817aca57d593e7435498bebd78cedf3b6e2cbef4
[openwrt/openwrt.git] / target / linux / generic / files / drivers / net / phy / ar8216.c
1 /*
2 * ar8216.c: AR8216 switch driver
3 *
4 * Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 * Copyright (C) 2011-2012 Gabor Juhos <juhosg@openwrt.org>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version 2
10 * of the License, or (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 */
17
18 #include <linux/if.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/list.h>
22 #include <linux/if_ether.h>
23 #include <linux/skbuff.h>
24 #include <linux/netdevice.h>
25 #include <linux/netlink.h>
26 #include <linux/bitops.h>
27 #include <net/genetlink.h>
28 #include <linux/switch.h>
29 #include <linux/delay.h>
30 #include <linux/phy.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/lockdep.h>
34 #include <linux/ar8216_platform.h>
35 #include <linux/workqueue.h>
36 #include <linux/version.h>
37
38 #include "ar8216.h"
39
40 extern const struct ar8xxx_chip ar8327_chip;
41 extern const struct ar8xxx_chip ar8337_chip;
42
43 #define AR8XXX_MIB_WORK_DELAY 2000 /* msecs */
44
45 #define MIB_DESC(_s , _o, _n) \
46 { \
47 .size = (_s), \
48 .offset = (_o), \
49 .name = (_n), \
50 }
51
52 static const struct ar8xxx_mib_desc ar8216_mibs[] = {
53 MIB_DESC(1, AR8216_STATS_RXBROAD, "RxBroad"),
54 MIB_DESC(1, AR8216_STATS_RXPAUSE, "RxPause"),
55 MIB_DESC(1, AR8216_STATS_RXMULTI, "RxMulti"),
56 MIB_DESC(1, AR8216_STATS_RXFCSERR, "RxFcsErr"),
57 MIB_DESC(1, AR8216_STATS_RXALIGNERR, "RxAlignErr"),
58 MIB_DESC(1, AR8216_STATS_RXRUNT, "RxRunt"),
59 MIB_DESC(1, AR8216_STATS_RXFRAGMENT, "RxFragment"),
60 MIB_DESC(1, AR8216_STATS_RX64BYTE, "Rx64Byte"),
61 MIB_DESC(1, AR8216_STATS_RX128BYTE, "Rx128Byte"),
62 MIB_DESC(1, AR8216_STATS_RX256BYTE, "Rx256Byte"),
63 MIB_DESC(1, AR8216_STATS_RX512BYTE, "Rx512Byte"),
64 MIB_DESC(1, AR8216_STATS_RX1024BYTE, "Rx1024Byte"),
65 MIB_DESC(1, AR8216_STATS_RXMAXBYTE, "RxMaxByte"),
66 MIB_DESC(1, AR8216_STATS_RXTOOLONG, "RxTooLong"),
67 MIB_DESC(2, AR8216_STATS_RXGOODBYTE, "RxGoodByte"),
68 MIB_DESC(2, AR8216_STATS_RXBADBYTE, "RxBadByte"),
69 MIB_DESC(1, AR8216_STATS_RXOVERFLOW, "RxOverFlow"),
70 MIB_DESC(1, AR8216_STATS_FILTERED, "Filtered"),
71 MIB_DESC(1, AR8216_STATS_TXBROAD, "TxBroad"),
72 MIB_DESC(1, AR8216_STATS_TXPAUSE, "TxPause"),
73 MIB_DESC(1, AR8216_STATS_TXMULTI, "TxMulti"),
74 MIB_DESC(1, AR8216_STATS_TXUNDERRUN, "TxUnderRun"),
75 MIB_DESC(1, AR8216_STATS_TX64BYTE, "Tx64Byte"),
76 MIB_DESC(1, AR8216_STATS_TX128BYTE, "Tx128Byte"),
77 MIB_DESC(1, AR8216_STATS_TX256BYTE, "Tx256Byte"),
78 MIB_DESC(1, AR8216_STATS_TX512BYTE, "Tx512Byte"),
79 MIB_DESC(1, AR8216_STATS_TX1024BYTE, "Tx1024Byte"),
80 MIB_DESC(1, AR8216_STATS_TXMAXBYTE, "TxMaxByte"),
81 MIB_DESC(1, AR8216_STATS_TXOVERSIZE, "TxOverSize"),
82 MIB_DESC(2, AR8216_STATS_TXBYTE, "TxByte"),
83 MIB_DESC(1, AR8216_STATS_TXCOLLISION, "TxCollision"),
84 MIB_DESC(1, AR8216_STATS_TXABORTCOL, "TxAbortCol"),
85 MIB_DESC(1, AR8216_STATS_TXMULTICOL, "TxMultiCol"),
86 MIB_DESC(1, AR8216_STATS_TXSINGLECOL, "TxSingleCol"),
87 MIB_DESC(1, AR8216_STATS_TXEXCDEFER, "TxExcDefer"),
88 MIB_DESC(1, AR8216_STATS_TXDEFER, "TxDefer"),
89 MIB_DESC(1, AR8216_STATS_TXLATECOL, "TxLateCol"),
90 };
91
92 const struct ar8xxx_mib_desc ar8236_mibs[39] = {
93 MIB_DESC(1, AR8236_STATS_RXBROAD, "RxBroad"),
94 MIB_DESC(1, AR8236_STATS_RXPAUSE, "RxPause"),
95 MIB_DESC(1, AR8236_STATS_RXMULTI, "RxMulti"),
96 MIB_DESC(1, AR8236_STATS_RXFCSERR, "RxFcsErr"),
97 MIB_DESC(1, AR8236_STATS_RXALIGNERR, "RxAlignErr"),
98 MIB_DESC(1, AR8236_STATS_RXRUNT, "RxRunt"),
99 MIB_DESC(1, AR8236_STATS_RXFRAGMENT, "RxFragment"),
100 MIB_DESC(1, AR8236_STATS_RX64BYTE, "Rx64Byte"),
101 MIB_DESC(1, AR8236_STATS_RX128BYTE, "Rx128Byte"),
102 MIB_DESC(1, AR8236_STATS_RX256BYTE, "Rx256Byte"),
103 MIB_DESC(1, AR8236_STATS_RX512BYTE, "Rx512Byte"),
104 MIB_DESC(1, AR8236_STATS_RX1024BYTE, "Rx1024Byte"),
105 MIB_DESC(1, AR8236_STATS_RX1518BYTE, "Rx1518Byte"),
106 MIB_DESC(1, AR8236_STATS_RXMAXBYTE, "RxMaxByte"),
107 MIB_DESC(1, AR8236_STATS_RXTOOLONG, "RxTooLong"),
108 MIB_DESC(2, AR8236_STATS_RXGOODBYTE, "RxGoodByte"),
109 MIB_DESC(2, AR8236_STATS_RXBADBYTE, "RxBadByte"),
110 MIB_DESC(1, AR8236_STATS_RXOVERFLOW, "RxOverFlow"),
111 MIB_DESC(1, AR8236_STATS_FILTERED, "Filtered"),
112 MIB_DESC(1, AR8236_STATS_TXBROAD, "TxBroad"),
113 MIB_DESC(1, AR8236_STATS_TXPAUSE, "TxPause"),
114 MIB_DESC(1, AR8236_STATS_TXMULTI, "TxMulti"),
115 MIB_DESC(1, AR8236_STATS_TXUNDERRUN, "TxUnderRun"),
116 MIB_DESC(1, AR8236_STATS_TX64BYTE, "Tx64Byte"),
117 MIB_DESC(1, AR8236_STATS_TX128BYTE, "Tx128Byte"),
118 MIB_DESC(1, AR8236_STATS_TX256BYTE, "Tx256Byte"),
119 MIB_DESC(1, AR8236_STATS_TX512BYTE, "Tx512Byte"),
120 MIB_DESC(1, AR8236_STATS_TX1024BYTE, "Tx1024Byte"),
121 MIB_DESC(1, AR8236_STATS_TX1518BYTE, "Tx1518Byte"),
122 MIB_DESC(1, AR8236_STATS_TXMAXBYTE, "TxMaxByte"),
123 MIB_DESC(1, AR8236_STATS_TXOVERSIZE, "TxOverSize"),
124 MIB_DESC(2, AR8236_STATS_TXBYTE, "TxByte"),
125 MIB_DESC(1, AR8236_STATS_TXCOLLISION, "TxCollision"),
126 MIB_DESC(1, AR8236_STATS_TXABORTCOL, "TxAbortCol"),
127 MIB_DESC(1, AR8236_STATS_TXMULTICOL, "TxMultiCol"),
128 MIB_DESC(1, AR8236_STATS_TXSINGLECOL, "TxSingleCol"),
129 MIB_DESC(1, AR8236_STATS_TXEXCDEFER, "TxExcDefer"),
130 MIB_DESC(1, AR8236_STATS_TXDEFER, "TxDefer"),
131 MIB_DESC(1, AR8236_STATS_TXLATECOL, "TxLateCol"),
132 };
133
134 static DEFINE_MUTEX(ar8xxx_dev_list_lock);
135 static LIST_HEAD(ar8xxx_dev_list);
136
137 /* inspired by phy_poll_reset in drivers/net/phy/phy_device.c */
138 static int
139 ar8xxx_phy_poll_reset(struct mii_bus *bus)
140 {
141 unsigned int sleep_msecs = 20;
142 int ret, elapsed, i;
143
144 for (elapsed = sleep_msecs; elapsed <= 600;
145 elapsed += sleep_msecs) {
146 msleep(sleep_msecs);
147 for (i = 0; i < AR8XXX_NUM_PHYS; i++) {
148 ret = mdiobus_read(bus, i, MII_BMCR);
149 if (ret < 0)
150 return ret;
151 if (ret & BMCR_RESET)
152 break;
153 if (i == AR8XXX_NUM_PHYS - 1) {
154 usleep_range(1000, 2000);
155 return 0;
156 }
157 }
158 }
159 return -ETIMEDOUT;
160 }
161
162 static int
163 ar8xxx_phy_check_aneg(struct phy_device *phydev)
164 {
165 int ret;
166
167 if (phydev->autoneg != AUTONEG_ENABLE)
168 return 0;
169 /*
170 * BMCR_ANENABLE might have been cleared
171 * by phy_init_hw in certain kernel versions
172 * therefore check for it
173 */
174 ret = phy_read(phydev, MII_BMCR);
175 if (ret < 0)
176 return ret;
177 if (ret & BMCR_ANENABLE)
178 return 0;
179
180 dev_info(&phydev->dev, "ANEG disabled, re-enabling ...\n");
181 ret |= BMCR_ANENABLE | BMCR_ANRESTART;
182 return phy_write(phydev, MII_BMCR, ret);
183 }
184
185 void
186 ar8xxx_phy_init(struct ar8xxx_priv *priv)
187 {
188 int i;
189 struct mii_bus *bus;
190
191 bus = priv->mii_bus;
192 for (i = 0; i < AR8XXX_NUM_PHYS; i++) {
193 if (priv->chip->phy_fixup)
194 priv->chip->phy_fixup(priv, i);
195
196 /* initialize the port itself */
197 mdiobus_write(bus, i, MII_ADVERTISE,
198 ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
199 if (ar8xxx_has_gige(priv))
200 mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL);
201 mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE);
202 }
203
204 ar8xxx_phy_poll_reset(bus);
205 }
206
207 u32
208 ar8xxx_mii_read32(struct ar8xxx_priv *priv, int phy_id, int regnum)
209 {
210 struct mii_bus *bus = priv->mii_bus;
211 u16 lo, hi;
212
213 lo = bus->read(bus, phy_id, regnum);
214 hi = bus->read(bus, phy_id, regnum + 1);
215
216 return (hi << 16) | lo;
217 }
218
219 void
220 ar8xxx_mii_write32(struct ar8xxx_priv *priv, int phy_id, int regnum, u32 val)
221 {
222 struct mii_bus *bus = priv->mii_bus;
223 u16 lo, hi;
224
225 lo = val & 0xffff;
226 hi = (u16) (val >> 16);
227
228 if (priv->chip->mii_lo_first)
229 {
230 bus->write(bus, phy_id, regnum, lo);
231 bus->write(bus, phy_id, regnum + 1, hi);
232 } else {
233 bus->write(bus, phy_id, regnum + 1, hi);
234 bus->write(bus, phy_id, regnum, lo);
235 }
236 }
237
238 u32
239 ar8xxx_read(struct ar8xxx_priv *priv, int reg)
240 {
241 struct mii_bus *bus = priv->mii_bus;
242 u16 r1, r2, page;
243 u32 val;
244
245 split_addr((u32) reg, &r1, &r2, &page);
246
247 mutex_lock(&bus->mdio_lock);
248
249 bus->write(bus, 0x18, 0, page);
250 wait_for_page_switch();
251 val = ar8xxx_mii_read32(priv, 0x10 | r2, r1);
252
253 mutex_unlock(&bus->mdio_lock);
254
255 return val;
256 }
257
258 void
259 ar8xxx_write(struct ar8xxx_priv *priv, int reg, u32 val)
260 {
261 struct mii_bus *bus = priv->mii_bus;
262 u16 r1, r2, page;
263
264 split_addr((u32) reg, &r1, &r2, &page);
265
266 mutex_lock(&bus->mdio_lock);
267
268 bus->write(bus, 0x18, 0, page);
269 wait_for_page_switch();
270 ar8xxx_mii_write32(priv, 0x10 | r2, r1, val);
271
272 mutex_unlock(&bus->mdio_lock);
273 }
274
275 u32
276 ar8xxx_rmw(struct ar8xxx_priv *priv, int reg, u32 mask, u32 val)
277 {
278 struct mii_bus *bus = priv->mii_bus;
279 u16 r1, r2, page;
280 u32 ret;
281
282 split_addr((u32) reg, &r1, &r2, &page);
283
284 mutex_lock(&bus->mdio_lock);
285
286 bus->write(bus, 0x18, 0, page);
287 wait_for_page_switch();
288
289 ret = ar8xxx_mii_read32(priv, 0x10 | r2, r1);
290 ret &= ~mask;
291 ret |= val;
292 ar8xxx_mii_write32(priv, 0x10 | r2, r1, ret);
293
294 mutex_unlock(&bus->mdio_lock);
295
296 return ret;
297 }
298
299 void
300 ar8xxx_phy_dbg_write(struct ar8xxx_priv *priv, int phy_addr,
301 u16 dbg_addr, u16 dbg_data)
302 {
303 struct mii_bus *bus = priv->mii_bus;
304
305 mutex_lock(&bus->mdio_lock);
306 bus->write(bus, phy_addr, MII_ATH_DBG_ADDR, dbg_addr);
307 bus->write(bus, phy_addr, MII_ATH_DBG_DATA, dbg_data);
308 mutex_unlock(&bus->mdio_lock);
309 }
310
311 void
312 ar8xxx_phy_mmd_write(struct ar8xxx_priv *priv, int phy_addr, u16 addr, u16 data)
313 {
314 struct mii_bus *bus = priv->mii_bus;
315
316 mutex_lock(&bus->mdio_lock);
317 bus->write(bus, phy_addr, MII_ATH_MMD_ADDR, addr);
318 bus->write(bus, phy_addr, MII_ATH_MMD_DATA, data);
319 mutex_unlock(&bus->mdio_lock);
320 }
321
322 u16
323 ar8xxx_phy_mmd_read(struct ar8xxx_priv *priv, int phy_addr, u16 addr)
324 {
325 struct mii_bus *bus = priv->mii_bus;
326 u16 data;
327
328 mutex_lock(&bus->mdio_lock);
329 bus->write(bus, phy_addr, MII_ATH_MMD_ADDR, addr);
330 data = bus->read(bus, phy_addr, MII_ATH_MMD_DATA);
331 mutex_unlock(&bus->mdio_lock);
332
333 return data;
334 }
335
336 static int
337 ar8xxx_reg_wait(struct ar8xxx_priv *priv, u32 reg, u32 mask, u32 val,
338 unsigned timeout)
339 {
340 int i;
341
342 for (i = 0; i < timeout; i++) {
343 u32 t;
344
345 t = ar8xxx_read(priv, reg);
346 if ((t & mask) == val)
347 return 0;
348
349 usleep_range(1000, 2000);
350 }
351
352 return -ETIMEDOUT;
353 }
354
355 static int
356 ar8xxx_mib_op(struct ar8xxx_priv *priv, u32 op)
357 {
358 unsigned mib_func = priv->chip->mib_func;
359 int ret;
360
361 lockdep_assert_held(&priv->mib_lock);
362
363 /* Capture the hardware statistics for all ports */
364 ar8xxx_rmw(priv, mib_func, AR8216_MIB_FUNC, (op << AR8216_MIB_FUNC_S));
365
366 /* Wait for the capturing to complete. */
367 ret = ar8xxx_reg_wait(priv, mib_func, AR8216_MIB_BUSY, 0, 10);
368 if (ret)
369 goto out;
370
371 ret = 0;
372
373 out:
374 return ret;
375 }
376
377 static int
378 ar8xxx_mib_capture(struct ar8xxx_priv *priv)
379 {
380 return ar8xxx_mib_op(priv, AR8216_MIB_FUNC_CAPTURE);
381 }
382
383 static int
384 ar8xxx_mib_flush(struct ar8xxx_priv *priv)
385 {
386 return ar8xxx_mib_op(priv, AR8216_MIB_FUNC_FLUSH);
387 }
388
389 static void
390 ar8xxx_mib_fetch_port_stat(struct ar8xxx_priv *priv, int port, bool flush)
391 {
392 unsigned int base;
393 u64 *mib_stats;
394 int i;
395
396 WARN_ON(port >= priv->dev.ports);
397
398 lockdep_assert_held(&priv->mib_lock);
399
400 base = priv->chip->reg_port_stats_start +
401 priv->chip->reg_port_stats_length * port;
402
403 mib_stats = &priv->mib_stats[port * priv->chip->num_mibs];
404 for (i = 0; i < priv->chip->num_mibs; i++) {
405 const struct ar8xxx_mib_desc *mib;
406 u64 t;
407
408 mib = &priv->chip->mib_decs[i];
409 t = ar8xxx_read(priv, base + mib->offset);
410 if (mib->size == 2) {
411 u64 hi;
412
413 hi = ar8xxx_read(priv, base + mib->offset + 4);
414 t |= hi << 32;
415 }
416
417 if (flush)
418 mib_stats[i] = 0;
419 else
420 mib_stats[i] += t;
421 }
422 }
423
424 static void
425 ar8216_read_port_link(struct ar8xxx_priv *priv, int port,
426 struct switch_port_link *link)
427 {
428 u32 status;
429 u32 speed;
430
431 memset(link, '\0', sizeof(*link));
432
433 status = priv->chip->read_port_status(priv, port);
434
435 link->aneg = !!(status & AR8216_PORT_STATUS_LINK_AUTO);
436 if (link->aneg) {
437 link->link = !!(status & AR8216_PORT_STATUS_LINK_UP);
438 } else {
439 link->link = true;
440
441 if (priv->get_port_link) {
442 int err;
443
444 err = priv->get_port_link(port);
445 if (err >= 0)
446 link->link = !!err;
447 }
448 }
449
450 if (!link->link)
451 return;
452
453 link->duplex = !!(status & AR8216_PORT_STATUS_DUPLEX);
454 link->tx_flow = !!(status & AR8216_PORT_STATUS_TXFLOW);
455 link->rx_flow = !!(status & AR8216_PORT_STATUS_RXFLOW);
456
457 if (link->aneg && link->duplex && priv->chip->read_port_eee_status)
458 link->eee = priv->chip->read_port_eee_status(priv, port);
459
460 speed = (status & AR8216_PORT_STATUS_SPEED) >>
461 AR8216_PORT_STATUS_SPEED_S;
462
463 switch (speed) {
464 case AR8216_PORT_SPEED_10M:
465 link->speed = SWITCH_PORT_SPEED_10;
466 break;
467 case AR8216_PORT_SPEED_100M:
468 link->speed = SWITCH_PORT_SPEED_100;
469 break;
470 case AR8216_PORT_SPEED_1000M:
471 link->speed = SWITCH_PORT_SPEED_1000;
472 break;
473 default:
474 link->speed = SWITCH_PORT_SPEED_UNKNOWN;
475 break;
476 }
477 }
478
479 static struct sk_buff *
480 ar8216_mangle_tx(struct net_device *dev, struct sk_buff *skb)
481 {
482 struct ar8xxx_priv *priv = dev->phy_ptr;
483 unsigned char *buf;
484
485 if (unlikely(!priv))
486 goto error;
487
488 if (!priv->vlan)
489 goto send;
490
491 if (unlikely(skb_headroom(skb) < 2)) {
492 if (pskb_expand_head(skb, 2, 0, GFP_ATOMIC) < 0)
493 goto error;
494 }
495
496 buf = skb_push(skb, 2);
497 buf[0] = 0x10;
498 buf[1] = 0x80;
499
500 send:
501 return skb;
502
503 error:
504 dev_kfree_skb_any(skb);
505 return NULL;
506 }
507
508 static void
509 ar8216_mangle_rx(struct net_device *dev, struct sk_buff *skb)
510 {
511 struct ar8xxx_priv *priv;
512 unsigned char *buf;
513 int port, vlan;
514
515 priv = dev->phy_ptr;
516 if (!priv)
517 return;
518
519 /* don't strip the header if vlan mode is disabled */
520 if (!priv->vlan)
521 return;
522
523 /* strip header, get vlan id */
524 buf = skb->data;
525 skb_pull(skb, 2);
526
527 /* check for vlan header presence */
528 if ((buf[12 + 2] != 0x81) || (buf[13 + 2] != 0x00))
529 return;
530
531 port = buf[0] & 0xf;
532
533 /* no need to fix up packets coming from a tagged source */
534 if (priv->vlan_tagged & (1 << port))
535 return;
536
537 /* lookup port vid from local table, the switch passes an invalid vlan id */
538 vlan = priv->vlan_id[priv->pvid[port]];
539
540 buf[14 + 2] &= 0xf0;
541 buf[14 + 2] |= vlan >> 8;
542 buf[15 + 2] = vlan & 0xff;
543 }
544
545 int
546 ar8216_wait_bit(struct ar8xxx_priv *priv, int reg, u32 mask, u32 val)
547 {
548 int timeout = 20;
549 u32 t = 0;
550
551 while (1) {
552 t = ar8xxx_read(priv, reg);
553 if ((t & mask) == val)
554 return 0;
555
556 if (timeout-- <= 0)
557 break;
558
559 udelay(10);
560 }
561
562 pr_err("ar8216: timeout on reg %08x: %08x & %08x != %08x\n",
563 (unsigned int) reg, t, mask, val);
564 return -ETIMEDOUT;
565 }
566
567 static void
568 ar8216_vtu_op(struct ar8xxx_priv *priv, u32 op, u32 val)
569 {
570 if (ar8216_wait_bit(priv, AR8216_REG_VTU, AR8216_VTU_ACTIVE, 0))
571 return;
572 if ((op & AR8216_VTU_OP) == AR8216_VTU_OP_LOAD) {
573 val &= AR8216_VTUDATA_MEMBER;
574 val |= AR8216_VTUDATA_VALID;
575 ar8xxx_write(priv, AR8216_REG_VTU_DATA, val);
576 }
577 op |= AR8216_VTU_ACTIVE;
578 ar8xxx_write(priv, AR8216_REG_VTU, op);
579 }
580
581 static void
582 ar8216_vtu_flush(struct ar8xxx_priv *priv)
583 {
584 ar8216_vtu_op(priv, AR8216_VTU_OP_FLUSH, 0);
585 }
586
587 static void
588 ar8216_vtu_load_vlan(struct ar8xxx_priv *priv, u32 vid, u32 port_mask)
589 {
590 u32 op;
591
592 op = AR8216_VTU_OP_LOAD | (vid << AR8216_VTU_VID_S);
593 ar8216_vtu_op(priv, op, port_mask);
594 }
595
596 static int
597 ar8216_atu_flush(struct ar8xxx_priv *priv)
598 {
599 int ret;
600
601 ret = ar8216_wait_bit(priv, AR8216_REG_ATU_FUNC0, AR8216_ATU_ACTIVE, 0);
602 if (!ret)
603 ar8xxx_write(priv, AR8216_REG_ATU_FUNC0, AR8216_ATU_OP_FLUSH |
604 AR8216_ATU_ACTIVE);
605
606 return ret;
607 }
608
609 static int
610 ar8216_atu_flush_port(struct ar8xxx_priv *priv, int port)
611 {
612 u32 t;
613 int ret;
614
615 ret = ar8216_wait_bit(priv, AR8216_REG_ATU_FUNC0, AR8216_ATU_ACTIVE, 0);
616 if (!ret) {
617 t = (port << AR8216_ATU_PORT_NUM_S) | AR8216_ATU_OP_FLUSH_PORT;
618 t |= AR8216_ATU_ACTIVE;
619 ar8xxx_write(priv, AR8216_REG_ATU_FUNC0, t);
620 }
621
622 return ret;
623 }
624
625 static u32
626 ar8216_read_port_status(struct ar8xxx_priv *priv, int port)
627 {
628 return ar8xxx_read(priv, AR8216_REG_PORT_STATUS(port));
629 }
630
631 static void
632 ar8216_setup_port(struct ar8xxx_priv *priv, int port, u32 members)
633 {
634 u32 header;
635 u32 egress, ingress;
636 u32 pvid;
637
638 if (priv->vlan) {
639 pvid = priv->vlan_id[priv->pvid[port]];
640 if (priv->vlan_tagged & (1 << port))
641 egress = AR8216_OUT_ADD_VLAN;
642 else
643 egress = AR8216_OUT_STRIP_VLAN;
644 ingress = AR8216_IN_SECURE;
645 } else {
646 pvid = port;
647 egress = AR8216_OUT_KEEP;
648 ingress = AR8216_IN_PORT_ONLY;
649 }
650
651 if (chip_is_ar8216(priv) && priv->vlan && port == AR8216_PORT_CPU)
652 header = AR8216_PORT_CTRL_HEADER;
653 else
654 header = 0;
655
656 ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port),
657 AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE |
658 AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE |
659 AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK,
660 AR8216_PORT_CTRL_LEARN | header |
661 (egress << AR8216_PORT_CTRL_VLAN_MODE_S) |
662 (AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S));
663
664 ar8xxx_rmw(priv, AR8216_REG_PORT_VLAN(port),
665 AR8216_PORT_VLAN_DEST_PORTS | AR8216_PORT_VLAN_MODE |
666 AR8216_PORT_VLAN_DEFAULT_ID,
667 (members << AR8216_PORT_VLAN_DEST_PORTS_S) |
668 (ingress << AR8216_PORT_VLAN_MODE_S) |
669 (pvid << AR8216_PORT_VLAN_DEFAULT_ID_S));
670 }
671
672 static int
673 ar8216_hw_init(struct ar8xxx_priv *priv)
674 {
675 if (priv->initialized)
676 return 0;
677
678 ar8xxx_phy_init(priv);
679
680 priv->initialized = true;
681 return 0;
682 }
683
684 static void
685 ar8216_init_globals(struct ar8xxx_priv *priv)
686 {
687 /* standard atheros magic */
688 ar8xxx_write(priv, 0x38, 0xc000050e);
689
690 ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL,
691 AR8216_GCTRL_MTU, 1518 + 8 + 2);
692 }
693
694 static void
695 ar8216_init_port(struct ar8xxx_priv *priv, int port)
696 {
697 /* Enable port learning and tx */
698 ar8xxx_write(priv, AR8216_REG_PORT_CTRL(port),
699 AR8216_PORT_CTRL_LEARN |
700 (4 << AR8216_PORT_CTRL_STATE_S));
701
702 ar8xxx_write(priv, AR8216_REG_PORT_VLAN(port), 0);
703
704 if (port == AR8216_PORT_CPU) {
705 ar8xxx_write(priv, AR8216_REG_PORT_STATUS(port),
706 AR8216_PORT_STATUS_LINK_UP |
707 (ar8xxx_has_gige(priv) ?
708 AR8216_PORT_SPEED_1000M : AR8216_PORT_SPEED_100M) |
709 AR8216_PORT_STATUS_TXMAC |
710 AR8216_PORT_STATUS_RXMAC |
711 (chip_is_ar8316(priv) ? AR8216_PORT_STATUS_RXFLOW : 0) |
712 (chip_is_ar8316(priv) ? AR8216_PORT_STATUS_TXFLOW : 0) |
713 AR8216_PORT_STATUS_DUPLEX);
714 } else {
715 ar8xxx_write(priv, AR8216_REG_PORT_STATUS(port),
716 AR8216_PORT_STATUS_LINK_AUTO);
717 }
718 }
719
720 static void
721 ar8216_wait_atu_ready(struct ar8xxx_priv *priv, u16 r2, u16 r1)
722 {
723 int timeout = 20;
724
725 while (ar8xxx_mii_read32(priv, r2, r1) & AR8216_ATU_ACTIVE && --timeout)
726 udelay(10);
727
728 if (!timeout)
729 pr_err("ar8216: timeout waiting for atu to become ready\n");
730 }
731
732 static void ar8216_get_arl_entry(struct ar8xxx_priv *priv,
733 struct arl_entry *a, u32 *status, enum arl_op op)
734 {
735 struct mii_bus *bus = priv->mii_bus;
736 u16 r2, page;
737 u16 r1_func0, r1_func1, r1_func2;
738 u32 t, val0, val1, val2;
739 int i;
740
741 split_addr(AR8216_REG_ATU_FUNC0, &r1_func0, &r2, &page);
742 r2 |= 0x10;
743
744 r1_func1 = (AR8216_REG_ATU_FUNC1 >> 1) & 0x1e;
745 r1_func2 = (AR8216_REG_ATU_FUNC2 >> 1) & 0x1e;
746
747 switch (op) {
748 case AR8XXX_ARL_INITIALIZE:
749 /* all ATU registers are on the same page
750 * therefore set page only once
751 */
752 bus->write(bus, 0x18, 0, page);
753 wait_for_page_switch();
754
755 ar8216_wait_atu_ready(priv, r2, r1_func0);
756
757 ar8xxx_mii_write32(priv, r2, r1_func0, AR8216_ATU_OP_GET_NEXT);
758 ar8xxx_mii_write32(priv, r2, r1_func1, 0);
759 ar8xxx_mii_write32(priv, r2, r1_func2, 0);
760 break;
761 case AR8XXX_ARL_GET_NEXT:
762 t = ar8xxx_mii_read32(priv, r2, r1_func0);
763 t |= AR8216_ATU_ACTIVE;
764 ar8xxx_mii_write32(priv, r2, r1_func0, t);
765 ar8216_wait_atu_ready(priv, r2, r1_func0);
766
767 val0 = ar8xxx_mii_read32(priv, r2, r1_func0);
768 val1 = ar8xxx_mii_read32(priv, r2, r1_func1);
769 val2 = ar8xxx_mii_read32(priv, r2, r1_func2);
770
771 *status = (val2 & AR8216_ATU_STATUS) >> AR8216_ATU_STATUS_S;
772 if (!*status)
773 break;
774
775 i = 0;
776 t = AR8216_ATU_PORT0;
777 while (!(val2 & t) && ++i < priv->dev.ports)
778 t <<= 1;
779
780 a->port = i;
781 a->mac[0] = (val0 & AR8216_ATU_ADDR5) >> AR8216_ATU_ADDR5_S;
782 a->mac[1] = (val0 & AR8216_ATU_ADDR4) >> AR8216_ATU_ADDR4_S;
783 a->mac[2] = (val1 & AR8216_ATU_ADDR3) >> AR8216_ATU_ADDR3_S;
784 a->mac[3] = (val1 & AR8216_ATU_ADDR2) >> AR8216_ATU_ADDR2_S;
785 a->mac[4] = (val1 & AR8216_ATU_ADDR1) >> AR8216_ATU_ADDR1_S;
786 a->mac[5] = (val1 & AR8216_ATU_ADDR0) >> AR8216_ATU_ADDR0_S;
787 break;
788 }
789 }
790
791 static void
792 ar8236_setup_port(struct ar8xxx_priv *priv, int port, u32 members)
793 {
794 u32 egress, ingress;
795 u32 pvid;
796
797 if (priv->vlan) {
798 pvid = priv->vlan_id[priv->pvid[port]];
799 if (priv->vlan_tagged & (1 << port))
800 egress = AR8216_OUT_ADD_VLAN;
801 else
802 egress = AR8216_OUT_STRIP_VLAN;
803 ingress = AR8216_IN_SECURE;
804 } else {
805 pvid = port;
806 egress = AR8216_OUT_KEEP;
807 ingress = AR8216_IN_PORT_ONLY;
808 }
809
810 ar8xxx_rmw(priv, AR8216_REG_PORT_CTRL(port),
811 AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE |
812 AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE |
813 AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK,
814 AR8216_PORT_CTRL_LEARN |
815 (egress << AR8216_PORT_CTRL_VLAN_MODE_S) |
816 (AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S));
817
818 ar8xxx_rmw(priv, AR8236_REG_PORT_VLAN(port),
819 AR8236_PORT_VLAN_DEFAULT_ID,
820 (pvid << AR8236_PORT_VLAN_DEFAULT_ID_S));
821
822 ar8xxx_rmw(priv, AR8236_REG_PORT_VLAN2(port),
823 AR8236_PORT_VLAN2_VLAN_MODE |
824 AR8236_PORT_VLAN2_MEMBER,
825 (ingress << AR8236_PORT_VLAN2_VLAN_MODE_S) |
826 (members << AR8236_PORT_VLAN2_MEMBER_S));
827 }
828
829 static void
830 ar8236_init_globals(struct ar8xxx_priv *priv)
831 {
832 /* enable jumbo frames */
833 ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL,
834 AR8316_GCTRL_MTU, 9018 + 8 + 2);
835
836 /* enable cpu port to receive arp frames */
837 ar8xxx_reg_set(priv, AR8216_REG_ATU_CTRL,
838 AR8236_ATU_CTRL_RES);
839
840 /* enable cpu port to receive multicast and broadcast frames */
841 ar8xxx_reg_set(priv, AR8216_REG_FLOOD_MASK,
842 AR8236_FM_CPU_BROADCAST_EN | AR8236_FM_CPU_BCAST_FWD_EN);
843
844 /* Enable MIB counters */
845 ar8xxx_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN,
846 (AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) |
847 AR8236_MIB_EN);
848 }
849
850 static int
851 ar8316_hw_init(struct ar8xxx_priv *priv)
852 {
853 u32 val, newval;
854
855 val = ar8xxx_read(priv, AR8316_REG_POSTRIP);
856
857 if (priv->phy->interface == PHY_INTERFACE_MODE_RGMII) {
858 if (priv->port4_phy) {
859 /* value taken from Ubiquiti RouterStation Pro */
860 newval = 0x81461bea;
861 pr_info("ar8316: Using port 4 as PHY\n");
862 } else {
863 newval = 0x01261be2;
864 pr_info("ar8316: Using port 4 as switch port\n");
865 }
866 } else if (priv->phy->interface == PHY_INTERFACE_MODE_GMII) {
867 /* value taken from AVM Fritz!Box 7390 sources */
868 newval = 0x010e5b71;
869 } else {
870 /* no known value for phy interface */
871 pr_err("ar8316: unsupported mii mode: %d.\n",
872 priv->phy->interface);
873 return -EINVAL;
874 }
875
876 if (val == newval)
877 goto out;
878
879 ar8xxx_write(priv, AR8316_REG_POSTRIP, newval);
880
881 if (priv->port4_phy &&
882 priv->phy->interface == PHY_INTERFACE_MODE_RGMII) {
883 /* work around for phy4 rgmii mode */
884 ar8xxx_phy_dbg_write(priv, 4, 0x12, 0x480c);
885 /* rx delay */
886 ar8xxx_phy_dbg_write(priv, 4, 0x0, 0x824e);
887 /* tx delay */
888 ar8xxx_phy_dbg_write(priv, 4, 0x5, 0x3d47);
889 msleep(1000);
890 }
891
892 ar8xxx_phy_init(priv);
893
894 out:
895 priv->initialized = true;
896 return 0;
897 }
898
899 static void
900 ar8316_init_globals(struct ar8xxx_priv *priv)
901 {
902 /* standard atheros magic */
903 ar8xxx_write(priv, 0x38, 0xc000050e);
904
905 /* enable cpu port to receive multicast and broadcast frames */
906 ar8xxx_write(priv, AR8216_REG_FLOOD_MASK, 0x003f003f);
907
908 /* enable jumbo frames */
909 ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CTRL,
910 AR8316_GCTRL_MTU, 9018 + 8 + 2);
911
912 /* Enable MIB counters */
913 ar8xxx_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN,
914 (AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) |
915 AR8236_MIB_EN);
916 }
917
918 int
919 ar8xxx_sw_set_vlan(struct switch_dev *dev, const struct switch_attr *attr,
920 struct switch_val *val)
921 {
922 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
923 priv->vlan = !!val->value.i;
924 return 0;
925 }
926
927 int
928 ar8xxx_sw_get_vlan(struct switch_dev *dev, const struct switch_attr *attr,
929 struct switch_val *val)
930 {
931 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
932 val->value.i = priv->vlan;
933 return 0;
934 }
935
936
937 int
938 ar8xxx_sw_set_pvid(struct switch_dev *dev, int port, int vlan)
939 {
940 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
941
942 /* make sure no invalid PVIDs get set */
943
944 if (vlan >= dev->vlans)
945 return -EINVAL;
946
947 priv->pvid[port] = vlan;
948 return 0;
949 }
950
951 int
952 ar8xxx_sw_get_pvid(struct switch_dev *dev, int port, int *vlan)
953 {
954 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
955 *vlan = priv->pvid[port];
956 return 0;
957 }
958
959 static int
960 ar8xxx_sw_set_vid(struct switch_dev *dev, const struct switch_attr *attr,
961 struct switch_val *val)
962 {
963 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
964 priv->vlan_id[val->port_vlan] = val->value.i;
965 return 0;
966 }
967
968 static int
969 ar8xxx_sw_get_vid(struct switch_dev *dev, const struct switch_attr *attr,
970 struct switch_val *val)
971 {
972 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
973 val->value.i = priv->vlan_id[val->port_vlan];
974 return 0;
975 }
976
977 int
978 ar8xxx_sw_get_port_link(struct switch_dev *dev, int port,
979 struct switch_port_link *link)
980 {
981 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
982
983 ar8216_read_port_link(priv, port, link);
984 return 0;
985 }
986
987 static int
988 ar8xxx_sw_get_ports(struct switch_dev *dev, struct switch_val *val)
989 {
990 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
991 u8 ports = priv->vlan_table[val->port_vlan];
992 int i;
993
994 val->len = 0;
995 for (i = 0; i < dev->ports; i++) {
996 struct switch_port *p;
997
998 if (!(ports & (1 << i)))
999 continue;
1000
1001 p = &val->value.ports[val->len++];
1002 p->id = i;
1003 if (priv->vlan_tagged & (1 << i))
1004 p->flags = (1 << SWITCH_PORT_FLAG_TAGGED);
1005 else
1006 p->flags = 0;
1007 }
1008 return 0;
1009 }
1010
1011 static int
1012 ar8xxx_sw_set_ports(struct switch_dev *dev, struct switch_val *val)
1013 {
1014 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1015 u8 *vt = &priv->vlan_table[val->port_vlan];
1016 int i, j;
1017
1018 *vt = 0;
1019 for (i = 0; i < val->len; i++) {
1020 struct switch_port *p = &val->value.ports[i];
1021
1022 if (p->flags & (1 << SWITCH_PORT_FLAG_TAGGED)) {
1023 priv->vlan_tagged |= (1 << p->id);
1024 } else {
1025 priv->vlan_tagged &= ~(1 << p->id);
1026 priv->pvid[p->id] = val->port_vlan;
1027
1028 /* make sure that an untagged port does not
1029 * appear in other vlans */
1030 for (j = 0; j < AR8X16_MAX_VLANS; j++) {
1031 if (j == val->port_vlan)
1032 continue;
1033 priv->vlan_table[j] &= ~(1 << p->id);
1034 }
1035 }
1036
1037 *vt |= 1 << p->id;
1038 }
1039 return 0;
1040 }
1041
1042 static void
1043 ar8216_set_mirror_regs(struct ar8xxx_priv *priv)
1044 {
1045 int port;
1046
1047 /* reset all mirror registers */
1048 ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CPUPORT,
1049 AR8216_GLOBAL_CPUPORT_MIRROR_PORT,
1050 (0xF << AR8216_GLOBAL_CPUPORT_MIRROR_PORT_S));
1051 for (port = 0; port < AR8216_NUM_PORTS; port++) {
1052 ar8xxx_reg_clear(priv, AR8216_REG_PORT_CTRL(port),
1053 AR8216_PORT_CTRL_MIRROR_RX);
1054
1055 ar8xxx_reg_clear(priv, AR8216_REG_PORT_CTRL(port),
1056 AR8216_PORT_CTRL_MIRROR_TX);
1057 }
1058
1059 /* now enable mirroring if necessary */
1060 if (priv->source_port >= AR8216_NUM_PORTS ||
1061 priv->monitor_port >= AR8216_NUM_PORTS ||
1062 priv->source_port == priv->monitor_port) {
1063 return;
1064 }
1065
1066 ar8xxx_rmw(priv, AR8216_REG_GLOBAL_CPUPORT,
1067 AR8216_GLOBAL_CPUPORT_MIRROR_PORT,
1068 (priv->monitor_port << AR8216_GLOBAL_CPUPORT_MIRROR_PORT_S));
1069
1070 if (priv->mirror_rx)
1071 ar8xxx_reg_set(priv, AR8216_REG_PORT_CTRL(priv->source_port),
1072 AR8216_PORT_CTRL_MIRROR_RX);
1073
1074 if (priv->mirror_tx)
1075 ar8xxx_reg_set(priv, AR8216_REG_PORT_CTRL(priv->source_port),
1076 AR8216_PORT_CTRL_MIRROR_TX);
1077 }
1078
1079 static inline u32
1080 ar8xxx_age_time_val(int age_time)
1081 {
1082 return (age_time + AR8XXX_REG_ARL_CTRL_AGE_TIME_SECS / 2) /
1083 AR8XXX_REG_ARL_CTRL_AGE_TIME_SECS;
1084 }
1085
1086 static inline void
1087 ar8xxx_set_age_time(struct ar8xxx_priv *priv, int reg)
1088 {
1089 u32 age_time = ar8xxx_age_time_val(priv->arl_age_time);
1090 ar8xxx_rmw(priv, reg, AR8216_ATU_CTRL_AGE_TIME, age_time << AR8216_ATU_CTRL_AGE_TIME_S);
1091 }
1092
1093 int
1094 ar8xxx_sw_hw_apply(struct switch_dev *dev)
1095 {
1096 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1097 const struct ar8xxx_chip *chip = priv->chip;
1098 u8 portmask[AR8X16_MAX_PORTS];
1099 int i, j;
1100
1101 mutex_lock(&priv->reg_mutex);
1102 /* flush all vlan translation unit entries */
1103 priv->chip->vtu_flush(priv);
1104
1105 memset(portmask, 0, sizeof(portmask));
1106 if (!priv->init) {
1107 /* calculate the port destination masks and load vlans
1108 * into the vlan translation unit */
1109 for (j = 0; j < AR8X16_MAX_VLANS; j++) {
1110 u8 vp = priv->vlan_table[j];
1111
1112 if (!vp)
1113 continue;
1114
1115 for (i = 0; i < dev->ports; i++) {
1116 u8 mask = (1 << i);
1117 if (vp & mask)
1118 portmask[i] |= vp & ~mask;
1119 }
1120
1121 chip->vtu_load_vlan(priv, priv->vlan_id[j],
1122 priv->vlan_table[j]);
1123 }
1124 } else {
1125 /* vlan disabled:
1126 * isolate all ports, but connect them to the cpu port */
1127 for (i = 0; i < dev->ports; i++) {
1128 if (i == AR8216_PORT_CPU)
1129 continue;
1130
1131 portmask[i] = 1 << AR8216_PORT_CPU;
1132 portmask[AR8216_PORT_CPU] |= (1 << i);
1133 }
1134 }
1135
1136 /* update the port destination mask registers and tag settings */
1137 for (i = 0; i < dev->ports; i++) {
1138 chip->setup_port(priv, i, portmask[i]);
1139 }
1140
1141 chip->set_mirror_regs(priv);
1142
1143 /* set age time */
1144 if (chip->reg_arl_ctrl)
1145 ar8xxx_set_age_time(priv, chip->reg_arl_ctrl);
1146
1147 mutex_unlock(&priv->reg_mutex);
1148 return 0;
1149 }
1150
1151 int
1152 ar8xxx_sw_reset_switch(struct switch_dev *dev)
1153 {
1154 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1155 const struct ar8xxx_chip *chip = priv->chip;
1156 int i;
1157
1158 mutex_lock(&priv->reg_mutex);
1159 memset(&priv->vlan, 0, sizeof(struct ar8xxx_priv) -
1160 offsetof(struct ar8xxx_priv, vlan));
1161
1162 for (i = 0; i < AR8X16_MAX_VLANS; i++)
1163 priv->vlan_id[i] = i;
1164
1165 /* Configure all ports */
1166 for (i = 0; i < dev->ports; i++)
1167 chip->init_port(priv, i);
1168
1169 priv->mirror_rx = false;
1170 priv->mirror_tx = false;
1171 priv->source_port = 0;
1172 priv->monitor_port = 0;
1173 priv->arl_age_time = AR8XXX_DEFAULT_ARL_AGE_TIME;
1174
1175 chip->init_globals(priv);
1176
1177 mutex_unlock(&priv->reg_mutex);
1178
1179 return chip->sw_hw_apply(dev);
1180 }
1181
1182 int
1183 ar8xxx_sw_set_reset_mibs(struct switch_dev *dev,
1184 const struct switch_attr *attr,
1185 struct switch_val *val)
1186 {
1187 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1188 unsigned int len;
1189 int ret;
1190
1191 if (!ar8xxx_has_mib_counters(priv))
1192 return -EOPNOTSUPP;
1193
1194 mutex_lock(&priv->mib_lock);
1195
1196 len = priv->dev.ports * priv->chip->num_mibs *
1197 sizeof(*priv->mib_stats);
1198 memset(priv->mib_stats, '\0', len);
1199 ret = ar8xxx_mib_flush(priv);
1200 if (ret)
1201 goto unlock;
1202
1203 ret = 0;
1204
1205 unlock:
1206 mutex_unlock(&priv->mib_lock);
1207 return ret;
1208 }
1209
1210 int
1211 ar8xxx_sw_set_mirror_rx_enable(struct switch_dev *dev,
1212 const struct switch_attr *attr,
1213 struct switch_val *val)
1214 {
1215 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1216
1217 mutex_lock(&priv->reg_mutex);
1218 priv->mirror_rx = !!val->value.i;
1219 priv->chip->set_mirror_regs(priv);
1220 mutex_unlock(&priv->reg_mutex);
1221
1222 return 0;
1223 }
1224
1225 int
1226 ar8xxx_sw_get_mirror_rx_enable(struct switch_dev *dev,
1227 const struct switch_attr *attr,
1228 struct switch_val *val)
1229 {
1230 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1231 val->value.i = priv->mirror_rx;
1232 return 0;
1233 }
1234
1235 int
1236 ar8xxx_sw_set_mirror_tx_enable(struct switch_dev *dev,
1237 const struct switch_attr *attr,
1238 struct switch_val *val)
1239 {
1240 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1241
1242 mutex_lock(&priv->reg_mutex);
1243 priv->mirror_tx = !!val->value.i;
1244 priv->chip->set_mirror_regs(priv);
1245 mutex_unlock(&priv->reg_mutex);
1246
1247 return 0;
1248 }
1249
1250 int
1251 ar8xxx_sw_get_mirror_tx_enable(struct switch_dev *dev,
1252 const struct switch_attr *attr,
1253 struct switch_val *val)
1254 {
1255 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1256 val->value.i = priv->mirror_tx;
1257 return 0;
1258 }
1259
1260 int
1261 ar8xxx_sw_set_mirror_monitor_port(struct switch_dev *dev,
1262 const struct switch_attr *attr,
1263 struct switch_val *val)
1264 {
1265 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1266
1267 mutex_lock(&priv->reg_mutex);
1268 priv->monitor_port = val->value.i;
1269 priv->chip->set_mirror_regs(priv);
1270 mutex_unlock(&priv->reg_mutex);
1271
1272 return 0;
1273 }
1274
1275 int
1276 ar8xxx_sw_get_mirror_monitor_port(struct switch_dev *dev,
1277 const struct switch_attr *attr,
1278 struct switch_val *val)
1279 {
1280 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1281 val->value.i = priv->monitor_port;
1282 return 0;
1283 }
1284
1285 int
1286 ar8xxx_sw_set_mirror_source_port(struct switch_dev *dev,
1287 const struct switch_attr *attr,
1288 struct switch_val *val)
1289 {
1290 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1291
1292 mutex_lock(&priv->reg_mutex);
1293 priv->source_port = val->value.i;
1294 priv->chip->set_mirror_regs(priv);
1295 mutex_unlock(&priv->reg_mutex);
1296
1297 return 0;
1298 }
1299
1300 int
1301 ar8xxx_sw_get_mirror_source_port(struct switch_dev *dev,
1302 const struct switch_attr *attr,
1303 struct switch_val *val)
1304 {
1305 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1306 val->value.i = priv->source_port;
1307 return 0;
1308 }
1309
1310 int
1311 ar8xxx_sw_set_port_reset_mib(struct switch_dev *dev,
1312 const struct switch_attr *attr,
1313 struct switch_val *val)
1314 {
1315 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1316 int port;
1317 int ret;
1318
1319 if (!ar8xxx_has_mib_counters(priv))
1320 return -EOPNOTSUPP;
1321
1322 port = val->port_vlan;
1323 if (port >= dev->ports)
1324 return -EINVAL;
1325
1326 mutex_lock(&priv->mib_lock);
1327 ret = ar8xxx_mib_capture(priv);
1328 if (ret)
1329 goto unlock;
1330
1331 ar8xxx_mib_fetch_port_stat(priv, port, true);
1332
1333 ret = 0;
1334
1335 unlock:
1336 mutex_unlock(&priv->mib_lock);
1337 return ret;
1338 }
1339
1340 static void
1341 ar8xxx_byte_to_str(char *buf, int len, u64 byte)
1342 {
1343 unsigned long b;
1344 const char *unit;
1345
1346 if (byte >= 0x40000000) { /* 1 GiB */
1347 b = byte * 10 / 0x40000000;
1348 unit = "GiB";
1349 } else if (byte >= 0x100000) { /* 1 MiB */
1350 b = byte * 10 / 0x100000;
1351 unit = "MiB";
1352 } else if (byte >= 0x400) { /* 1 KiB */
1353 b = byte * 10 / 0x400;
1354 unit = "KiB";
1355 } else {
1356 b = byte;
1357 unit = "Byte";
1358 }
1359 if (strcmp(unit, "Byte"))
1360 snprintf(buf, len, "%lu.%lu %s", b / 10, b % 10, unit);
1361 else
1362 snprintf(buf, len, "%lu %s", b, unit);
1363 }
1364
1365 int
1366 ar8xxx_sw_get_port_mib(struct switch_dev *dev,
1367 const struct switch_attr *attr,
1368 struct switch_val *val)
1369 {
1370 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1371 const struct ar8xxx_chip *chip = priv->chip;
1372 u64 *mib_stats, mib_data;
1373 int port;
1374 int ret;
1375 char *buf = priv->buf;
1376 char buf1[64];
1377 const char *mib_name;
1378 int i, len = 0;
1379 bool mib_stats_empty = true;
1380
1381 if (!ar8xxx_has_mib_counters(priv))
1382 return -EOPNOTSUPP;
1383
1384 port = val->port_vlan;
1385 if (port >= dev->ports)
1386 return -EINVAL;
1387
1388 mutex_lock(&priv->mib_lock);
1389 ret = ar8xxx_mib_capture(priv);
1390 if (ret)
1391 goto unlock;
1392
1393 ar8xxx_mib_fetch_port_stat(priv, port, false);
1394
1395 len += snprintf(buf + len, sizeof(priv->buf) - len,
1396 "MIB counters\n");
1397
1398 mib_stats = &priv->mib_stats[port * chip->num_mibs];
1399 for (i = 0; i < chip->num_mibs; i++) {
1400 mib_name = chip->mib_decs[i].name;
1401 mib_data = mib_stats[i];
1402 len += snprintf(buf + len, sizeof(priv->buf) - len,
1403 "%-12s: %llu\n", mib_name, mib_data);
1404 if ((!strcmp(mib_name, "TxByte") ||
1405 !strcmp(mib_name, "RxGoodByte")) &&
1406 mib_data >= 1024) {
1407 ar8xxx_byte_to_str(buf1, sizeof(buf1), mib_data);
1408 --len; /* discard newline at the end of buf */
1409 len += snprintf(buf + len, sizeof(priv->buf) - len,
1410 " (%s)\n", buf1);
1411 }
1412 if (mib_stats_empty && mib_data)
1413 mib_stats_empty = false;
1414 }
1415
1416 if (mib_stats_empty)
1417 len = snprintf(buf, sizeof(priv->buf), "No MIB data");
1418
1419 val->value.s = buf;
1420 val->len = len;
1421
1422 ret = 0;
1423
1424 unlock:
1425 mutex_unlock(&priv->mib_lock);
1426 return ret;
1427 }
1428
1429 int
1430 ar8xxx_sw_set_arl_age_time(struct switch_dev *dev, const struct switch_attr *attr,
1431 struct switch_val *val)
1432 {
1433 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1434 int age_time = val->value.i;
1435 u32 age_time_val;
1436
1437 if (age_time < 0)
1438 return -EINVAL;
1439
1440 age_time_val = ar8xxx_age_time_val(age_time);
1441 if (age_time_val == 0 || age_time_val > 0xffff)
1442 return -EINVAL;
1443
1444 priv->arl_age_time = age_time;
1445 return 0;
1446 }
1447
1448 int
1449 ar8xxx_sw_get_arl_age_time(struct switch_dev *dev, const struct switch_attr *attr,
1450 struct switch_val *val)
1451 {
1452 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1453 val->value.i = priv->arl_age_time;
1454 return 0;
1455 }
1456
1457 int
1458 ar8xxx_sw_get_arl_table(struct switch_dev *dev,
1459 const struct switch_attr *attr,
1460 struct switch_val *val)
1461 {
1462 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1463 struct mii_bus *bus = priv->mii_bus;
1464 const struct ar8xxx_chip *chip = priv->chip;
1465 char *buf = priv->arl_buf;
1466 int i, j, k, len = 0;
1467 struct arl_entry *a, *a1;
1468 u32 status;
1469
1470 if (!chip->get_arl_entry)
1471 return -EOPNOTSUPP;
1472
1473 mutex_lock(&priv->reg_mutex);
1474 mutex_lock(&bus->mdio_lock);
1475
1476 chip->get_arl_entry(priv, NULL, NULL, AR8XXX_ARL_INITIALIZE);
1477
1478 for(i = 0; i < AR8XXX_NUM_ARL_RECORDS; ++i) {
1479 a = &priv->arl_table[i];
1480 duplicate:
1481 chip->get_arl_entry(priv, a, &status, AR8XXX_ARL_GET_NEXT);
1482
1483 if (!status)
1484 break;
1485
1486 /* avoid duplicates
1487 * ARL table can include multiple valid entries
1488 * per MAC, just with differing status codes
1489 */
1490 for (j = 0; j < i; ++j) {
1491 a1 = &priv->arl_table[j];
1492 if (a->port == a1->port && !memcmp(a->mac, a1->mac, sizeof(a->mac)))
1493 goto duplicate;
1494 }
1495 }
1496
1497 mutex_unlock(&bus->mdio_lock);
1498
1499 len += snprintf(buf + len, sizeof(priv->arl_buf) - len,
1500 "address resolution table\n");
1501
1502 if (i == AR8XXX_NUM_ARL_RECORDS)
1503 len += snprintf(buf + len, sizeof(priv->arl_buf) - len,
1504 "Too many entries found, displaying the first %d only!\n",
1505 AR8XXX_NUM_ARL_RECORDS);
1506
1507 for (j = 0; j < priv->dev.ports; ++j) {
1508 for (k = 0; k < i; ++k) {
1509 a = &priv->arl_table[k];
1510 if (a->port != j)
1511 continue;
1512 len += snprintf(buf + len, sizeof(priv->arl_buf) - len,
1513 "Port %d: MAC %02x:%02x:%02x:%02x:%02x:%02x\n",
1514 j,
1515 a->mac[5], a->mac[4], a->mac[3],
1516 a->mac[2], a->mac[1], a->mac[0]);
1517 }
1518 }
1519
1520 val->value.s = buf;
1521 val->len = len;
1522
1523 mutex_unlock(&priv->reg_mutex);
1524
1525 return 0;
1526 }
1527
1528 int
1529 ar8xxx_sw_set_flush_arl_table(struct switch_dev *dev,
1530 const struct switch_attr *attr,
1531 struct switch_val *val)
1532 {
1533 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1534 int ret;
1535
1536 mutex_lock(&priv->reg_mutex);
1537 ret = priv->chip->atu_flush(priv);
1538 mutex_unlock(&priv->reg_mutex);
1539
1540 return ret;
1541 }
1542
1543 int
1544 ar8xxx_sw_set_flush_port_arl_table(struct switch_dev *dev,
1545 const struct switch_attr *attr,
1546 struct switch_val *val)
1547 {
1548 struct ar8xxx_priv *priv = swdev_to_ar8xxx(dev);
1549 int port, ret;
1550
1551 port = val->port_vlan;
1552 if (port >= dev->ports)
1553 return -EINVAL;
1554
1555 mutex_lock(&priv->reg_mutex);
1556 ret = priv->chip->atu_flush_port(priv, port);
1557 mutex_unlock(&priv->reg_mutex);
1558
1559 return ret;
1560 }
1561
1562 static const struct switch_attr ar8xxx_sw_attr_globals[] = {
1563 {
1564 .type = SWITCH_TYPE_INT,
1565 .name = "enable_vlan",
1566 .description = "Enable VLAN mode",
1567 .set = ar8xxx_sw_set_vlan,
1568 .get = ar8xxx_sw_get_vlan,
1569 .max = 1
1570 },
1571 {
1572 .type = SWITCH_TYPE_NOVAL,
1573 .name = "reset_mibs",
1574 .description = "Reset all MIB counters",
1575 .set = ar8xxx_sw_set_reset_mibs,
1576 },
1577 {
1578 .type = SWITCH_TYPE_INT,
1579 .name = "enable_mirror_rx",
1580 .description = "Enable mirroring of RX packets",
1581 .set = ar8xxx_sw_set_mirror_rx_enable,
1582 .get = ar8xxx_sw_get_mirror_rx_enable,
1583 .max = 1
1584 },
1585 {
1586 .type = SWITCH_TYPE_INT,
1587 .name = "enable_mirror_tx",
1588 .description = "Enable mirroring of TX packets",
1589 .set = ar8xxx_sw_set_mirror_tx_enable,
1590 .get = ar8xxx_sw_get_mirror_tx_enable,
1591 .max = 1
1592 },
1593 {
1594 .type = SWITCH_TYPE_INT,
1595 .name = "mirror_monitor_port",
1596 .description = "Mirror monitor port",
1597 .set = ar8xxx_sw_set_mirror_monitor_port,
1598 .get = ar8xxx_sw_get_mirror_monitor_port,
1599 .max = AR8216_NUM_PORTS - 1
1600 },
1601 {
1602 .type = SWITCH_TYPE_INT,
1603 .name = "mirror_source_port",
1604 .description = "Mirror source port",
1605 .set = ar8xxx_sw_set_mirror_source_port,
1606 .get = ar8xxx_sw_get_mirror_source_port,
1607 .max = AR8216_NUM_PORTS - 1
1608 },
1609 {
1610 .type = SWITCH_TYPE_STRING,
1611 .name = "arl_table",
1612 .description = "Get ARL table",
1613 .set = NULL,
1614 .get = ar8xxx_sw_get_arl_table,
1615 },
1616 {
1617 .type = SWITCH_TYPE_NOVAL,
1618 .name = "flush_arl_table",
1619 .description = "Flush ARL table",
1620 .set = ar8xxx_sw_set_flush_arl_table,
1621 },
1622 };
1623
1624 const struct switch_attr ar8xxx_sw_attr_port[] = {
1625 {
1626 .type = SWITCH_TYPE_NOVAL,
1627 .name = "reset_mib",
1628 .description = "Reset single port MIB counters",
1629 .set = ar8xxx_sw_set_port_reset_mib,
1630 },
1631 {
1632 .type = SWITCH_TYPE_STRING,
1633 .name = "mib",
1634 .description = "Get port's MIB counters",
1635 .set = NULL,
1636 .get = ar8xxx_sw_get_port_mib,
1637 },
1638 {
1639 .type = SWITCH_TYPE_NOVAL,
1640 .name = "flush_arl_table",
1641 .description = "Flush port's ARL table entries",
1642 .set = ar8xxx_sw_set_flush_port_arl_table,
1643 },
1644 };
1645
1646 const struct switch_attr ar8xxx_sw_attr_vlan[1] = {
1647 {
1648 .type = SWITCH_TYPE_INT,
1649 .name = "vid",
1650 .description = "VLAN ID (0-4094)",
1651 .set = ar8xxx_sw_set_vid,
1652 .get = ar8xxx_sw_get_vid,
1653 .max = 4094,
1654 },
1655 };
1656
1657 static const struct switch_dev_ops ar8xxx_sw_ops = {
1658 .attr_global = {
1659 .attr = ar8xxx_sw_attr_globals,
1660 .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_globals),
1661 },
1662 .attr_port = {
1663 .attr = ar8xxx_sw_attr_port,
1664 .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_port),
1665 },
1666 .attr_vlan = {
1667 .attr = ar8xxx_sw_attr_vlan,
1668 .n_attr = ARRAY_SIZE(ar8xxx_sw_attr_vlan),
1669 },
1670 .get_port_pvid = ar8xxx_sw_get_pvid,
1671 .set_port_pvid = ar8xxx_sw_set_pvid,
1672 .get_vlan_ports = ar8xxx_sw_get_ports,
1673 .set_vlan_ports = ar8xxx_sw_set_ports,
1674 .apply_config = ar8xxx_sw_hw_apply,
1675 .reset_switch = ar8xxx_sw_reset_switch,
1676 .get_port_link = ar8xxx_sw_get_port_link,
1677 };
1678
1679 static const struct ar8xxx_chip ar8216_chip = {
1680 .caps = AR8XXX_CAP_MIB_COUNTERS,
1681
1682 .reg_port_stats_start = 0x19000,
1683 .reg_port_stats_length = 0xa0,
1684 .reg_arl_ctrl = AR8216_REG_ATU_CTRL,
1685
1686 .name = "Atheros AR8216",
1687 .ports = AR8216_NUM_PORTS,
1688 .vlans = AR8216_NUM_VLANS,
1689 .swops = &ar8xxx_sw_ops,
1690
1691 .hw_init = ar8216_hw_init,
1692 .init_globals = ar8216_init_globals,
1693 .init_port = ar8216_init_port,
1694 .setup_port = ar8216_setup_port,
1695 .read_port_status = ar8216_read_port_status,
1696 .atu_flush = ar8216_atu_flush,
1697 .atu_flush_port = ar8216_atu_flush_port,
1698 .vtu_flush = ar8216_vtu_flush,
1699 .vtu_load_vlan = ar8216_vtu_load_vlan,
1700 .set_mirror_regs = ar8216_set_mirror_regs,
1701 .get_arl_entry = ar8216_get_arl_entry,
1702 .sw_hw_apply = ar8xxx_sw_hw_apply,
1703
1704 .num_mibs = ARRAY_SIZE(ar8216_mibs),
1705 .mib_decs = ar8216_mibs,
1706 .mib_func = AR8216_REG_MIB_FUNC
1707 };
1708
1709 static const struct ar8xxx_chip ar8236_chip = {
1710 .caps = AR8XXX_CAP_MIB_COUNTERS,
1711
1712 .reg_port_stats_start = 0x20000,
1713 .reg_port_stats_length = 0x100,
1714 .reg_arl_ctrl = AR8216_REG_ATU_CTRL,
1715
1716 .name = "Atheros AR8236",
1717 .ports = AR8216_NUM_PORTS,
1718 .vlans = AR8216_NUM_VLANS,
1719 .swops = &ar8xxx_sw_ops,
1720
1721 .hw_init = ar8216_hw_init,
1722 .init_globals = ar8236_init_globals,
1723 .init_port = ar8216_init_port,
1724 .setup_port = ar8236_setup_port,
1725 .read_port_status = ar8216_read_port_status,
1726 .atu_flush = ar8216_atu_flush,
1727 .atu_flush_port = ar8216_atu_flush_port,
1728 .vtu_flush = ar8216_vtu_flush,
1729 .vtu_load_vlan = ar8216_vtu_load_vlan,
1730 .set_mirror_regs = ar8216_set_mirror_regs,
1731 .get_arl_entry = ar8216_get_arl_entry,
1732 .sw_hw_apply = ar8xxx_sw_hw_apply,
1733
1734 .num_mibs = ARRAY_SIZE(ar8236_mibs),
1735 .mib_decs = ar8236_mibs,
1736 .mib_func = AR8216_REG_MIB_FUNC
1737 };
1738
1739 static const struct ar8xxx_chip ar8316_chip = {
1740 .caps = AR8XXX_CAP_GIGE | AR8XXX_CAP_MIB_COUNTERS,
1741
1742 .reg_port_stats_start = 0x20000,
1743 .reg_port_stats_length = 0x100,
1744 .reg_arl_ctrl = AR8216_REG_ATU_CTRL,
1745
1746 .name = "Atheros AR8316",
1747 .ports = AR8216_NUM_PORTS,
1748 .vlans = AR8X16_MAX_VLANS,
1749 .swops = &ar8xxx_sw_ops,
1750
1751 .hw_init = ar8316_hw_init,
1752 .init_globals = ar8316_init_globals,
1753 .init_port = ar8216_init_port,
1754 .setup_port = ar8216_setup_port,
1755 .read_port_status = ar8216_read_port_status,
1756 .atu_flush = ar8216_atu_flush,
1757 .atu_flush_port = ar8216_atu_flush_port,
1758 .vtu_flush = ar8216_vtu_flush,
1759 .vtu_load_vlan = ar8216_vtu_load_vlan,
1760 .set_mirror_regs = ar8216_set_mirror_regs,
1761 .get_arl_entry = ar8216_get_arl_entry,
1762 .sw_hw_apply = ar8xxx_sw_hw_apply,
1763
1764 .num_mibs = ARRAY_SIZE(ar8236_mibs),
1765 .mib_decs = ar8236_mibs,
1766 .mib_func = AR8216_REG_MIB_FUNC
1767 };
1768
1769 static int
1770 ar8xxx_id_chip(struct ar8xxx_priv *priv)
1771 {
1772 u32 val;
1773 u16 id;
1774 int i;
1775
1776 val = ar8xxx_read(priv, AR8216_REG_CTRL);
1777 if (val == ~0)
1778 return -ENODEV;
1779
1780 id = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION);
1781 for (i = 0; i < AR8X16_PROBE_RETRIES; i++) {
1782 u16 t;
1783
1784 val = ar8xxx_read(priv, AR8216_REG_CTRL);
1785 if (val == ~0)
1786 return -ENODEV;
1787
1788 t = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION);
1789 if (t != id)
1790 return -ENODEV;
1791 }
1792
1793 priv->chip_ver = (id & AR8216_CTRL_VERSION) >> AR8216_CTRL_VERSION_S;
1794 priv->chip_rev = (id & AR8216_CTRL_REVISION);
1795
1796 switch (priv->chip_ver) {
1797 case AR8XXX_VER_AR8216:
1798 priv->chip = &ar8216_chip;
1799 break;
1800 case AR8XXX_VER_AR8236:
1801 priv->chip = &ar8236_chip;
1802 break;
1803 case AR8XXX_VER_AR8316:
1804 priv->chip = &ar8316_chip;
1805 break;
1806 case AR8XXX_VER_AR8327:
1807 priv->chip = &ar8327_chip;
1808 break;
1809 case AR8XXX_VER_AR8337:
1810 priv->chip = &ar8337_chip;
1811 break;
1812 default:
1813 pr_err("ar8216: Unknown Atheros device [ver=%d, rev=%d]\n",
1814 priv->chip_ver, priv->chip_rev);
1815
1816 return -ENODEV;
1817 }
1818
1819 return 0;
1820 }
1821
1822 static void
1823 ar8xxx_mib_work_func(struct work_struct *work)
1824 {
1825 struct ar8xxx_priv *priv;
1826 int err;
1827
1828 priv = container_of(work, struct ar8xxx_priv, mib_work.work);
1829
1830 mutex_lock(&priv->mib_lock);
1831
1832 err = ar8xxx_mib_capture(priv);
1833 if (err)
1834 goto next_port;
1835
1836 ar8xxx_mib_fetch_port_stat(priv, priv->mib_next_port, false);
1837
1838 next_port:
1839 priv->mib_next_port++;
1840 if (priv->mib_next_port >= priv->dev.ports)
1841 priv->mib_next_port = 0;
1842
1843 mutex_unlock(&priv->mib_lock);
1844 schedule_delayed_work(&priv->mib_work,
1845 msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY));
1846 }
1847
1848 static int
1849 ar8xxx_mib_init(struct ar8xxx_priv *priv)
1850 {
1851 unsigned int len;
1852
1853 if (!ar8xxx_has_mib_counters(priv))
1854 return 0;
1855
1856 BUG_ON(!priv->chip->mib_decs || !priv->chip->num_mibs);
1857
1858 len = priv->dev.ports * priv->chip->num_mibs *
1859 sizeof(*priv->mib_stats);
1860 priv->mib_stats = kzalloc(len, GFP_KERNEL);
1861
1862 if (!priv->mib_stats)
1863 return -ENOMEM;
1864
1865 return 0;
1866 }
1867
1868 static void
1869 ar8xxx_mib_start(struct ar8xxx_priv *priv)
1870 {
1871 if (!ar8xxx_has_mib_counters(priv))
1872 return;
1873
1874 schedule_delayed_work(&priv->mib_work,
1875 msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY));
1876 }
1877
1878 static void
1879 ar8xxx_mib_stop(struct ar8xxx_priv *priv)
1880 {
1881 if (!ar8xxx_has_mib_counters(priv))
1882 return;
1883
1884 cancel_delayed_work(&priv->mib_work);
1885 }
1886
1887 static struct ar8xxx_priv *
1888 ar8xxx_create(void)
1889 {
1890 struct ar8xxx_priv *priv;
1891
1892 priv = kzalloc(sizeof(struct ar8xxx_priv), GFP_KERNEL);
1893 if (priv == NULL)
1894 return NULL;
1895
1896 mutex_init(&priv->reg_mutex);
1897 mutex_init(&priv->mib_lock);
1898 INIT_DELAYED_WORK(&priv->mib_work, ar8xxx_mib_work_func);
1899
1900 return priv;
1901 }
1902
1903 static void
1904 ar8xxx_free(struct ar8xxx_priv *priv)
1905 {
1906 if (priv->chip && priv->chip->cleanup)
1907 priv->chip->cleanup(priv);
1908
1909 kfree(priv->chip_data);
1910 kfree(priv->mib_stats);
1911 kfree(priv);
1912 }
1913
1914 static int
1915 ar8xxx_probe_switch(struct ar8xxx_priv *priv)
1916 {
1917 const struct ar8xxx_chip *chip;
1918 struct switch_dev *swdev;
1919 int ret;
1920
1921 ret = ar8xxx_id_chip(priv);
1922 if (ret)
1923 return ret;
1924
1925 chip = priv->chip;
1926
1927 swdev = &priv->dev;
1928 swdev->cpu_port = AR8216_PORT_CPU;
1929 swdev->name = chip->name;
1930 swdev->vlans = chip->vlans;
1931 swdev->ports = chip->ports;
1932 swdev->ops = chip->swops;
1933
1934 ret = ar8xxx_mib_init(priv);
1935 if (ret)
1936 return ret;
1937
1938 return 0;
1939 }
1940
1941 static int
1942 ar8xxx_start(struct ar8xxx_priv *priv)
1943 {
1944 int ret;
1945
1946 priv->init = true;
1947
1948 ret = priv->chip->hw_init(priv);
1949 if (ret)
1950 return ret;
1951
1952 ret = ar8xxx_sw_reset_switch(&priv->dev);
1953 if (ret)
1954 return ret;
1955
1956 priv->init = false;
1957
1958 ar8xxx_mib_start(priv);
1959
1960 return 0;
1961 }
1962
1963 static int
1964 ar8xxx_phy_config_init(struct phy_device *phydev)
1965 {
1966 struct ar8xxx_priv *priv = phydev->priv;
1967 struct net_device *dev = phydev->attached_dev;
1968 int ret;
1969
1970 if (WARN_ON(!priv))
1971 return -ENODEV;
1972
1973 if (priv->chip->config_at_probe)
1974 return ar8xxx_phy_check_aneg(phydev);
1975
1976 priv->phy = phydev;
1977
1978 if (phydev->addr != 0) {
1979 if (chip_is_ar8316(priv)) {
1980 /* switch device has been initialized, reinit */
1981 priv->dev.ports = (AR8216_NUM_PORTS - 1);
1982 priv->initialized = false;
1983 priv->port4_phy = true;
1984 ar8316_hw_init(priv);
1985 return 0;
1986 }
1987
1988 return 0;
1989 }
1990
1991 ret = ar8xxx_start(priv);
1992 if (ret)
1993 return ret;
1994
1995 /* VID fixup only needed on ar8216 */
1996 if (chip_is_ar8216(priv)) {
1997 dev->phy_ptr = priv;
1998 dev->priv_flags |= IFF_NO_IP_ALIGN;
1999 dev->eth_mangle_rx = ar8216_mangle_rx;
2000 dev->eth_mangle_tx = ar8216_mangle_tx;
2001 }
2002
2003 return 0;
2004 }
2005
2006 static bool
2007 ar8xxx_check_link_states(struct ar8xxx_priv *priv)
2008 {
2009 bool link_new, changed = false;
2010 u32 status;
2011 int i;
2012
2013 mutex_lock(&priv->reg_mutex);
2014
2015 for (i = 0; i < priv->dev.ports; i++) {
2016 status = priv->chip->read_port_status(priv, i);
2017 link_new = !!(status & AR8216_PORT_STATUS_LINK_UP);
2018 if (link_new == priv->link_up[i])
2019 continue;
2020
2021 priv->link_up[i] = link_new;
2022 changed = true;
2023 /* flush ARL entries for this port if it went down*/
2024 if (!link_new)
2025 priv->chip->atu_flush_port(priv, i);
2026 dev_info(&priv->phy->dev, "Port %d is %s\n",
2027 i, link_new ? "up" : "down");
2028 }
2029
2030 mutex_unlock(&priv->reg_mutex);
2031
2032 return changed;
2033 }
2034
2035 static int
2036 ar8xxx_phy_read_status(struct phy_device *phydev)
2037 {
2038 struct ar8xxx_priv *priv = phydev->priv;
2039 struct switch_port_link link;
2040
2041 /* check for switch port link changes */
2042 if (phydev->state == PHY_CHANGELINK)
2043 ar8xxx_check_link_states(priv);
2044
2045 if (phydev->addr != 0)
2046 return genphy_read_status(phydev);
2047
2048 ar8216_read_port_link(priv, phydev->addr, &link);
2049 phydev->link = !!link.link;
2050 if (!phydev->link)
2051 return 0;
2052
2053 switch (link.speed) {
2054 case SWITCH_PORT_SPEED_10:
2055 phydev->speed = SPEED_10;
2056 break;
2057 case SWITCH_PORT_SPEED_100:
2058 phydev->speed = SPEED_100;
2059 break;
2060 case SWITCH_PORT_SPEED_1000:
2061 phydev->speed = SPEED_1000;
2062 break;
2063 default:
2064 phydev->speed = 0;
2065 }
2066 phydev->duplex = link.duplex ? DUPLEX_FULL : DUPLEX_HALF;
2067
2068 phydev->state = PHY_RUNNING;
2069 netif_carrier_on(phydev->attached_dev);
2070 phydev->adjust_link(phydev->attached_dev);
2071
2072 return 0;
2073 }
2074
2075 static int
2076 ar8xxx_phy_config_aneg(struct phy_device *phydev)
2077 {
2078 if (phydev->addr == 0)
2079 return 0;
2080
2081 return genphy_config_aneg(phydev);
2082 }
2083
2084 static const u32 ar8xxx_phy_ids[] = {
2085 0x004dd033,
2086 0x004dd034, /* AR8327 */
2087 0x004dd036, /* AR8337 */
2088 0x004dd041,
2089 0x004dd042,
2090 0x004dd043, /* AR8236 */
2091 };
2092
2093 static bool
2094 ar8xxx_phy_match(u32 phy_id)
2095 {
2096 int i;
2097
2098 for (i = 0; i < ARRAY_SIZE(ar8xxx_phy_ids); i++)
2099 if (phy_id == ar8xxx_phy_ids[i])
2100 return true;
2101
2102 return false;
2103 }
2104
2105 static bool
2106 ar8xxx_is_possible(struct mii_bus *bus)
2107 {
2108 unsigned i;
2109
2110 for (i = 0; i < 4; i++) {
2111 u32 phy_id;
2112
2113 phy_id = mdiobus_read(bus, i, MII_PHYSID1) << 16;
2114 phy_id |= mdiobus_read(bus, i, MII_PHYSID2);
2115 if (!ar8xxx_phy_match(phy_id)) {
2116 pr_debug("ar8xxx: unknown PHY at %s:%02x id:%08x\n",
2117 dev_name(&bus->dev), i, phy_id);
2118 return false;
2119 }
2120 }
2121
2122 return true;
2123 }
2124
2125 static int
2126 ar8xxx_phy_probe(struct phy_device *phydev)
2127 {
2128 struct ar8xxx_priv *priv;
2129 struct switch_dev *swdev;
2130 int ret;
2131
2132 /* skip PHYs at unused adresses */
2133 if (phydev->addr != 0 && phydev->addr != 4)
2134 return -ENODEV;
2135
2136 if (!ar8xxx_is_possible(phydev->bus))
2137 return -ENODEV;
2138
2139 mutex_lock(&ar8xxx_dev_list_lock);
2140 list_for_each_entry(priv, &ar8xxx_dev_list, list)
2141 if (priv->mii_bus == phydev->bus)
2142 goto found;
2143
2144 priv = ar8xxx_create();
2145 if (priv == NULL) {
2146 ret = -ENOMEM;
2147 goto unlock;
2148 }
2149
2150 priv->mii_bus = phydev->bus;
2151
2152 ret = ar8xxx_probe_switch(priv);
2153 if (ret)
2154 goto free_priv;
2155
2156 swdev = &priv->dev;
2157 swdev->alias = dev_name(&priv->mii_bus->dev);
2158 ret = register_switch(swdev, NULL);
2159 if (ret)
2160 goto free_priv;
2161
2162 pr_info("%s: %s rev. %u switch registered on %s\n",
2163 swdev->devname, swdev->name, priv->chip_rev,
2164 dev_name(&priv->mii_bus->dev));
2165
2166 found:
2167 priv->use_count++;
2168
2169 if (phydev->addr == 0) {
2170 if (ar8xxx_has_gige(priv)) {
2171 phydev->supported = SUPPORTED_1000baseT_Full;
2172 phydev->advertising = ADVERTISED_1000baseT_Full;
2173 } else {
2174 phydev->supported = SUPPORTED_100baseT_Full;
2175 phydev->advertising = ADVERTISED_100baseT_Full;
2176 }
2177
2178 if (priv->chip->config_at_probe) {
2179 priv->phy = phydev;
2180
2181 ret = ar8xxx_start(priv);
2182 if (ret)
2183 goto err_unregister_switch;
2184 }
2185 } else {
2186 if (ar8xxx_has_gige(priv)) {
2187 phydev->supported |= SUPPORTED_1000baseT_Full;
2188 phydev->advertising |= ADVERTISED_1000baseT_Full;
2189 }
2190 }
2191
2192 phydev->priv = priv;
2193
2194 list_add(&priv->list, &ar8xxx_dev_list);
2195
2196 mutex_unlock(&ar8xxx_dev_list_lock);
2197
2198 return 0;
2199
2200 err_unregister_switch:
2201 if (--priv->use_count)
2202 goto unlock;
2203
2204 unregister_switch(&priv->dev);
2205
2206 free_priv:
2207 ar8xxx_free(priv);
2208 unlock:
2209 mutex_unlock(&ar8xxx_dev_list_lock);
2210 return ret;
2211 }
2212
2213 static void
2214 ar8xxx_phy_detach(struct phy_device *phydev)
2215 {
2216 struct net_device *dev = phydev->attached_dev;
2217
2218 if (!dev)
2219 return;
2220
2221 dev->phy_ptr = NULL;
2222 dev->priv_flags &= ~IFF_NO_IP_ALIGN;
2223 dev->eth_mangle_rx = NULL;
2224 dev->eth_mangle_tx = NULL;
2225 }
2226
2227 static void
2228 ar8xxx_phy_remove(struct phy_device *phydev)
2229 {
2230 struct ar8xxx_priv *priv = phydev->priv;
2231
2232 if (WARN_ON(!priv))
2233 return;
2234
2235 phydev->priv = NULL;
2236 if (--priv->use_count > 0)
2237 return;
2238
2239 mutex_lock(&ar8xxx_dev_list_lock);
2240 list_del(&priv->list);
2241 mutex_unlock(&ar8xxx_dev_list_lock);
2242
2243 unregister_switch(&priv->dev);
2244 ar8xxx_mib_stop(priv);
2245 ar8xxx_free(priv);
2246 }
2247
2248 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0)
2249 static int
2250 ar8xxx_phy_soft_reset(struct phy_device *phydev)
2251 {
2252 /* we don't need an extra reset */
2253 return 0;
2254 }
2255 #endif
2256
2257 static struct phy_driver ar8xxx_phy_driver = {
2258 .phy_id = 0x004d0000,
2259 .name = "Atheros AR8216/AR8236/AR8316",
2260 .phy_id_mask = 0xffff0000,
2261 .features = PHY_BASIC_FEATURES,
2262 .probe = ar8xxx_phy_probe,
2263 .remove = ar8xxx_phy_remove,
2264 .detach = ar8xxx_phy_detach,
2265 .config_init = ar8xxx_phy_config_init,
2266 .config_aneg = ar8xxx_phy_config_aneg,
2267 .read_status = ar8xxx_phy_read_status,
2268 #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,14,0)
2269 .soft_reset = ar8xxx_phy_soft_reset,
2270 #endif
2271 .driver = { .owner = THIS_MODULE },
2272 };
2273
2274 int __init
2275 ar8xxx_init(void)
2276 {
2277 return phy_driver_register(&ar8xxx_phy_driver);
2278 }
2279
2280 void __exit
2281 ar8xxx_exit(void)
2282 {
2283 phy_driver_unregister(&ar8xxx_phy_driver);
2284 }
2285
2286 module_init(ar8xxx_init);
2287 module_exit(ar8xxx_exit);
2288 MODULE_LICENSE("GPL");
2289