res, i, irq;
1530 +
1531 + ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
1532 + if (!ctrl)
1533 + return -ENOMEM;
1534 +
1535 + bcma_set_drvdata(core, ctrl);
1536 +
1537 + ctrl->mtd.dev.parent = &core->dev;
1538 + ctrl->core = core;
1539 +
1540 + /* Acquire all interrupt lines */
1541 + for (i = 0; i < NANDC_IRQ_NUM; i++) {
1542 + irq = bcma_core_irq(core, i);
1543 + if (!irq) {
1544 + dev_err(dev, "IRQ idx %i not available\n", i);
1545 + return -ENOENT;
1546 + }
1547 + res = devm_request_irq(dev, irq, bcmnand_isr, 0,
1548 + KBUILD_MODNAME, ctrl);
1549 + if (res < 0) {
1550 + dev_err(dev, "problem requesting irq: %i (idx: %i)\n",
1551 + irq, i);
1552 + return res;
1553 + }
1554 + }
1555 +
1556 + res = bcmnand_idm_init(ctrl);
1557 + if (res)
1558 + return res;
1559 +
1560 + res = bcmnand_ctrl_init(ctrl);
1561 + if (res)
1562 + return res;
1563 +
1564 + parser_data.of_node = dev->of_node;
1565 + res = mtd_device_parse_register(&ctrl->mtd, part_probes, &parser_data, NULL, 0);
1566 + if (res) {
1567 + dev_err(dev, "Failed to register MTD device: %d\n", res);
1568 + return res;
1569 + }
1570 + return 0;
1571 +}
1572 +
1573 +static void bcmnand_remove(struct bcma_device *core)
1574 +{
1575 + struct bcmnand_ctrl *ctrl = bcma_get_drvdata(core);
1576 +
1577 + mtd_device_unregister(&ctrl->mtd);
1578 +}
1579 +
1580 +static const struct bcma_device_id bcmnand_bcma_tbl[] = {
1581 + BCMA_CORE(BCMA_MANUF_BCM, BCMA_CORE_NS_NAND, BCMA_ANY_REV, BCMA_ANY_CLASS),
1582 + {},
1583 +};
1584 +MODULE_DEVICE_TABLE(bcma, bgmac_bcma_tbl);
1585 +
1586 +static struct bcma_driver bcmnand_bcma_driver = {
1587 + .name = KBUILD_MODNAME,
1588 + .id_table = bcmnand_bcma_tbl,
1589 + .probe = bcmnand_probe,
1590 + .remove = bcmnand_remove,
1591 +};
1592 +
1593 +static int __init bcmnand_init(void)
1594 +{
1595 + return bcma_driver_register(&bcmnand_bcma_driver);
1596 +}
1597 +
1598 +static void __exit bcmnand_exit(void)
1599 +{
1600 + bcma_driver_unregister(&bcmnand_bcma_driver);
1601 +}
1602 +
1603 +module_init(bcmnand_init)
1604 +module_exit(bcmnand_exit)
1605 +
1606 +MODULE_LICENSE("GPL");
1607 +MODULE_AUTHOR("Hauke Mehrtens");
1608 +MODULE_DESCRIPTION("Northstar on-chip NAND Flash Controller driver");