2226f12d1c7afa531a84af8d16a2338196c68010
[openwrt/openwrt.git] / target / linux / mediatek / files / drivers / crypto / mediatek / mtk-sha.c
1 /*
2 * Cryptographic API.
3 *
4 * Driver for EIP97 SHA1/SHA2(HMAC) acceleration.
5 *
6 * Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * Some ideas are from atmel-sha.c and omap-sham.c drivers.
13 */
14
15 #include <crypto/sha.h>
16 #include "mtk-platform.h"
17
18 #define SHA_ALIGN_MSK (sizeof(u32) - 1)
19 #define SHA_QUEUE_SIZE 512
20 #define SHA_BUF_SIZE ((u32)PAGE_SIZE)
21
22 #define SHA_OP_UPDATE 1
23 #define SHA_OP_FINAL 2
24
25 #define SHA_DATA_LEN_MSK cpu_to_le32(GENMASK(16, 0))
26 #define SHA_MAX_DIGEST_BUF_SIZE 32
27
28 /* SHA command token */
29 #define SHA_CT_SIZE 5
30 #define SHA_CT_CTRL_HDR cpu_to_le32(0x02220000)
31 #define SHA_CMD0 cpu_to_le32(0x03020000)
32 #define SHA_CMD1 cpu_to_le32(0x21060000)
33 #define SHA_CMD2 cpu_to_le32(0xe0e63802)
34
35 /* SHA transform information */
36 #define SHA_TFM_HASH cpu_to_le32(0x2 << 0)
37 #define SHA_TFM_SIZE(x) cpu_to_le32((x) << 8)
38 #define SHA_TFM_START cpu_to_le32(0x1 << 4)
39 #define SHA_TFM_CONTINUE cpu_to_le32(0x1 << 5)
40 #define SHA_TFM_HASH_STORE cpu_to_le32(0x1 << 19)
41 #define SHA_TFM_SHA1 cpu_to_le32(0x2 << 23)
42 #define SHA_TFM_SHA256 cpu_to_le32(0x3 << 23)
43 #define SHA_TFM_SHA224 cpu_to_le32(0x4 << 23)
44 #define SHA_TFM_SHA512 cpu_to_le32(0x5 << 23)
45 #define SHA_TFM_SHA384 cpu_to_le32(0x6 << 23)
46 #define SHA_TFM_DIGEST(x) cpu_to_le32(((x) & GENMASK(3, 0)) << 24)
47
48 /* SHA flags */
49 #define SHA_FLAGS_BUSY BIT(0)
50 #define SHA_FLAGS_FINAL BIT(1)
51 #define SHA_FLAGS_FINUP BIT(2)
52 #define SHA_FLAGS_SG BIT(3)
53 #define SHA_FLAGS_ALGO_MSK GENMASK(8, 4)
54 #define SHA_FLAGS_SHA1 BIT(4)
55 #define SHA_FLAGS_SHA224 BIT(5)
56 #define SHA_FLAGS_SHA256 BIT(6)
57 #define SHA_FLAGS_SHA384 BIT(7)
58 #define SHA_FLAGS_SHA512 BIT(8)
59 #define SHA_FLAGS_HMAC BIT(9)
60 #define SHA_FLAGS_PAD BIT(10)
61
62 /**
63 * mtk_sha_info - hardware information of AES
64 * @cmd: command token, hardware instruction
65 * @tfm: transform state of cipher algorithm.
66 * @state: contains keys and initial vectors.
67 *
68 */
69 struct mtk_sha_info {
70 __le32 ctrl[2];
71 __le32 cmd[3];
72 __le32 tfm[2];
73 __le32 digest[SHA_MAX_DIGEST_BUF_SIZE];
74 };
75
76 struct mtk_sha_reqctx {
77 struct mtk_sha_info info;
78 unsigned long flags;
79 unsigned long op;
80
81 u64 digcnt;
82 size_t bufcnt;
83 dma_addr_t dma_addr;
84
85 __le32 ct_hdr;
86 u32 ct_size;
87 dma_addr_t ct_dma;
88 dma_addr_t tfm_dma;
89
90 /* Walk state */
91 struct scatterlist *sg;
92 u32 offset; /* Offset in current sg */
93 u32 total; /* Total request */
94 size_t ds;
95 size_t bs;
96
97 u8 *buffer;
98 };
99
100 struct mtk_sha_hmac_ctx {
101 struct crypto_shash *shash;
102 u8 ipad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
103 u8 opad[SHA512_BLOCK_SIZE] __aligned(sizeof(u32));
104 };
105
106 struct mtk_sha_ctx {
107 struct mtk_cryp *cryp;
108 unsigned long flags;
109 u8 id;
110 u8 buf[SHA_BUF_SIZE] __aligned(sizeof(u32));
111
112 struct mtk_sha_hmac_ctx base[0];
113 };
114
115 struct mtk_sha_drv {
116 struct list_head dev_list;
117 /* Device list lock */
118 spinlock_t lock;
119 };
120
121 static struct mtk_sha_drv mtk_sha = {
122 .dev_list = LIST_HEAD_INIT(mtk_sha.dev_list),
123 .lock = __SPIN_LOCK_UNLOCKED(mtk_sha.lock),
124 };
125
126 static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
127 struct ahash_request *req);
128
129 static inline u32 mtk_sha_read(struct mtk_cryp *cryp, u32 offset)
130 {
131 return readl_relaxed(cryp->base + offset);
132 }
133
134 static inline void mtk_sha_write(struct mtk_cryp *cryp,
135 u32 offset, u32 value)
136 {
137 writel_relaxed(value, cryp->base + offset);
138 }
139
140 static inline void mtk_sha_ring_shift(struct mtk_ring *ring,
141 struct mtk_desc **cmd_curr,
142 struct mtk_desc **res_curr,
143 int *count)
144 {
145 *cmd_curr = ring->cmd_next++;
146 *res_curr = ring->res_next++;
147 (*count)++;
148
149 if (ring->cmd_next == ring->cmd_base + MTK_DESC_NUM) {
150 ring->cmd_next = ring->cmd_base;
151 ring->res_next = ring->res_base;
152 }
153 }
154
155 static struct mtk_cryp *mtk_sha_find_dev(struct mtk_sha_ctx *tctx)
156 {
157 struct mtk_cryp *cryp = NULL;
158 struct mtk_cryp *tmp;
159
160 spin_lock_bh(&mtk_sha.lock);
161 if (!tctx->cryp) {
162 list_for_each_entry(tmp, &mtk_sha.dev_list, sha_list) {
163 cryp = tmp;
164 break;
165 }
166 tctx->cryp = cryp;
167 } else {
168 cryp = tctx->cryp;
169 }
170
171 /*
172 * Assign record id to tfm in round-robin fashion, and this
173 * will help tfm to bind to corresponding descriptor rings.
174 */
175 tctx->id = cryp->rec;
176 cryp->rec = !cryp->rec;
177
178 spin_unlock_bh(&mtk_sha.lock);
179
180 return cryp;
181 }
182
183 static int mtk_sha_append_sg(struct mtk_sha_reqctx *ctx)
184 {
185 size_t count;
186
187 while ((ctx->bufcnt < SHA_BUF_SIZE) && ctx->total) {
188 count = min(ctx->sg->length - ctx->offset, ctx->total);
189 count = min(count, SHA_BUF_SIZE - ctx->bufcnt);
190
191 if (count <= 0) {
192 /*
193 * Check if count <= 0 because the buffer is full or
194 * because the sg length is 0. In the latest case,
195 * check if there is another sg in the list, a 0 length
196 * sg doesn't necessarily mean the end of the sg list.
197 */
198 if ((ctx->sg->length == 0) && !sg_is_last(ctx->sg)) {
199 ctx->sg = sg_next(ctx->sg);
200 continue;
201 } else {
202 break;
203 }
204 }
205
206 scatterwalk_map_and_copy(ctx->buffer + ctx->bufcnt, ctx->sg,
207 ctx->offset, count, 0);
208
209 ctx->bufcnt += count;
210 ctx->offset += count;
211 ctx->total -= count;
212
213 if (ctx->offset == ctx->sg->length) {
214 ctx->sg = sg_next(ctx->sg);
215 if (ctx->sg)
216 ctx->offset = 0;
217 else
218 ctx->total = 0;
219 }
220 }
221
222 return 0;
223 }
224
225 /*
226 * The purpose of this padding is to ensure that the padded message is a
227 * multiple of 512 bits (SHA1/SHA224/SHA256) or 1024 bits (SHA384/SHA512).
228 * The bit "1" is appended at the end of the message followed by
229 * "padlen-1" zero bits. Then a 64 bits block (SHA1/SHA224/SHA256) or
230 * 128 bits block (SHA384/SHA512) equals to the message length in bits
231 * is appended.
232 *
233 * For SHA1/SHA224/SHA256, padlen is calculated as followed:
234 * - if message length < 56 bytes then padlen = 56 - message length
235 * - else padlen = 64 + 56 - message length
236 *
237 * For SHA384/SHA512, padlen is calculated as followed:
238 * - if message length < 112 bytes then padlen = 112 - message length
239 * - else padlen = 128 + 112 - message length
240 */
241 static void mtk_sha_fill_padding(struct mtk_sha_reqctx *ctx, u32 len)
242 {
243 u32 index, padlen;
244 u64 bits[2];
245 u64 size = ctx->digcnt;
246
247 size += ctx->bufcnt;
248 size += len;
249
250 bits[1] = cpu_to_be64(size << 3);
251 bits[0] = cpu_to_be64(size >> 61);
252
253 switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
254 case SHA_FLAGS_SHA384:
255 case SHA_FLAGS_SHA512:
256 index = ctx->bufcnt & 0x7f;
257 padlen = (index < 112) ? (112 - index) : ((128 + 112) - index);
258 *(ctx->buffer + ctx->bufcnt) = 0x80;
259 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
260 memcpy(ctx->buffer + ctx->bufcnt + padlen, bits, 16);
261 ctx->bufcnt += padlen + 16;
262 ctx->flags |= SHA_FLAGS_PAD;
263 break;
264
265 default:
266 index = ctx->bufcnt & 0x3f;
267 padlen = (index < 56) ? (56 - index) : ((64 + 56) - index);
268 *(ctx->buffer + ctx->bufcnt) = 0x80;
269 memset(ctx->buffer + ctx->bufcnt + 1, 0, padlen - 1);
270 memcpy(ctx->buffer + ctx->bufcnt + padlen, &bits[1], 8);
271 ctx->bufcnt += padlen + 8;
272 ctx->flags |= SHA_FLAGS_PAD;
273 break;
274 }
275 }
276
277 /* Initialize basic transform information of SHA */
278 static void mtk_sha_info_init(struct mtk_sha_reqctx *ctx)
279 {
280 struct mtk_sha_info *info = &ctx->info;
281
282 ctx->ct_hdr = SHA_CT_CTRL_HDR;
283 ctx->ct_size = SHA_CT_SIZE;
284
285 info->tfm[0] = SHA_TFM_HASH | SHA_TFM_SIZE(SIZE_IN_WORDS(ctx->ds));
286
287 switch (ctx->flags & SHA_FLAGS_ALGO_MSK) {
288 case SHA_FLAGS_SHA1:
289 info->tfm[0] |= SHA_TFM_SHA1;
290 break;
291 case SHA_FLAGS_SHA224:
292 info->tfm[0] |= SHA_TFM_SHA224;
293 break;
294 case SHA_FLAGS_SHA256:
295 info->tfm[0] |= SHA_TFM_SHA256;
296 break;
297 case SHA_FLAGS_SHA384:
298 info->tfm[0] |= SHA_TFM_SHA384;
299 break;
300 case SHA_FLAGS_SHA512:
301 info->tfm[0] |= SHA_TFM_SHA512;
302 break;
303
304 default:
305 /* Should not happen... */
306 return;
307 }
308
309 info->tfm[1] = SHA_TFM_HASH_STORE;
310 info->ctrl[0] = info->tfm[0] | SHA_TFM_CONTINUE | SHA_TFM_START;
311 info->ctrl[1] = info->tfm[1];
312
313 info->cmd[0] = SHA_CMD0;
314 info->cmd[1] = SHA_CMD1;
315 info->cmd[2] = SHA_CMD2 | SHA_TFM_DIGEST(SIZE_IN_WORDS(ctx->ds));
316 }
317
318 /*
319 * Update input data length field of transform information and
320 * map it to DMA region.
321 */
322 static int mtk_sha_info_update(struct mtk_cryp *cryp,
323 struct mtk_sha_rec *sha,
324 size_t len1, size_t len2)
325 {
326 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
327 struct mtk_sha_info *info = &ctx->info;
328
329 ctx->ct_hdr &= ~SHA_DATA_LEN_MSK;
330 ctx->ct_hdr |= cpu_to_le32(len1 + len2);
331 info->cmd[0] &= ~SHA_DATA_LEN_MSK;
332 info->cmd[0] |= cpu_to_le32(len1 + len2);
333
334 /* Setting SHA_TFM_START only for the first iteration */
335 if (ctx->digcnt)
336 info->ctrl[0] &= ~SHA_TFM_START;
337
338 ctx->digcnt += len1;
339
340 ctx->ct_dma = dma_map_single(cryp->dev, info, sizeof(*info),
341 DMA_BIDIRECTIONAL);
342 if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma))) {
343 dev_err(cryp->dev, "dma %zu bytes error\n", sizeof(*info));
344 return -EINVAL;
345 }
346
347 ctx->tfm_dma = ctx->ct_dma + sizeof(info->ctrl) + sizeof(info->cmd);
348
349 return 0;
350 }
351
352 /*
353 * Because of hardware limitation, we must pre-calculate the inner
354 * and outer digest that need to be processed firstly by engine, then
355 * apply the result digest to the input message. These complex hashing
356 * procedures limits HMAC performance, so we use fallback SW encoding.
357 */
358 static int mtk_sha_finish_hmac(struct ahash_request *req)
359 {
360 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
361 struct mtk_sha_hmac_ctx *bctx = tctx->base;
362 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
363
364 SHASH_DESC_ON_STACK(shash, bctx->shash);
365
366 shash->tfm = bctx->shash;
367 shash->flags = 0; /* not CRYPTO_TFM_REQ_MAY_SLEEP */
368
369 return crypto_shash_init(shash) ?:
370 crypto_shash_update(shash, bctx->opad, ctx->bs) ?:
371 crypto_shash_finup(shash, req->result, ctx->ds, req->result);
372 }
373
374 /* Initialize request context */
375 static int mtk_sha_init(struct ahash_request *req)
376 {
377 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
378 struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
379 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
380
381 ctx->flags = 0;
382 ctx->ds = crypto_ahash_digestsize(tfm);
383
384 switch (ctx->ds) {
385 case SHA1_DIGEST_SIZE:
386 ctx->flags |= SHA_FLAGS_SHA1;
387 ctx->bs = SHA1_BLOCK_SIZE;
388 break;
389 case SHA224_DIGEST_SIZE:
390 ctx->flags |= SHA_FLAGS_SHA224;
391 ctx->bs = SHA224_BLOCK_SIZE;
392 break;
393 case SHA256_DIGEST_SIZE:
394 ctx->flags |= SHA_FLAGS_SHA256;
395 ctx->bs = SHA256_BLOCK_SIZE;
396 break;
397 case SHA384_DIGEST_SIZE:
398 ctx->flags |= SHA_FLAGS_SHA384;
399 ctx->bs = SHA384_BLOCK_SIZE;
400 break;
401 case SHA512_DIGEST_SIZE:
402 ctx->flags |= SHA_FLAGS_SHA512;
403 ctx->bs = SHA512_BLOCK_SIZE;
404 break;
405 default:
406 return -EINVAL;
407 }
408
409 ctx->bufcnt = 0;
410 ctx->digcnt = 0;
411 ctx->buffer = tctx->buf;
412
413 if (tctx->flags & SHA_FLAGS_HMAC) {
414 struct mtk_sha_hmac_ctx *bctx = tctx->base;
415
416 memcpy(ctx->buffer, bctx->ipad, ctx->bs);
417 ctx->bufcnt = ctx->bs;
418 ctx->flags |= SHA_FLAGS_HMAC;
419 }
420
421 return 0;
422 }
423
424 static int mtk_sha_xmit(struct mtk_cryp *cryp, struct mtk_sha_rec *sha,
425 dma_addr_t addr1, size_t len1,
426 dma_addr_t addr2, size_t len2)
427 {
428 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
429 struct mtk_ring *ring = cryp->ring[sha->id];
430 struct mtk_desc *cmd, *res;
431 int err, count = 0;
432
433 err = mtk_sha_info_update(cryp, sha, len1, len2);
434 if (err)
435 return err;
436
437 /* Fill in the command/result descriptors */
438 mtk_sha_ring_shift(ring, &cmd, &res, &count);
439
440 res->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1);
441 cmd->hdr = MTK_DESC_FIRST | MTK_DESC_BUF_LEN(len1) |
442 MTK_DESC_CT_LEN(ctx->ct_size);
443 cmd->buf = cpu_to_le32(addr1);
444 cmd->ct = cpu_to_le32(ctx->ct_dma);
445 cmd->ct_hdr = ctx->ct_hdr;
446 cmd->tfm = cpu_to_le32(ctx->tfm_dma);
447
448 if (len2) {
449 mtk_sha_ring_shift(ring, &cmd, &res, &count);
450
451 res->hdr = MTK_DESC_BUF_LEN(len2);
452 cmd->hdr = MTK_DESC_BUF_LEN(len2);
453 cmd->buf = cpu_to_le32(addr2);
454 }
455
456 cmd->hdr |= MTK_DESC_LAST;
457 res->hdr |= MTK_DESC_LAST;
458
459 /*
460 * Make sure that all changes to the DMA ring are done before we
461 * start engine.
462 */
463 wmb();
464 /* Start DMA transfer */
465 mtk_sha_write(cryp, RDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
466 mtk_sha_write(cryp, CDR_PREP_COUNT(sha->id), MTK_DESC_CNT(count));
467
468 return -EINPROGRESS;
469 }
470
471 static int mtk_sha_dma_map(struct mtk_cryp *cryp,
472 struct mtk_sha_rec *sha,
473 struct mtk_sha_reqctx *ctx,
474 size_t count)
475 {
476 ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
477 SHA_BUF_SIZE, DMA_TO_DEVICE);
478 if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
479 dev_err(cryp->dev, "dma map error\n");
480 return -EINVAL;
481 }
482
483 ctx->flags &= ~SHA_FLAGS_SG;
484
485 return mtk_sha_xmit(cryp, sha, ctx->dma_addr, count, 0, 0);
486 }
487
488 static int mtk_sha_update_slow(struct mtk_cryp *cryp,
489 struct mtk_sha_rec *sha)
490 {
491 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
492 size_t count;
493 u32 final;
494
495 mtk_sha_append_sg(ctx);
496
497 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
498
499 dev_dbg(cryp->dev, "slow: bufcnt: %zu\n", ctx->bufcnt);
500
501 if (final) {
502 sha->flags |= SHA_FLAGS_FINAL;
503 mtk_sha_fill_padding(ctx, 0);
504 }
505
506 if (final || (ctx->bufcnt == SHA_BUF_SIZE && ctx->total)) {
507 count = ctx->bufcnt;
508 ctx->bufcnt = 0;
509
510 return mtk_sha_dma_map(cryp, sha, ctx, count);
511 }
512 return 0;
513 }
514
515 static int mtk_sha_update_start(struct mtk_cryp *cryp,
516 struct mtk_sha_rec *sha)
517 {
518 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
519 u32 len, final, tail;
520 struct scatterlist *sg;
521
522 if (!ctx->total)
523 return 0;
524
525 if (ctx->bufcnt || ctx->offset)
526 return mtk_sha_update_slow(cryp, sha);
527
528 sg = ctx->sg;
529
530 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
531 return mtk_sha_update_slow(cryp, sha);
532
533 if (!sg_is_last(sg) && !IS_ALIGNED(sg->length, ctx->bs))
534 /* size is not ctx->bs aligned */
535 return mtk_sha_update_slow(cryp, sha);
536
537 len = min(ctx->total, sg->length);
538
539 if (sg_is_last(sg)) {
540 if (!(ctx->flags & SHA_FLAGS_FINUP)) {
541 /* not last sg must be ctx->bs aligned */
542 tail = len & (ctx->bs - 1);
543 len -= tail;
544 }
545 }
546
547 ctx->total -= len;
548 ctx->offset = len; /* offset where to start slow */
549
550 final = (ctx->flags & SHA_FLAGS_FINUP) && !ctx->total;
551
552 /* Add padding */
553 if (final) {
554 size_t count;
555
556 tail = len & (ctx->bs - 1);
557 len -= tail;
558 ctx->total += tail;
559 ctx->offset = len; /* offset where to start slow */
560
561 sg = ctx->sg;
562 mtk_sha_append_sg(ctx);
563 mtk_sha_fill_padding(ctx, len);
564
565 ctx->dma_addr = dma_map_single(cryp->dev, ctx->buffer,
566 SHA_BUF_SIZE, DMA_TO_DEVICE);
567 if (unlikely(dma_mapping_error(cryp->dev, ctx->dma_addr))) {
568 dev_err(cryp->dev, "dma map bytes error\n");
569 return -EINVAL;
570 }
571
572 sha->flags |= SHA_FLAGS_FINAL;
573 count = ctx->bufcnt;
574 ctx->bufcnt = 0;
575
576 if (len == 0) {
577 ctx->flags &= ~SHA_FLAGS_SG;
578 return mtk_sha_xmit(cryp, sha, ctx->dma_addr,
579 count, 0, 0);
580
581 } else {
582 ctx->sg = sg;
583 if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
584 dev_err(cryp->dev, "dma_map_sg error\n");
585 return -EINVAL;
586 }
587
588 ctx->flags |= SHA_FLAGS_SG;
589 return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
590 len, ctx->dma_addr, count);
591 }
592 }
593
594 if (!dma_map_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE)) {
595 dev_err(cryp->dev, "dma_map_sg error\n");
596 return -EINVAL;
597 }
598
599 ctx->flags |= SHA_FLAGS_SG;
600
601 return mtk_sha_xmit(cryp, sha, sg_dma_address(ctx->sg),
602 len, 0, 0);
603 }
604
605 static int mtk_sha_final_req(struct mtk_cryp *cryp,
606 struct mtk_sha_rec *sha)
607 {
608 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
609 size_t count;
610
611 mtk_sha_fill_padding(ctx, 0);
612
613 sha->flags |= SHA_FLAGS_FINAL;
614 count = ctx->bufcnt;
615 ctx->bufcnt = 0;
616
617 return mtk_sha_dma_map(cryp, sha, ctx, count);
618 }
619
620 /* Copy ready hash (+ finalize hmac) */
621 static int mtk_sha_finish(struct ahash_request *req)
622 {
623 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
624 __le32 *digest = ctx->info.digest;
625 u32 *result = (u32 *)req->result;
626 int i;
627
628 /* Get the hash from the digest buffer */
629 for (i = 0; i < SIZE_IN_WORDS(ctx->ds); i++)
630 result[i] = le32_to_cpu(digest[i]);
631
632 if (ctx->flags & SHA_FLAGS_HMAC)
633 return mtk_sha_finish_hmac(req);
634
635 return 0;
636 }
637
638 static void mtk_sha_finish_req(struct mtk_cryp *cryp,
639 struct mtk_sha_rec *sha,
640 int err)
641 {
642 if (likely(!err && (SHA_FLAGS_FINAL & sha->flags)))
643 err = mtk_sha_finish(sha->req);
644
645 sha->flags &= ~(SHA_FLAGS_BUSY | SHA_FLAGS_FINAL);
646
647 sha->req->base.complete(&sha->req->base, err);
648
649 /* Handle new request */
650 tasklet_schedule(&sha->queue_task);
651 }
652
653 static int mtk_sha_handle_queue(struct mtk_cryp *cryp, u8 id,
654 struct ahash_request *req)
655 {
656 struct mtk_sha_rec *sha = cryp->sha[id];
657 struct crypto_async_request *async_req, *backlog;
658 struct mtk_sha_reqctx *ctx;
659 unsigned long flags;
660 int err = 0, ret = 0;
661
662 spin_lock_irqsave(&sha->lock, flags);
663 if (req)
664 ret = ahash_enqueue_request(&sha->queue, req);
665
666 if (SHA_FLAGS_BUSY & sha->flags) {
667 spin_unlock_irqrestore(&sha->lock, flags);
668 return ret;
669 }
670
671 backlog = crypto_get_backlog(&sha->queue);
672 async_req = crypto_dequeue_request(&sha->queue);
673 if (async_req)
674 sha->flags |= SHA_FLAGS_BUSY;
675 spin_unlock_irqrestore(&sha->lock, flags);
676
677 if (!async_req)
678 return ret;
679
680 if (backlog)
681 backlog->complete(backlog, -EINPROGRESS);
682
683 req = ahash_request_cast(async_req);
684 ctx = ahash_request_ctx(req);
685
686 sha->req = req;
687
688 mtk_sha_info_init(ctx);
689
690 if (ctx->op == SHA_OP_UPDATE) {
691 err = mtk_sha_update_start(cryp, sha);
692 if (err != -EINPROGRESS && (ctx->flags & SHA_FLAGS_FINUP))
693 /* No final() after finup() */
694 err = mtk_sha_final_req(cryp, sha);
695 } else if (ctx->op == SHA_OP_FINAL) {
696 err = mtk_sha_final_req(cryp, sha);
697 }
698
699 if (unlikely(err != -EINPROGRESS))
700 /* Task will not finish it, so do it here */
701 mtk_sha_finish_req(cryp, sha, err);
702
703 return ret;
704 }
705
706 static int mtk_sha_enqueue(struct ahash_request *req, u32 op)
707 {
708 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
709 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(req->base.tfm);
710
711 ctx->op = op;
712
713 return mtk_sha_handle_queue(tctx->cryp, tctx->id, req);
714 }
715
716 static void mtk_sha_unmap(struct mtk_cryp *cryp, struct mtk_sha_rec *sha)
717 {
718 struct mtk_sha_reqctx *ctx = ahash_request_ctx(sha->req);
719
720 dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->info),
721 DMA_BIDIRECTIONAL);
722
723 if (ctx->flags & SHA_FLAGS_SG) {
724 dma_unmap_sg(cryp->dev, ctx->sg, 1, DMA_TO_DEVICE);
725 if (ctx->sg->length == ctx->offset) {
726 ctx->sg = sg_next(ctx->sg);
727 if (ctx->sg)
728 ctx->offset = 0;
729 }
730 if (ctx->flags & SHA_FLAGS_PAD) {
731 dma_unmap_single(cryp->dev, ctx->dma_addr,
732 SHA_BUF_SIZE, DMA_TO_DEVICE);
733 }
734 } else
735 dma_unmap_single(cryp->dev, ctx->dma_addr,
736 SHA_BUF_SIZE, DMA_TO_DEVICE);
737 }
738
739 static void mtk_sha_complete(struct mtk_cryp *cryp,
740 struct mtk_sha_rec *sha)
741 {
742 int err = 0;
743
744 err = mtk_sha_update_start(cryp, sha);
745 if (err != -EINPROGRESS)
746 mtk_sha_finish_req(cryp, sha, err);
747 }
748
749 static int mtk_sha_update(struct ahash_request *req)
750 {
751 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
752
753 ctx->total = req->nbytes;
754 ctx->sg = req->src;
755 ctx->offset = 0;
756
757 if ((ctx->bufcnt + ctx->total < SHA_BUF_SIZE) &&
758 !(ctx->flags & SHA_FLAGS_FINUP))
759 return mtk_sha_append_sg(ctx);
760
761 return mtk_sha_enqueue(req, SHA_OP_UPDATE);
762 }
763
764 static int mtk_sha_final(struct ahash_request *req)
765 {
766 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
767
768 ctx->flags |= SHA_FLAGS_FINUP;
769
770 if (ctx->flags & SHA_FLAGS_PAD)
771 return mtk_sha_finish(req);
772
773 return mtk_sha_enqueue(req, SHA_OP_FINAL);
774 }
775
776 static int mtk_sha_finup(struct ahash_request *req)
777 {
778 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
779 int err1, err2;
780
781 ctx->flags |= SHA_FLAGS_FINUP;
782
783 err1 = mtk_sha_update(req);
784 if (err1 == -EINPROGRESS || err1 == -EBUSY)
785 return err1;
786 /*
787 * final() has to be always called to cleanup resources
788 * even if update() failed
789 */
790 err2 = mtk_sha_final(req);
791
792 return err1 ?: err2;
793 }
794
795 static int mtk_sha_digest(struct ahash_request *req)
796 {
797 return mtk_sha_init(req) ?: mtk_sha_finup(req);
798 }
799
800 static int mtk_sha_setkey(struct crypto_ahash *tfm, const u8 *key,
801 u32 keylen)
802 {
803 struct mtk_sha_ctx *tctx = crypto_ahash_ctx(tfm);
804 struct mtk_sha_hmac_ctx *bctx = tctx->base;
805 size_t bs = crypto_shash_blocksize(bctx->shash);
806 size_t ds = crypto_shash_digestsize(bctx->shash);
807 int err, i;
808
809 SHASH_DESC_ON_STACK(shash, bctx->shash);
810
811 shash->tfm = bctx->shash;
812 shash->flags = crypto_shash_get_flags(bctx->shash) &
813 CRYPTO_TFM_REQ_MAY_SLEEP;
814
815 if (keylen > bs) {
816 err = crypto_shash_digest(shash, key, keylen, bctx->ipad);
817 if (err)
818 return err;
819 keylen = ds;
820 } else {
821 memcpy(bctx->ipad, key, keylen);
822 }
823
824 memset(bctx->ipad + keylen, 0, bs - keylen);
825 memcpy(bctx->opad, bctx->ipad, bs);
826
827 for (i = 0; i < bs; i++) {
828 bctx->ipad[i] ^= 0x36;
829 bctx->opad[i] ^= 0x5c;
830 }
831
832 return 0;
833 }
834
835 static int mtk_sha_export(struct ahash_request *req, void *out)
836 {
837 const struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
838
839 memcpy(out, ctx, sizeof(*ctx));
840 return 0;
841 }
842
843 static int mtk_sha_import(struct ahash_request *req, const void *in)
844 {
845 struct mtk_sha_reqctx *ctx = ahash_request_ctx(req);
846
847 memcpy(ctx, in, sizeof(*ctx));
848 return 0;
849 }
850
851 static int mtk_sha_cra_init_alg(struct crypto_tfm *tfm,
852 const char *alg_base)
853 {
854 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
855 struct mtk_cryp *cryp = NULL;
856
857 cryp = mtk_sha_find_dev(tctx);
858 if (!cryp)
859 return -ENODEV;
860
861 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
862 sizeof(struct mtk_sha_reqctx));
863
864 if (alg_base) {
865 struct mtk_sha_hmac_ctx *bctx = tctx->base;
866
867 tctx->flags |= SHA_FLAGS_HMAC;
868 bctx->shash = crypto_alloc_shash(alg_base, 0,
869 CRYPTO_ALG_NEED_FALLBACK);
870 if (IS_ERR(bctx->shash)) {
871 pr_err("base driver %s could not be loaded.\n",
872 alg_base);
873
874 return PTR_ERR(bctx->shash);
875 }
876 }
877 return 0;
878 }
879
880 static int mtk_sha_cra_init(struct crypto_tfm *tfm)
881 {
882 return mtk_sha_cra_init_alg(tfm, NULL);
883 }
884
885 static int mtk_sha_cra_sha1_init(struct crypto_tfm *tfm)
886 {
887 return mtk_sha_cra_init_alg(tfm, "sha1");
888 }
889
890 static int mtk_sha_cra_sha224_init(struct crypto_tfm *tfm)
891 {
892 return mtk_sha_cra_init_alg(tfm, "sha224");
893 }
894
895 static int mtk_sha_cra_sha256_init(struct crypto_tfm *tfm)
896 {
897 return mtk_sha_cra_init_alg(tfm, "sha256");
898 }
899
900 static int mtk_sha_cra_sha384_init(struct crypto_tfm *tfm)
901 {
902 return mtk_sha_cra_init_alg(tfm, "sha384");
903 }
904
905 static int mtk_sha_cra_sha512_init(struct crypto_tfm *tfm)
906 {
907 return mtk_sha_cra_init_alg(tfm, "sha512");
908 }
909
910 static void mtk_sha_cra_exit(struct crypto_tfm *tfm)
911 {
912 struct mtk_sha_ctx *tctx = crypto_tfm_ctx(tfm);
913
914 if (tctx->flags & SHA_FLAGS_HMAC) {
915 struct mtk_sha_hmac_ctx *bctx = tctx->base;
916
917 crypto_free_shash(bctx->shash);
918 }
919 }
920
921 static struct ahash_alg algs_sha1_sha224_sha256[] = {
922 {
923 .init = mtk_sha_init,
924 .update = mtk_sha_update,
925 .final = mtk_sha_final,
926 .finup = mtk_sha_finup,
927 .digest = mtk_sha_digest,
928 .export = mtk_sha_export,
929 .import = mtk_sha_import,
930 .halg.digestsize = SHA1_DIGEST_SIZE,
931 .halg.statesize = sizeof(struct mtk_sha_reqctx),
932 .halg.base = {
933 .cra_name = "sha1",
934 .cra_driver_name = "mtk-sha1",
935 .cra_priority = 400,
936 .cra_flags = CRYPTO_ALG_ASYNC,
937 .cra_blocksize = SHA1_BLOCK_SIZE,
938 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
939 .cra_alignmask = SHA_ALIGN_MSK,
940 .cra_module = THIS_MODULE,
941 .cra_init = mtk_sha_cra_init,
942 .cra_exit = mtk_sha_cra_exit,
943 }
944 },
945 {
946 .init = mtk_sha_init,
947 .update = mtk_sha_update,
948 .final = mtk_sha_final,
949 .finup = mtk_sha_finup,
950 .digest = mtk_sha_digest,
951 .export = mtk_sha_export,
952 .import = mtk_sha_import,
953 .halg.digestsize = SHA224_DIGEST_SIZE,
954 .halg.statesize = sizeof(struct mtk_sha_reqctx),
955 .halg.base = {
956 .cra_name = "sha224",
957 .cra_driver_name = "mtk-sha224",
958 .cra_priority = 400,
959 .cra_flags = CRYPTO_ALG_ASYNC,
960 .cra_blocksize = SHA224_BLOCK_SIZE,
961 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
962 .cra_alignmask = SHA_ALIGN_MSK,
963 .cra_module = THIS_MODULE,
964 .cra_init = mtk_sha_cra_init,
965 .cra_exit = mtk_sha_cra_exit,
966 }
967 },
968 {
969 .init = mtk_sha_init,
970 .update = mtk_sha_update,
971 .final = mtk_sha_final,
972 .finup = mtk_sha_finup,
973 .digest = mtk_sha_digest,
974 .export = mtk_sha_export,
975 .import = mtk_sha_import,
976 .halg.digestsize = SHA256_DIGEST_SIZE,
977 .halg.statesize = sizeof(struct mtk_sha_reqctx),
978 .halg.base = {
979 .cra_name = "sha256",
980 .cra_driver_name = "mtk-sha256",
981 .cra_priority = 400,
982 .cra_flags = CRYPTO_ALG_ASYNC,
983 .cra_blocksize = SHA256_BLOCK_SIZE,
984 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
985 .cra_alignmask = SHA_ALIGN_MSK,
986 .cra_module = THIS_MODULE,
987 .cra_init = mtk_sha_cra_init,
988 .cra_exit = mtk_sha_cra_exit,
989 }
990 },
991 {
992 .init = mtk_sha_init,
993 .update = mtk_sha_update,
994 .final = mtk_sha_final,
995 .finup = mtk_sha_finup,
996 .digest = mtk_sha_digest,
997 .export = mtk_sha_export,
998 .import = mtk_sha_import,
999 .setkey = mtk_sha_setkey,
1000 .halg.digestsize = SHA1_DIGEST_SIZE,
1001 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1002 .halg.base = {
1003 .cra_name = "hmac(sha1)",
1004 .cra_driver_name = "mtk-hmac-sha1",
1005 .cra_priority = 400,
1006 .cra_flags = CRYPTO_ALG_ASYNC |
1007 CRYPTO_ALG_NEED_FALLBACK,
1008 .cra_blocksize = SHA1_BLOCK_SIZE,
1009 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1010 sizeof(struct mtk_sha_hmac_ctx),
1011 .cra_alignmask = SHA_ALIGN_MSK,
1012 .cra_module = THIS_MODULE,
1013 .cra_init = mtk_sha_cra_sha1_init,
1014 .cra_exit = mtk_sha_cra_exit,
1015 }
1016 },
1017 {
1018 .init = mtk_sha_init,
1019 .update = mtk_sha_update,
1020 .final = mtk_sha_final,
1021 .finup = mtk_sha_finup,
1022 .digest = mtk_sha_digest,
1023 .export = mtk_sha_export,
1024 .import = mtk_sha_import,
1025 .setkey = mtk_sha_setkey,
1026 .halg.digestsize = SHA224_DIGEST_SIZE,
1027 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1028 .halg.base = {
1029 .cra_name = "hmac(sha224)",
1030 .cra_driver_name = "mtk-hmac-sha224",
1031 .cra_priority = 400,
1032 .cra_flags = CRYPTO_ALG_ASYNC |
1033 CRYPTO_ALG_NEED_FALLBACK,
1034 .cra_blocksize = SHA224_BLOCK_SIZE,
1035 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1036 sizeof(struct mtk_sha_hmac_ctx),
1037 .cra_alignmask = SHA_ALIGN_MSK,
1038 .cra_module = THIS_MODULE,
1039 .cra_init = mtk_sha_cra_sha224_init,
1040 .cra_exit = mtk_sha_cra_exit,
1041 }
1042 },
1043 {
1044 .init = mtk_sha_init,
1045 .update = mtk_sha_update,
1046 .final = mtk_sha_final,
1047 .finup = mtk_sha_finup,
1048 .digest = mtk_sha_digest,
1049 .export = mtk_sha_export,
1050 .import = mtk_sha_import,
1051 .setkey = mtk_sha_setkey,
1052 .halg.digestsize = SHA256_DIGEST_SIZE,
1053 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1054 .halg.base = {
1055 .cra_name = "hmac(sha256)",
1056 .cra_driver_name = "mtk-hmac-sha256",
1057 .cra_priority = 400,
1058 .cra_flags = CRYPTO_ALG_ASYNC |
1059 CRYPTO_ALG_NEED_FALLBACK,
1060 .cra_blocksize = SHA256_BLOCK_SIZE,
1061 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1062 sizeof(struct mtk_sha_hmac_ctx),
1063 .cra_alignmask = SHA_ALIGN_MSK,
1064 .cra_module = THIS_MODULE,
1065 .cra_init = mtk_sha_cra_sha256_init,
1066 .cra_exit = mtk_sha_cra_exit,
1067 }
1068 },
1069 };
1070
1071 static struct ahash_alg algs_sha384_sha512[] = {
1072 {
1073 .init = mtk_sha_init,
1074 .update = mtk_sha_update,
1075 .final = mtk_sha_final,
1076 .finup = mtk_sha_finup,
1077 .digest = mtk_sha_digest,
1078 .export = mtk_sha_export,
1079 .import = mtk_sha_import,
1080 .halg.digestsize = SHA384_DIGEST_SIZE,
1081 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1082 .halg.base = {
1083 .cra_name = "sha384",
1084 .cra_driver_name = "mtk-sha384",
1085 .cra_priority = 400,
1086 .cra_flags = CRYPTO_ALG_ASYNC,
1087 .cra_blocksize = SHA384_BLOCK_SIZE,
1088 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
1089 .cra_alignmask = SHA_ALIGN_MSK,
1090 .cra_module = THIS_MODULE,
1091 .cra_init = mtk_sha_cra_init,
1092 .cra_exit = mtk_sha_cra_exit,
1093 }
1094 },
1095 {
1096 .init = mtk_sha_init,
1097 .update = mtk_sha_update,
1098 .final = mtk_sha_final,
1099 .finup = mtk_sha_finup,
1100 .digest = mtk_sha_digest,
1101 .export = mtk_sha_export,
1102 .import = mtk_sha_import,
1103 .halg.digestsize = SHA512_DIGEST_SIZE,
1104 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1105 .halg.base = {
1106 .cra_name = "sha512",
1107 .cra_driver_name = "mtk-sha512",
1108 .cra_priority = 400,
1109 .cra_flags = CRYPTO_ALG_ASYNC,
1110 .cra_blocksize = SHA512_BLOCK_SIZE,
1111 .cra_ctxsize = sizeof(struct mtk_sha_ctx),
1112 .cra_alignmask = SHA_ALIGN_MSK,
1113 .cra_module = THIS_MODULE,
1114 .cra_init = mtk_sha_cra_init,
1115 .cra_exit = mtk_sha_cra_exit,
1116 }
1117 },
1118 {
1119 .init = mtk_sha_init,
1120 .update = mtk_sha_update,
1121 .final = mtk_sha_final,
1122 .finup = mtk_sha_finup,
1123 .digest = mtk_sha_digest,
1124 .export = mtk_sha_export,
1125 .import = mtk_sha_import,
1126 .setkey = mtk_sha_setkey,
1127 .halg.digestsize = SHA384_DIGEST_SIZE,
1128 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1129 .halg.base = {
1130 .cra_name = "hmac(sha384)",
1131 .cra_driver_name = "mtk-hmac-sha384",
1132 .cra_priority = 400,
1133 .cra_flags = CRYPTO_ALG_ASYNC |
1134 CRYPTO_ALG_NEED_FALLBACK,
1135 .cra_blocksize = SHA384_BLOCK_SIZE,
1136 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1137 sizeof(struct mtk_sha_hmac_ctx),
1138 .cra_alignmask = SHA_ALIGN_MSK,
1139 .cra_module = THIS_MODULE,
1140 .cra_init = mtk_sha_cra_sha384_init,
1141 .cra_exit = mtk_sha_cra_exit,
1142 }
1143 },
1144 {
1145 .init = mtk_sha_init,
1146 .update = mtk_sha_update,
1147 .final = mtk_sha_final,
1148 .finup = mtk_sha_finup,
1149 .digest = mtk_sha_digest,
1150 .export = mtk_sha_export,
1151 .import = mtk_sha_import,
1152 .setkey = mtk_sha_setkey,
1153 .halg.digestsize = SHA512_DIGEST_SIZE,
1154 .halg.statesize = sizeof(struct mtk_sha_reqctx),
1155 .halg.base = {
1156 .cra_name = "hmac(sha512)",
1157 .cra_driver_name = "mtk-hmac-sha512",
1158 .cra_priority = 400,
1159 .cra_flags = CRYPTO_ALG_ASYNC |
1160 CRYPTO_ALG_NEED_FALLBACK,
1161 .cra_blocksize = SHA512_BLOCK_SIZE,
1162 .cra_ctxsize = sizeof(struct mtk_sha_ctx) +
1163 sizeof(struct mtk_sha_hmac_ctx),
1164 .cra_alignmask = SHA_ALIGN_MSK,
1165 .cra_module = THIS_MODULE,
1166 .cra_init = mtk_sha_cra_sha512_init,
1167 .cra_exit = mtk_sha_cra_exit,
1168 }
1169 },
1170 };
1171
1172 static void mtk_sha_queue_task(unsigned long data)
1173 {
1174 struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1175
1176 mtk_sha_handle_queue(sha->cryp, sha->id - MTK_RING2, NULL);
1177 }
1178
1179 static void mtk_sha_done_task(unsigned long data)
1180 {
1181 struct mtk_sha_rec *sha = (struct mtk_sha_rec *)data;
1182 struct mtk_cryp *cryp = sha->cryp;
1183
1184 mtk_sha_unmap(cryp, sha);
1185 mtk_sha_complete(cryp, sha);
1186 }
1187
1188 static irqreturn_t mtk_sha_irq(int irq, void *dev_id)
1189 {
1190 struct mtk_sha_rec *sha = (struct mtk_sha_rec *)dev_id;
1191 struct mtk_cryp *cryp = sha->cryp;
1192 u32 val = mtk_sha_read(cryp, RDR_STAT(sha->id));
1193
1194 mtk_sha_write(cryp, RDR_STAT(sha->id), val);
1195
1196 if (likely((SHA_FLAGS_BUSY & sha->flags))) {
1197 mtk_sha_write(cryp, RDR_PROC_COUNT(sha->id), MTK_CNT_RST);
1198 mtk_sha_write(cryp, RDR_THRESH(sha->id),
1199 MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
1200
1201 tasklet_schedule(&sha->done_task);
1202 } else {
1203 dev_warn(cryp->dev, "SHA interrupt when no active requests.\n");
1204 }
1205 return IRQ_HANDLED;
1206 }
1207
1208 /*
1209 * The purpose of two SHA records is used to get extra performance.
1210 * It is similar to mtk_aes_record_init().
1211 */
1212 static int mtk_sha_record_init(struct mtk_cryp *cryp)
1213 {
1214 struct mtk_sha_rec **sha = cryp->sha;
1215 int i, err = -ENOMEM;
1216
1217 for (i = 0; i < MTK_REC_NUM; i++) {
1218 sha[i] = kzalloc(sizeof(**sha), GFP_KERNEL);
1219 if (!sha[i])
1220 goto err_cleanup;
1221
1222 sha[i]->cryp = cryp;
1223
1224 spin_lock_init(&sha[i]->lock);
1225 crypto_init_queue(&sha[i]->queue, SHA_QUEUE_SIZE);
1226
1227 tasklet_init(&sha[i]->queue_task, mtk_sha_queue_task,
1228 (unsigned long)sha[i]);
1229 tasklet_init(&sha[i]->done_task, mtk_sha_done_task,
1230 (unsigned long)sha[i]);
1231 }
1232
1233 /* Link to ring2 and ring3 respectively */
1234 sha[0]->id = MTK_RING2;
1235 sha[1]->id = MTK_RING3;
1236
1237 cryp->rec = 1;
1238
1239 return 0;
1240
1241 err_cleanup:
1242 for (; i--; )
1243 kfree(sha[i]);
1244 return err;
1245 }
1246
1247 static void mtk_sha_record_free(struct mtk_cryp *cryp)
1248 {
1249 int i;
1250
1251 for (i = 0; i < MTK_REC_NUM; i++) {
1252 tasklet_kill(&cryp->sha[i]->done_task);
1253 tasklet_kill(&cryp->sha[i]->queue_task);
1254
1255 kfree(cryp->sha[i]);
1256 }
1257 }
1258
1259 static void mtk_sha_unregister_algs(void)
1260 {
1261 int i;
1262
1263 for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++)
1264 crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1265
1266 for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++)
1267 crypto_unregister_ahash(&algs_sha384_sha512[i]);
1268 }
1269
1270 static int mtk_sha_register_algs(void)
1271 {
1272 int err, i;
1273
1274 for (i = 0; i < ARRAY_SIZE(algs_sha1_sha224_sha256); i++) {
1275 err = crypto_register_ahash(&algs_sha1_sha224_sha256[i]);
1276 if (err)
1277 goto err_sha_224_256_algs;
1278 }
1279
1280 for (i = 0; i < ARRAY_SIZE(algs_sha384_sha512); i++) {
1281 err = crypto_register_ahash(&algs_sha384_sha512[i]);
1282 if (err)
1283 goto err_sha_384_512_algs;
1284 }
1285
1286 return 0;
1287
1288 err_sha_384_512_algs:
1289 for (; i--; )
1290 crypto_unregister_ahash(&algs_sha384_sha512[i]);
1291 i = ARRAY_SIZE(algs_sha1_sha224_sha256);
1292 err_sha_224_256_algs:
1293 for (; i--; )
1294 crypto_unregister_ahash(&algs_sha1_sha224_sha256[i]);
1295
1296 return err;
1297 }
1298
1299 int mtk_hash_alg_register(struct mtk_cryp *cryp)
1300 {
1301 int err;
1302
1303 INIT_LIST_HEAD(&cryp->sha_list);
1304
1305 /* Initialize two hash records */
1306 err = mtk_sha_record_init(cryp);
1307 if (err)
1308 goto err_record;
1309
1310 err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING2], mtk_sha_irq,
1311 0, "mtk-sha", cryp->sha[0]);
1312 if (err) {
1313 dev_err(cryp->dev, "unable to request sha irq0.\n");
1314 goto err_res;
1315 }
1316
1317 err = devm_request_irq(cryp->dev, cryp->irq[MTK_RING3], mtk_sha_irq,
1318 0, "mtk-sha", cryp->sha[1]);
1319 if (err) {
1320 dev_err(cryp->dev, "unable to request sha irq1.\n");
1321 goto err_res;
1322 }
1323
1324 /* Enable ring2 and ring3 interrupt for hash */
1325 mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING2), MTK_IRQ_RDR2);
1326 mtk_sha_write(cryp, AIC_ENABLE_SET(MTK_RING3), MTK_IRQ_RDR3);
1327
1328 spin_lock(&mtk_sha.lock);
1329 list_add_tail(&cryp->sha_list, &mtk_sha.dev_list);
1330 spin_unlock(&mtk_sha.lock);
1331
1332 err = mtk_sha_register_algs();
1333 if (err)
1334 goto err_algs;
1335
1336 return 0;
1337
1338 err_algs:
1339 spin_lock(&mtk_sha.lock);
1340 list_del(&cryp->sha_list);
1341 spin_unlock(&mtk_sha.lock);
1342 err_res:
1343 mtk_sha_record_free(cryp);
1344 err_record:
1345
1346 dev_err(cryp->dev, "mtk-sha initialization failed.\n");
1347 return err;
1348 }
1349
1350 void mtk_hash_alg_release(struct mtk_cryp *cryp)
1351 {
1352 spin_lock(&mtk_sha.lock);
1353 list_del(&cryp->sha_list);
1354 spin_unlock(&mtk_sha.lock);
1355
1356 mtk_sha_unregister_algs();
1357 mtk_sha_record_free(cryp);
1358 }