realtek: copy dts/files/patches/configs for 5.15
[openwrt/openwrt.git] / target / linux / realtek / files-5.15 / drivers / net / dsa / rtl83xx / rtl931x.c
1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <asm/mach-rtl838x/mach-rtl83xx.h>
4 #include "rtl83xx.h"
5
6 #define RTL931X_VLAN_PORT_TAG_STS_INTERNAL 0x0
7 #define RTL931X_VLAN_PORT_TAG_STS_UNTAG 0x1
8 #define RTL931X_VLAN_PORT_TAG_STS_TAGGED 0x2
9 #define RTL931X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x3
10
11 #define RTL931X_VLAN_PORT_TAG_CTRL_BASE 0x4860
12 /* port 0-56 */
13 #define RTL931X_VLAN_PORT_TAG_CTRL(port) \
14 RTL931X_VLAN_PORT_TAG_CTRL_BASE + (port << 2)
15 #define RTL931X_VLAN_PORT_TAG_EGR_OTAG_STS_MASK GENMASK(13,12)
16 #define RTL931X_VLAN_PORT_TAG_EGR_ITAG_STS_MASK GENMASK(11,10)
17 #define RTL931X_VLAN_PORT_TAG_EGR_OTAG_KEEP_MASK GENMASK(9,9)
18 #define RTL931X_VLAN_PORT_TAG_EGR_ITAG_KEEP_MASK GENMASK(8,8)
19 #define RTL931X_VLAN_PORT_TAG_IGR_OTAG_KEEP_MASK GENMASK(7,7)
20 #define RTL931X_VLAN_PORT_TAG_IGR_ITAG_KEEP_MASK GENMASK(6,6)
21 #define RTL931X_VLAN_PORT_TAG_OTPID_IDX_MASK GENMASK(5,4)
22 #define RTL931X_VLAN_PORT_TAG_OTPID_KEEP_MASK GENMASK(3,3)
23 #define RTL931X_VLAN_PORT_TAG_ITPID_IDX_MASK GENMASK(2,1)
24 #define RTL931X_VLAN_PORT_TAG_ITPID_KEEP_MASK GENMASK(0,0)
25
26 extern struct mutex smi_lock;
27 extern struct rtl83xx_soc_info soc_info;
28
29 /* Definition of the RTL931X-specific template field IDs as used in the PIE */
30 enum template_field_id {
31 TEMPLATE_FIELD_SPM0 = 1,
32 TEMPLATE_FIELD_SPM1 = 2,
33 TEMPLATE_FIELD_SPM2 = 3,
34 TEMPLATE_FIELD_SPM3 = 4,
35 TEMPLATE_FIELD_DMAC0 = 9,
36 TEMPLATE_FIELD_DMAC1 = 10,
37 TEMPLATE_FIELD_DMAC2 = 11,
38 TEMPLATE_FIELD_SMAC0 = 12,
39 TEMPLATE_FIELD_SMAC1 = 13,
40 TEMPLATE_FIELD_SMAC2 = 14,
41 TEMPLATE_FIELD_ETHERTYPE = 15,
42 TEMPLATE_FIELD_OTAG = 16,
43 TEMPLATE_FIELD_ITAG = 17,
44 TEMPLATE_FIELD_SIP0 = 18,
45 TEMPLATE_FIELD_SIP1 = 19,
46 TEMPLATE_FIELD_DIP0 = 20,
47 TEMPLATE_FIELD_DIP1 = 21,
48 TEMPLATE_FIELD_IP_TOS_PROTO = 22,
49 TEMPLATE_FIELD_L4_SPORT = 23,
50 TEMPLATE_FIELD_L4_DPORT = 24,
51 TEMPLATE_FIELD_L34_HEADER = 25,
52 TEMPLATE_FIELD_TCP_INFO = 26,
53 TEMPLATE_FIELD_SIP2 = 34,
54 TEMPLATE_FIELD_SIP3 = 35,
55 TEMPLATE_FIELD_SIP4 = 36,
56 TEMPLATE_FIELD_SIP5 = 37,
57 TEMPLATE_FIELD_SIP6 = 38,
58 TEMPLATE_FIELD_SIP7 = 39,
59 TEMPLATE_FIELD_DIP2 = 42,
60 TEMPLATE_FIELD_DIP3 = 43,
61 TEMPLATE_FIELD_DIP4 = 44,
62 TEMPLATE_FIELD_DIP5 = 45,
63 TEMPLATE_FIELD_DIP6 = 46,
64 TEMPLATE_FIELD_DIP7 = 47,
65 TEMPLATE_FIELD_FLOW_LABEL = 49,
66 TEMPLATE_FIELD_DSAP_SSAP = 50,
67 TEMPLATE_FIELD_FWD_VID = 52,
68 TEMPLATE_FIELD_RANGE_CHK = 53,
69 TEMPLATE_FIELD_SLP = 55,
70 TEMPLATE_FIELD_DLP = 56,
71 TEMPLATE_FIELD_META_DATA = 57,
72 TEMPLATE_FIELD_FIRST_MPLS1 = 60,
73 TEMPLATE_FIELD_FIRST_MPLS2 = 61,
74 TEMPLATE_FIELD_DPM3 = 8,
75 };
76
77 /* The meaning of TEMPLATE_FIELD_VLAN depends on phase and the configuration in
78 * RTL931X_PIE_CTRL. We use always the same definition and map to the inner VLAN tag:
79 */
80 #define TEMPLATE_FIELD_VLAN TEMPLATE_FIELD_ITAG
81
82 // Number of fixed templates predefined in the RTL9300 SoC
83 #define N_FIXED_TEMPLATES 5
84 // RTL931x specific predefined templates
85 static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS_RTL931X] =
86 {
87 {
88 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
89 TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
90 TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_DSAP_SSAP,
91 TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1,
92 TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
93 }, {
94 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
95 TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_TCP_INFO,
96 TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_VLAN,
97 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1,
98 TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
99 }, {
100 TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
101 TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
102 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
103 TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT,
104 TEMPLATE_FIELD_META_DATA, TEMPLATE_FIELD_SLP
105 }, {
106 TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
107 TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
108 TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_IP_TOS_PROTO,
109 TEMPLATE_FIELD_TCP_INFO, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_L4_DPORT,
110 TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SLP
111 }, {
112 TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
113 TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
114 TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_META_DATA,
115 TEMPLATE_FIELD_VLAN, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1,
116 TEMPLATE_FIELD_SPM2, TEMPLATE_FIELD_SPM3
117 },
118 };
119
120 inline void rtl931x_exec_tbl0_cmd(u32 cmd)
121 {
122 sw_w32(cmd, RTL931X_TBL_ACCESS_CTRL_0);
123 do { } while (sw_r32(RTL931X_TBL_ACCESS_CTRL_0) & (1 << 20));
124 }
125
126 inline void rtl931x_exec_tbl1_cmd(u32 cmd)
127 {
128 sw_w32(cmd, RTL931X_TBL_ACCESS_CTRL_1);
129 do { } while (sw_r32(RTL931X_TBL_ACCESS_CTRL_1) & (1 << 17));
130 }
131
132 inline int rtl931x_tbl_access_data_0(int i)
133 {
134 return RTL931X_TBL_ACCESS_DATA_0(i);
135 }
136
137 void rtl931x_vlan_profile_dump(int index)
138 {
139 u64 profile[4];
140
141 if (index < 0 || index > 15)
142 return;
143
144 profile[0] = sw_r32(RTL931X_VLAN_PROFILE_SET(index));
145 profile[1] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 4) & 0x1FFFFFFFULL) << 32
146 | (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 8) & 0xFFFFFFFF);
147 profile[2] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 16) & 0x1FFFFFFFULL) << 32
148 | (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 12) & 0xFFFFFFFF);
149 profile[3] = (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 20) & 0x1FFFFFFFULL) << 32
150 | (sw_r32(RTL931X_VLAN_PROFILE_SET(index) + 24) & 0xFFFFFFFF);
151
152 pr_info("VLAN %d: L2 learning: %d, L2 Unknown MultiCast Field %llx, \
153 IPv4 Unknown MultiCast Field %llx, IPv6 Unknown MultiCast Field: %llx",
154 index, (u32) (profile[0] & (3 << 14)), profile[1], profile[2], profile[3]);
155 }
156
157 static void rtl931x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
158 {
159 int i;
160 u32 cmd = 1 << 20 /* Execute cmd */
161 | 0 << 19 /* Read */
162 | 5 << 15 /* Table type 0b101 */
163 | (msti & 0x3fff);
164 priv->r->exec_tbl0_cmd(cmd);
165
166 for (i = 0; i < 4; i++)
167 port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
168 }
169
170 static void rtl931x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
171 {
172 int i;
173 u32 cmd = 1 << 20 /* Execute cmd */
174 | 1 << 19 /* Write */
175 | 5 << 15 /* Table type 0b101 */
176 | (msti & 0x3fff);
177 for (i = 0; i < 4; i++)
178 sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
179 priv->r->exec_tbl0_cmd(cmd);
180 }
181
182 inline static int rtl931x_trk_mbr_ctr(int group)
183 {
184 return RTL931X_TRK_MBR_CTRL + (group << 2);
185 }
186
187 static void rtl931x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
188 {
189 u32 v, w, x, y;
190 // Read VLAN table (3) via register 0
191 struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 3);
192
193 rtl_table_read(r, vlan);
194 v = sw_r32(rtl_table_data(r, 0));
195 w = sw_r32(rtl_table_data(r, 1));
196 x = sw_r32(rtl_table_data(r, 2));
197 y = sw_r32(rtl_table_data(r, 3));
198 rtl_table_release(r);
199
200 pr_debug("VLAN_READ %d: %08x %08x %08x %08x\n", vlan, v, w, x, y);
201 info->tagged_ports = ((u64) v) << 25 | (w >> 7);
202 info->profile_id = (x >> 16) & 0xf;
203 info->fid = w & 0x7f; // AKA MSTI depending on context
204 info->hash_uc_fid = !!(x & BIT(31));
205 info->hash_mc_fid = !!(x & BIT(30));
206 info->if_id = (x >> 20) & 0x3ff;
207 info->profile_id = (x >> 16) & 0xf;
208 info->multicast_grp_mask = x & 0xffff;
209 if (x & BIT(31))
210 info->l2_tunnel_list_id = y >> 18;
211 else
212 info->l2_tunnel_list_id = -1;
213 pr_debug("%s read tagged %016llx, profile-id %d, uc %d, mc %d, intf-id %d\n", __func__,
214 info->tagged_ports, info->profile_id, info->hash_uc_fid, info->hash_mc_fid,
215 info->if_id);
216
217 // Read UNTAG table via table register 3
218 r = rtl_table_get(RTL9310_TBL_3, 0);
219 rtl_table_read(r, vlan);
220 v = ((u64)sw_r32(rtl_table_data(r, 0))) << 25;
221 v |= sw_r32(rtl_table_data(r, 1)) >> 7;
222 rtl_table_release(r);
223
224 info->untagged_ports = v;
225 }
226
227 static void rtl931x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
228 {
229 u32 v, w, x, y;
230 // Access VLAN table (1) via register 0
231 struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 3);
232
233 v = info->tagged_ports >> 25;
234 w = (info->tagged_ports & 0x1fffff) << 7;
235 w |= info->fid & 0x7f;
236 x = info->hash_uc_fid ? BIT(31) : 0;
237 x |= info->hash_mc_fid ? BIT(30) : 0;
238 x |= info->if_id & 0x3ff << 20;
239 x |= (info->profile_id & 0xf) << 16;
240 x |= info->multicast_grp_mask & 0xffff;
241 if (info->l2_tunnel_list_id >= 0) {
242 y = info->l2_tunnel_list_id << 18;
243 y |= BIT(31);
244 } else {
245 y = 0;
246 }
247
248 sw_w32(v, rtl_table_data(r, 0));
249 sw_w32(w, rtl_table_data(r, 1));
250 sw_w32(x, rtl_table_data(r, 2));
251 sw_w32(y, rtl_table_data(r, 3));
252
253 rtl_table_write(r, vlan);
254 rtl_table_release(r);
255 }
256
257 static void rtl931x_vlan_set_untagged(u32 vlan, u64 portmask)
258 {
259 struct table_reg *r = rtl_table_get(RTL9310_TBL_3, 0);
260
261 rtl839x_set_port_reg_be(portmask << 7, rtl_table_data(r, 0));
262 rtl_table_write(r, vlan);
263 rtl_table_release(r);
264 }
265
266 static inline int rtl931x_mac_force_mode_ctrl(int p)
267 {
268 return RTL931X_MAC_FORCE_MODE_CTRL + (p << 2);
269 }
270
271 static inline int rtl931x_mac_link_spd_sts(int p)
272 {
273 return RTL931X_MAC_LINK_SPD_STS + (((p >> 3) << 2));
274 }
275
276 static inline int rtl931x_mac_port_ctrl(int p)
277 {
278 return RTL931X_MAC_L2_PORT_CTRL + (p << 7);
279 }
280
281 static inline int rtl931x_l2_port_new_salrn(int p)
282 {
283 return RTL931X_L2_PORT_NEW_SALRN(p);
284 }
285
286 static inline int rtl931x_l2_port_new_sa_fwd(int p)
287 {
288 return RTL931X_L2_PORT_NEW_SA_FWD(p);
289 }
290
291 irqreturn_t rtl931x_switch_irq(int irq, void *dev_id)
292 {
293 struct dsa_switch *ds = dev_id;
294 u32 status = sw_r32(RTL931X_ISR_GLB_SRC);
295 u64 ports = rtl839x_get_port_reg_le(RTL931X_ISR_PORT_LINK_STS_CHG);
296 u64 link;
297 int i;
298
299 /* Clear status */
300 rtl839x_set_port_reg_le(ports, RTL931X_ISR_PORT_LINK_STS_CHG);
301 pr_debug("RTL931X Link change: status: %x, ports %016llx\n", status, ports);
302
303 link = rtl839x_get_port_reg_le(RTL931X_MAC_LINK_STS);
304 // Must re-read this to get correct status
305 link = rtl839x_get_port_reg_le(RTL931X_MAC_LINK_STS);
306 pr_debug("RTL931X Link change: status: %x, link status %016llx\n", status, link);
307
308 for (i = 0; i < 56; i++) {
309 if (ports & BIT_ULL(i)) {
310 if (link & BIT_ULL(i)) {
311 pr_info("%s port %d up\n", __func__, i);
312 dsa_port_phylink_mac_change(ds, i, true);
313 } else {
314 pr_info("%s port %d down\n", __func__, i);
315 dsa_port_phylink_mac_change(ds, i, false);
316 }
317 }
318 }
319 return IRQ_HANDLED;
320 }
321
322 int rtl931x_write_phy(u32 port, u32 page, u32 reg, u32 val)
323 {
324 u32 v;
325 int err = 0;
326
327 val &= 0xffff;
328 if (port > 63 || page > 4095 || reg > 31)
329 return -ENOTSUPP;
330
331 mutex_lock(&smi_lock);
332 pr_debug("%s: writing to phy %d %d %d %d\n", __func__, port, page, reg, val);
333 /* Clear both port registers */
334 sw_w32(0, RTL931X_SMI_INDRT_ACCESS_CTRL_2);
335 sw_w32(0, RTL931X_SMI_INDRT_ACCESS_CTRL_2 + 4);
336 sw_w32_mask(0, BIT(port % 32), RTL931X_SMI_INDRT_ACCESS_CTRL_2 + (port / 32) * 4);
337
338 sw_w32_mask(0xffff, val, RTL931X_SMI_INDRT_ACCESS_CTRL_3);
339
340 v = reg << 6 | page << 11 ;
341 sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
342
343 sw_w32(0x1ff, RTL931X_SMI_INDRT_ACCESS_CTRL_1);
344
345 v |= BIT(4) | 1; /* Write operation and execute */
346 sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
347
348 do {
349 } while (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x1);
350
351 if (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x2)
352 err = -EIO;
353
354 mutex_unlock(&smi_lock);
355 return err;
356 }
357
358 int rtl931x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
359 {
360 u32 v;
361
362 if (port > 63 || page > 4095 || reg > 31)
363 return -ENOTSUPP;
364
365 mutex_lock(&smi_lock);
366
367 sw_w32(port << 5, RTL931X_SMI_INDRT_ACCESS_BC_PHYID_CTRL);
368
369 v = reg << 6 | page << 11 | 1;
370 sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
371
372 do {
373 } while (sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0) & 0x1);
374
375 v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0);
376 *val = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_3);
377 *val = (*val & 0xffff0000) >> 16;
378
379 pr_debug("%s: port %d, page: %d, reg: %x, val: %x, v: %08x\n",
380 __func__, port, page, reg, *val, v);
381
382 mutex_unlock(&smi_lock);
383 return 0;
384 }
385
386 /*
387 * Read an mmd register of the PHY
388 */
389 int rtl931x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
390 {
391 int err = 0;
392 u32 v;
393 /* Select PHY register type
394 * If select 1G/10G MMD register type, registers EXT_PAGE, MAIN_PAGE and REG settings are don’t care.
395 * 0x0 Normal register (Clause 22)
396 * 0x1: 1G MMD register (MMD via Clause 22 registers 13 and 14)
397 * 0x2: 10G MMD register (MMD via Clause 45)
398 */
399 int type = (regnum & MII_ADDR_C45)?2:1;
400
401 mutex_lock(&smi_lock);
402
403 // Set PHY to access via port-number
404 sw_w32(port << 5, RTL931X_SMI_INDRT_ACCESS_BC_PHYID_CTRL);
405
406 // Set MMD device number and register to write to
407 sw_w32(devnum << 16 | mdiobus_c45_regad(regnum), RTL931X_SMI_INDRT_ACCESS_MMD_CTRL);
408
409 v = type << 2 | BIT(0); // MMD-access-type | EXEC
410 sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
411
412 do {
413 v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0);
414 } while (v & BIT(0));
415
416 // Check for error condition
417 if (v & BIT(1))
418 err = -EIO;
419
420 *val = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_3) >> 16;
421
422 pr_debug("%s: port %d, dev: %x, regnum: %x, val: %x (err %d)\n", __func__,
423 port, devnum, mdiobus_c45_regad(regnum), *val, err);
424
425 mutex_unlock(&smi_lock);
426
427 return err;
428 }
429
430 /*
431 * Write to an mmd register of the PHY
432 */
433 int rtl931x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val)
434 {
435 int err = 0;
436 u32 v;
437 int type = (regnum & MII_ADDR_C45)?2:1;
438 u64 pm;
439
440 mutex_lock(&smi_lock);
441
442 // Set PHY to access via port-mask
443 pm = (u64)1 << port;
444 sw_w32((u32)pm, RTL931X_SMI_INDRT_ACCESS_CTRL_2);
445 sw_w32((u32)(pm >> 32), RTL931X_SMI_INDRT_ACCESS_CTRL_2 + 4);
446
447 // Set data to write
448 sw_w32_mask(0xffff, val, RTL931X_SMI_INDRT_ACCESS_CTRL_3);
449
450 // Set MMD device number and register to write to
451 sw_w32(devnum << 16 | mdiobus_c45_regad(regnum), RTL931X_SMI_INDRT_ACCESS_MMD_CTRL);
452
453 v = BIT(4) | type << 2 | BIT(0); // WRITE | MMD-access-type | EXEC
454 sw_w32(v, RTL931X_SMI_INDRT_ACCESS_CTRL_0);
455
456 do {
457 v = sw_r32(RTL931X_SMI_INDRT_ACCESS_CTRL_0);
458 } while (v & BIT(0));
459
460 pr_debug("%s: port %d, dev: %x, regnum: %x, val: %x (err %d)\n", __func__,
461 port, devnum, mdiobus_c45_regad(regnum), val, err);
462 mutex_unlock(&smi_lock);
463 return err;
464 }
465
466 void rtl931x_print_matrix(void)
467 {
468 volatile u64 *ptr = RTL838X_SW_BASE + RTL839X_PORT_ISO_CTRL(0);
469 int i;
470
471 for (i = 0; i < 52; i += 4)
472 pr_info("> %16llx %16llx %16llx %16llx\n",
473 ptr[i + 0], ptr[i + 1], ptr[i + 2], ptr[i + 3]);
474 pr_info("CPU_PORT> %16llx\n", ptr[52]);
475 }
476
477 void rtl931x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
478 {
479 u32 value = 0;
480
481 /* hack for value mapping */
482 if (type == GRATARP && action == COPY2CPU)
483 action = TRAP2MASTERCPU;
484
485 switch(action) {
486 case FORWARD:
487 value = 0;
488 break;
489 case DROP:
490 value = 1;
491 break;
492 case TRAP2CPU:
493 value = 2;
494 break;
495 case TRAP2MASTERCPU:
496 value = 3;
497 break;
498 case FLOODALL:
499 value = 4;
500 break;
501 default:
502 break;
503 }
504
505 switch(type) {
506 case BPDU:
507 sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_BPDU_CTRL + ((port / 10) << 2));
508 break;
509 case PTP:
510 //udp
511 sw_w32_mask(3 << 2, value << 2, RTL931X_RMA_PTP_CTRL + (port << 2));
512 //eth2
513 sw_w32_mask(3, value, RTL931X_RMA_PTP_CTRL + (port << 2));
514 break;
515 case PTP_UDP:
516 sw_w32_mask(3 << 2, value << 2, RTL931X_RMA_PTP_CTRL + (port << 2));
517 break;
518 case PTP_ETH2:
519 sw_w32_mask(3, value, RTL931X_RMA_PTP_CTRL + (port << 2));
520 break;
521 case LLTP:
522 sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_LLTP_CTRL + ((port / 10) << 2));
523 break;
524 case EAPOL:
525 sw_w32_mask(7 << ((port % 10) * 3), value << ((port % 10) * 3), RTL931X_RMA_EAPOL_CTRL + ((port / 10) << 2));
526 break;
527 case GRATARP:
528 sw_w32_mask(3 << ((port & 0xf) << 1), value << ((port & 0xf) << 1), RTL931X_TRAP_ARP_GRAT_PORT_ACT + ((port >> 4) << 2));
529 break;
530 }
531 }
532
533 u64 rtl931x_traffic_get(int source)
534 {
535 u32 v;
536 struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
537
538 rtl_table_read(r, source);
539 v = sw_r32(rtl_table_data(r, 0));
540 rtl_table_release(r);
541 return v >> 3;
542 }
543
544 /*
545 * Enable traffic between a source port and a destination port matrix
546 */
547 void rtl931x_traffic_set(int source, u64 dest_matrix)
548 {
549 struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
550
551 sw_w32((dest_matrix << 3), rtl_table_data(r, 0));
552 rtl_table_write(r, source);
553 rtl_table_release(r);
554 }
555
556 void rtl931x_traffic_enable(int source, int dest)
557 {
558 struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
559 rtl_table_read(r, source);
560 sw_w32_mask(0, BIT(dest + 3), rtl_table_data(r, 0));
561 rtl_table_write(r, source);
562 rtl_table_release(r);
563 }
564
565 void rtl931x_traffic_disable(int source, int dest)
566 {
567 struct table_reg *r = rtl_table_get(RTL9310_TBL_0, 6);
568 rtl_table_read(r, source);
569 sw_w32_mask(BIT(dest + 3), 0, rtl_table_data(r, 0));
570 rtl_table_write(r, source);
571 rtl_table_release(r);
572 }
573
574 static u64 rtl931x_l2_hash_seed(u64 mac, u32 vid)
575 {
576 u64 v = vid;
577
578 v <<= 48;
579 v |= mac;
580
581 return v;
582 }
583
584 /*
585 * Calculate both the block 0 and the block 1 hash by applyingthe same hash
586 * algorithm as the one used currently by the ASIC to the seed, and return
587 * both hashes in the lower and higher word of the return value since only 12 bit of
588 * the hash are significant.
589 */
590 static u32 rtl931x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
591 {
592 u32 h, h0, h1, h2, h3, h4, k0, k1;
593
594 h0 = seed & 0xfff;
595 h1 = (seed >> 12) & 0xfff;
596 h2 = (seed >> 24) & 0xfff;
597 h3 = (seed >> 36) & 0xfff;
598 h4 = (seed >> 48) & 0xfff;
599 h4 = ((h4 & 0x7) << 9) | ((h4 >> 3) & 0x1ff);
600 k0 = h0 ^ h1 ^ h2 ^ h3 ^ h4;
601
602 h0 = seed & 0xfff;
603 h0 = ((h0 & 0x1ff) << 3) | ((h0 >> 9) & 0x7);
604 h1 = (seed >> 12) & 0xfff;
605 h1 = ((h1 & 0x3f) << 6) | ((h1 >> 6) & 0x3f);
606 h2 = (seed >> 24) & 0xfff;
607 h3 = (seed >> 36) & 0xfff;
608 h3 = ((h3 & 0x3f) << 6) | ((h3 >> 6) & 0x3f);
609 h4 = (seed >> 48) & 0xfff;
610 k1 = h0 ^ h1 ^ h2 ^ h3 ^ h4;
611
612 // Algorithm choice for block 0
613 if (sw_r32(RTL931X_L2_CTRL) & BIT(0))
614 h = k1;
615 else
616 h = k0;
617
618 /* Algorithm choice for block 1
619 * Since k0 and k1 are < 4096, adding 4096 will offset the hash into the second
620 * half of hash-space
621 * 4096 is in fact the hash-table size 32768 divided by 4 hashes per bucket
622 * divided by 2 to divide the hash space in 2
623 */
624 if (sw_r32(RTL931X_L2_CTRL) & BIT(1))
625 h |= (k1 + 4096) << 16;
626 else
627 h |= (k0 + 4096) << 16;
628
629 return h;
630 }
631
632 /*
633 * Fills an L2 entry structure from the SoC registers
634 */
635 static void rtl931x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
636 {
637 pr_debug("In %s valid?\n", __func__);
638 e->valid = !!(r[0] & BIT(31));
639 if (!e->valid)
640 return;
641
642 pr_debug("%s: entry valid, raw: %08x %08x %08x %08x\n", __func__, r[0], r[1], r[2], r[3]);
643 e->is_ip_mc = false;
644 e->is_ipv6_mc = false;
645
646 e->mac[0] = r[0] >> 8;
647 e->mac[1] = r[0];
648 e->mac[2] = r[1] >> 24;
649 e->mac[3] = r[1] >> 16;
650 e->mac[4] = r[1] >> 8;
651 e->mac[5] = r[1];
652
653 e->is_open_flow = !!(r[0] & BIT(30));
654 e->is_pe_forward = !!(r[0] & BIT(29));
655 e->next_hop = !!(r[2] & BIT(30));
656 e->rvid = (r[0] >> 16) & 0xfff;
657
658 /* Is it a unicast entry? check multicast bit */
659 if (!(e->mac[0] & 1)) {
660 e->type = L2_UNICAST;
661 e->is_l2_tunnel = !!(r[2] & BIT(31));
662 e->is_static = !!(r[2] & BIT(13));
663 e->port = (r[2] >> 19) & 0x3ff;
664 // Check for trunk port
665 if (r[2] & BIT(29)) {
666 e->is_trunk = true;
667 e->stack_dev = (e->port >> 9) & 1;
668 e->trunk = e->port & 0x3f;
669 } else {
670 e->is_trunk = false;
671 e->stack_dev = (e->port >> 6) & 0xf;
672 e->port = e->port & 0x3f;
673 }
674
675 e->block_da = !!(r[2] & BIT(14));
676 e->block_sa = !!(r[2] & BIT(15));
677 e->suspended = !!(r[2] & BIT(12));
678 e->age = (r[2] >> 16) & 3;
679
680 // the UC_VID field in hardware is used for the VID or for the route id
681 if (e->next_hop) {
682 e->nh_route_id = r[2] & 0x7ff;
683 e->vid = 0;
684 } else {
685 e->vid = r[2] & 0xfff;
686 e->nh_route_id = 0;
687 }
688 if (e->is_l2_tunnel)
689 e->l2_tunnel_id = ((r[2] & 0xff) << 4) | (r[3] >> 28);
690 // TODO: Implement VLAN conversion
691 } else {
692 e->type = L2_MULTICAST;
693 e->is_local_forward = !!(r[2] & BIT(31));
694 e->is_remote_forward = !!(r[2] & BIT(17));
695 e->mc_portmask_index = (r[2] >> 18) & 0xfff;
696 e->l2_tunnel_list_id = (r[2] >> 4) & 0x1fff;
697 }
698 }
699
700 /*
701 * Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
702 */
703 static void rtl931x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
704 {
705 u32 port;
706
707 if (!e->valid) {
708 r[0] = r[1] = r[2] = 0;
709 return;
710 }
711
712 r[2] = BIT(31); // Set valid bit
713
714 r[0] = ((u32)e->mac[0]) << 24 | ((u32)e->mac[1]) << 16
715 | ((u32)e->mac[2]) << 8 | ((u32)e->mac[3]);
716 r[1] = ((u32)e->mac[4]) << 24 | ((u32)e->mac[5]) << 16;
717
718 r[2] |= e->next_hop ? BIT(12) : 0;
719
720 if (e->type == L2_UNICAST) {
721 r[2] |= e->is_static ? BIT(14) : 0;
722 r[1] |= e->rvid & 0xfff;
723 r[2] |= (e->port & 0x3ff) << 20;
724 if (e->is_trunk) {
725 r[2] |= BIT(30);
726 port = e->stack_dev << 9 | (e->port & 0x3f);
727 } else {
728 port = (e->stack_dev & 0xf) << 6;
729 port |= e->port & 0x3f;
730 }
731 r[2] |= port << 20;
732 r[2] |= e->block_da ? BIT(15) : 0;
733 r[2] |= e->block_sa ? BIT(17) : 0;
734 r[2] |= e->suspended ? BIT(13) : 0;
735 r[2] |= (e->age & 0x3) << 17;
736 // the UC_VID field in hardware is used for the VID or for the route id
737 if (e->next_hop)
738 r[2] |= e->nh_route_id & 0x7ff;
739 else
740 r[2] |= e->vid & 0xfff;
741 } else { // L2_MULTICAST
742 r[2] |= (e->mc_portmask_index & 0x3ff) << 16;
743 r[2] |= e->mc_mac_index & 0x7ff;
744 }
745 }
746
747 /*
748 * Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
749 * hash is the id of the bucket and pos is the position of the entry in that bucket
750 * The data read from the SoC is filled into rtl838x_l2_entry
751 */
752 static u64 rtl931x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
753 {
754 u32 r[4];
755 struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 0);
756 u32 idx;
757 int i;
758 u64 mac;
759 u64 seed;
760
761 pr_debug("%s: hash %08x, pos: %d\n", __func__, hash, pos);
762
763 /* On the RTL93xx, 2 different hash algorithms are used making it a total of
764 * 8 buckets that need to be searched, 4 for each hash-half
765 * Use second hash space when bucket is between 4 and 8 */
766 if (pos >= 4) {
767 pos -= 4;
768 hash >>= 16;
769 } else {
770 hash &= 0xffff;
771 }
772
773 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
774 pr_debug("%s: NOW hash %08x, pos: %d\n", __func__, hash, pos);
775
776 rtl_table_read(q, idx);
777 for (i = 0; i < 4; i++)
778 r[i] = sw_r32(rtl_table_data(q, i));
779
780 rtl_table_release(q);
781
782 rtl931x_fill_l2_entry(r, e);
783
784 pr_debug("%s: valid: %d, nh: %d\n", __func__, e->valid, e->next_hop);
785 if (!e->valid)
786 return 0;
787
788 mac = ((u64)e->mac[0]) << 40 | ((u64)e->mac[1]) << 32 | ((u64)e->mac[2]) << 24
789 | ((u64)e->mac[3]) << 16 | ((u64)e->mac[4]) << 8 | ((u64)e->mac[5]);
790
791 seed = rtl931x_l2_hash_seed(mac, e->rvid);
792 pr_debug("%s: mac %016llx, seed %016llx\n", __func__, mac, seed);
793 // return vid with concatenated mac as unique id
794 return seed;
795 }
796
797 static u64 rtl931x_read_cam(int idx, struct rtl838x_l2_entry *e)
798 {
799 return 0;
800 }
801
802 static void rtl931x_write_cam(int idx, struct rtl838x_l2_entry *e)
803 {
804 }
805
806 static void rtl931x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
807 {
808 u32 r[4];
809 struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 0);
810 u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
811 int i;
812
813 pr_info("%s: hash %d, pos %d\n", __func__, hash, pos);
814 pr_info("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx,
815 e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]);
816
817 rtl931x_fill_l2_row(r, e);
818 pr_info("%s: %d: %08x %08x %08x\n", __func__, idx, r[0], r[1], r[2]);
819
820 for (i= 0; i < 4; i++)
821 sw_w32(r[i], rtl_table_data(q, i));
822
823 rtl_table_write(q, idx);
824 rtl_table_release(q);
825
826 }
827
828 static void rtl931x_vlan_fwd_on_inner(int port, bool is_set)
829 {
830 // Always set all tag modes to fwd based on either inner or outer tag
831 if (is_set)
832 sw_w32_mask(0, 0xf, RTL931X_VLAN_PORT_FWD + (port << 2));
833 else
834 sw_w32_mask(0xf, 0, RTL931X_VLAN_PORT_FWD + (port << 2));
835 }
836
837 static void rtl931x_vlan_profile_setup(int profile)
838 {
839 u32 p[7];
840 int i;
841
842 pr_info("In %s\n", __func__);
843
844 if (profile > 15)
845 return;
846
847 p[0] = sw_r32(RTL931X_VLAN_PROFILE_SET(profile));
848
849 // Enable routing of Ipv4/6 Unicast and IPv4/6 Multicast traffic
850 //p[0] |= BIT(17) | BIT(16) | BIT(13) | BIT(12);
851 p[0] |= 0x3 << 11; // COPY2CPU
852
853 p[1] = 0x1FFFFFF; // L2 unknwon MC flooding portmask all ports, including the CPU-port
854 p[2] = 0xFFFFFFFF;
855 p[3] = 0x1FFFFFF; // IPv4 unknwon MC flooding portmask
856 p[4] = 0xFFFFFFFF;
857 p[5] = 0x1FFFFFF; // IPv6 unknwon MC flooding portmask
858 p[6] = 0xFFFFFFFF;
859
860 for (i = 0; i < 7; i++)
861 sw_w32(p[i], RTL931X_VLAN_PROFILE_SET(profile) + i * 4);
862 pr_info("Leaving %s\n", __func__);
863 }
864
865 static void rtl931x_l2_learning_setup(void)
866 {
867 // Portmask for flooding broadcast traffic
868 rtl839x_set_port_reg_be(0x1FFFFFFFFFFFFFF, RTL931X_L2_BC_FLD_PMSK);
869
870 // Portmask for flooding unicast traffic with unknown destination
871 rtl839x_set_port_reg_be(0x1FFFFFFFFFFFFFF, RTL931X_L2_UNKN_UC_FLD_PMSK);
872
873 // Limit learning to maximum: 64k entries, after that just flood (bits 0-2)
874 sw_w32((0xffff << 3) | FORWARD, RTL931X_L2_LRN_CONSTRT_CTRL);
875 }
876
877 static u64 rtl931x_read_mcast_pmask(int idx)
878 {
879 u64 portmask;
880 // Read MC_PMSK (2) via register RTL9310_TBL_0
881 struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 2);
882
883 rtl_table_read(q, idx);
884 portmask = sw_r32(rtl_table_data(q, 0));
885 portmask <<= 32;
886 portmask |= sw_r32(rtl_table_data(q, 1));
887 portmask >>= 7;
888 rtl_table_release(q);
889
890 pr_debug("%s: Index idx %d has portmask %016llx\n", __func__, idx, portmask);
891 return portmask;
892 }
893
894 static void rtl931x_write_mcast_pmask(int idx, u64 portmask)
895 {
896 u64 pm = portmask;
897
898 // Access MC_PMSK (2) via register RTL9310_TBL_0
899 struct table_reg *q = rtl_table_get(RTL9310_TBL_0, 2);
900
901 pr_debug("%s: Index idx %d has portmask %016llx\n", __func__, idx, pm);
902 pm <<= 7;
903 sw_w32((u32)(pm >> 32), rtl_table_data(q, 0));
904 sw_w32((u32)pm, rtl_table_data(q, 1));
905 rtl_table_write(q, idx);
906 rtl_table_release(q);
907 }
908
909
910 static int rtl931x_set_ageing_time(unsigned long msec)
911 {
912 int t = sw_r32(RTL931X_L2_AGE_CTRL);
913
914 t &= 0x1FFFFF;
915 t = (t * 8) / 10;
916 pr_debug("L2 AGING time: %d sec\n", t);
917
918 t = (msec / 100 + 7) / 8;
919 t = t > 0x1FFFFF ? 0x1FFFFF : t;
920 sw_w32_mask(0x1FFFFF, t, RTL931X_L2_AGE_CTRL);
921 pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL931X_L2_PORT_AGE_CTRL));
922 return 0;
923 }
924 void rtl931x_sw_init(struct rtl838x_switch_priv *priv)
925 {
926 // rtl931x_sds_init(priv);
927 }
928
929 static void rtl931x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
930 {
931 int block = index / PIE_BLOCK_SIZE;
932
933 sw_w32_mask(0, BIT(block), RTL931X_PIE_BLK_LOOKUP_CTRL);
934 }
935
936 /*
937 * Fills the data in the intermediate representation in the pie_rule structure
938 * into a data field for a given template field field_type
939 * TODO: This function looks very similar to the function of the rtl9300, but
940 * since it uses the physical template_field_id, which are different for each
941 * SoC and there are other field types, it is actually not. If we would also use
942 * an intermediate representation for a field type, we would could have one
943 * pie_data_fill function for all SoCs, provided we have also for each SoC a
944 * function to map between physical and intermediate field type
945 */
946 int rtl931x_pie_data_fill(enum template_field_id field_type, struct pie_rule *pr, u16 *data, u16 *data_m)
947 {
948 *data = *data_m = 0;
949
950 switch (field_type) {
951 case TEMPLATE_FIELD_SPM0:
952 *data = pr->spm;
953 *data_m = pr->spm_m;
954 break;
955 case TEMPLATE_FIELD_SPM1:
956 *data = pr->spm >> 16;
957 *data_m = pr->spm_m >> 16;
958 break;
959 case TEMPLATE_FIELD_OTAG:
960 *data = pr->otag;
961 *data_m = pr->otag_m;
962 break;
963 case TEMPLATE_FIELD_SMAC0:
964 *data = pr->smac[4];
965 *data = (*data << 8) | pr->smac[5];
966 *data_m = pr->smac_m[4];
967 *data_m = (*data_m << 8) | pr->smac_m[5];
968 break;
969 case TEMPLATE_FIELD_SMAC1:
970 *data = pr->smac[2];
971 *data = (*data << 8) | pr->smac[3];
972 *data_m = pr->smac_m[2];
973 *data_m = (*data_m << 8) | pr->smac_m[3];
974 break;
975 case TEMPLATE_FIELD_SMAC2:
976 *data = pr->smac[0];
977 *data = (*data << 8) | pr->smac[1];
978 *data_m = pr->smac_m[0];
979 *data_m = (*data_m << 8) | pr->smac_m[1];
980 break;
981 case TEMPLATE_FIELD_DMAC0:
982 *data = pr->dmac[4];
983 *data = (*data << 8) | pr->dmac[5];
984 *data_m = pr->dmac_m[4];
985 *data_m = (*data_m << 8) | pr->dmac_m[5];
986 break;
987 case TEMPLATE_FIELD_DMAC1:
988 *data = pr->dmac[2];
989 *data = (*data << 8) | pr->dmac[3];
990 *data_m = pr->dmac_m[2];
991 *data_m = (*data_m << 8) | pr->dmac_m[3];
992 break;
993 case TEMPLATE_FIELD_DMAC2:
994 *data = pr->dmac[0];
995 *data = (*data << 8) | pr->dmac[1];
996 *data_m = pr->dmac_m[0];
997 *data_m = (*data_m << 8) | pr->dmac_m[1];
998 break;
999 case TEMPLATE_FIELD_ETHERTYPE:
1000 *data = pr->ethertype;
1001 *data_m = pr->ethertype_m;
1002 break;
1003 case TEMPLATE_FIELD_ITAG:
1004 *data = pr->itag;
1005 *data_m = pr->itag_m;
1006 break;
1007 case TEMPLATE_FIELD_SIP0:
1008 if (pr->is_ipv6) {
1009 *data = pr->sip6.s6_addr16[7];
1010 *data_m = pr->sip6_m.s6_addr16[7];
1011 } else {
1012 *data = pr->sip;
1013 *data_m = pr->sip_m;
1014 }
1015 break;
1016 case TEMPLATE_FIELD_SIP1:
1017 if (pr->is_ipv6) {
1018 *data = pr->sip6.s6_addr16[6];
1019 *data_m = pr->sip6_m.s6_addr16[6];
1020 } else {
1021 *data = pr->sip >> 16;
1022 *data_m = pr->sip_m >> 16;
1023 }
1024 break;
1025 case TEMPLATE_FIELD_SIP2:
1026 case TEMPLATE_FIELD_SIP3:
1027 case TEMPLATE_FIELD_SIP4:
1028 case TEMPLATE_FIELD_SIP5:
1029 case TEMPLATE_FIELD_SIP6:
1030 case TEMPLATE_FIELD_SIP7:
1031 *data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
1032 *data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
1033 break;
1034
1035 case TEMPLATE_FIELD_DIP0:
1036 if (pr->is_ipv6) {
1037 *data = pr->dip6.s6_addr16[7];
1038 *data_m = pr->dip6_m.s6_addr16[7];
1039 } else {
1040 *data = pr->dip;
1041 *data_m = pr->dip_m;
1042 }
1043 break;
1044 case TEMPLATE_FIELD_DIP1:
1045 if (pr->is_ipv6) {
1046 *data = pr->dip6.s6_addr16[6];
1047 *data_m = pr->dip6_m.s6_addr16[6];
1048 } else {
1049 *data = pr->dip >> 16;
1050 *data_m = pr->dip_m >> 16;
1051 }
1052 break;
1053
1054 case TEMPLATE_FIELD_DIP2:
1055 case TEMPLATE_FIELD_DIP3:
1056 case TEMPLATE_FIELD_DIP4:
1057 case TEMPLATE_FIELD_DIP5:
1058 case TEMPLATE_FIELD_DIP6:
1059 case TEMPLATE_FIELD_DIP7:
1060 *data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
1061 *data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
1062 break;
1063
1064 case TEMPLATE_FIELD_IP_TOS_PROTO:
1065 *data = pr->tos_proto;
1066 *data_m = pr->tos_proto_m;
1067 break;
1068 case TEMPLATE_FIELD_L4_SPORT:
1069 *data = pr->sport;
1070 *data_m = pr->sport_m;
1071 break;
1072 case TEMPLATE_FIELD_L4_DPORT:
1073 *data = pr->dport;
1074 *data_m = pr->dport_m;
1075 break;
1076 case TEMPLATE_FIELD_DSAP_SSAP:
1077 *data = pr->dsap_ssap;
1078 *data_m = pr->dsap_ssap_m;
1079 break;
1080 case TEMPLATE_FIELD_TCP_INFO:
1081 *data = pr->tcp_info;
1082 *data_m = pr->tcp_info_m;
1083 break;
1084 case TEMPLATE_FIELD_RANGE_CHK:
1085 pr_info("TEMPLATE_FIELD_RANGE_CHK: not configured\n");
1086 break;
1087 default:
1088 pr_info("%s: unknown field %d\n", __func__, field_type);
1089 return -1;
1090 }
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * Reads the intermediate representation of the templated match-fields of the
1097 * PIE rule in the pie_rule structure and fills in the raw data fields in the
1098 * raw register space r[].
1099 * The register space configuration size is identical for the RTL8380/90 and RTL9300,
1100 * however the RTL931X has 2 more registers / fields and the physical field-ids are different
1101 * on all SoCs
1102 * On the RTL9300 the mask fields are not word-aligend!
1103 */
1104 static void rtl931x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
1105 {
1106 int i;
1107 u16 data, data_m;
1108
1109 for (i = 0; i < N_FIXED_FIELDS; i++) {
1110 rtl931x_pie_data_fill(t[i], pr, &data, &data_m);
1111
1112 // On the RTL9300, the mask fields are not word aligned!
1113 if (!(i % 2)) {
1114 r[5 - i / 2] = data;
1115 r[12 - i / 2] |= ((u32)data_m << 8);
1116 } else {
1117 r[5 - i / 2] |= ((u32)data) << 16;
1118 r[12 - i / 2] |= ((u32)data_m) << 24;
1119 r[11 - i / 2] |= ((u32)data_m) >> 8;
1120 }
1121 }
1122 }
1123
1124 static void rtl931x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1125 {
1126 pr->mgnt_vlan = r[7] & BIT(31);
1127 if (pr->phase == PHASE_IACL)
1128 pr->dmac_hit_sw = r[7] & BIT(30);
1129 else // TODO: EACL/VACL phase handling
1130 pr->content_too_deep = r[7] & BIT(30);
1131 pr->not_first_frag = r[7] & BIT(29);
1132 pr->frame_type_l4 = (r[7] >> 26) & 7;
1133 pr->frame_type = (r[7] >> 24) & 3;
1134 pr->otag_fmt = (r[7] >> 23) & 1;
1135 pr->itag_fmt = (r[7] >> 22) & 1;
1136 pr->otag_exist = (r[7] >> 21) & 1;
1137 pr->itag_exist = (r[7] >> 20) & 1;
1138 pr->frame_type_l2 = (r[7] >> 18) & 3;
1139 pr->igr_normal_port = (r[7] >> 17) & 1;
1140 pr->tid = (r[7] >> 16) & 1;
1141
1142 pr->mgnt_vlan_m = r[14] & BIT(15);
1143 if (pr->phase == PHASE_IACL)
1144 pr->dmac_hit_sw_m = r[14] & BIT(14);
1145 else
1146 pr->content_too_deep_m = r[14] & BIT(14);
1147 pr->not_first_frag_m = r[14] & BIT(13);
1148 pr->frame_type_l4_m = (r[14] >> 10) & 7;
1149 pr->frame_type_m = (r[14] >> 8) & 3;
1150 pr->otag_fmt_m = r[14] & BIT(7);
1151 pr->itag_fmt_m = r[14] & BIT(6);
1152 pr->otag_exist_m = r[14] & BIT(5);
1153 pr->itag_exist_m = r[14] & BIT (4);
1154 pr->frame_type_l2_m = (r[14] >> 2) & 3;
1155 pr->igr_normal_port_m = r[14] & BIT(1);
1156 pr->tid_m = r[14] & 1;
1157
1158 pr->valid = r[15] & BIT(31);
1159 pr->cond_not = r[15] & BIT(30);
1160 pr->cond_and1 = r[15] & BIT(29);
1161 pr->cond_and2 = r[15] & BIT(28);
1162 }
1163
1164 static void rtl931x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
1165 {
1166 r[7] |= pr->mgnt_vlan ? BIT(31) : 0;
1167 if (pr->phase == PHASE_IACL)
1168 r[7] |= pr->dmac_hit_sw ? BIT(30) : 0;
1169 else
1170 r[7] |= pr->content_too_deep ? BIT(30) : 0;
1171 r[7] |= pr->not_first_frag ? BIT(29) : 0;
1172 r[7] |= ((u32) (pr->frame_type_l4 & 0x7)) << 26;
1173 r[7] |= ((u32) (pr->frame_type & 0x3)) << 24;
1174 r[7] |= pr->otag_fmt ? BIT(23) : 0;
1175 r[7] |= pr->itag_fmt ? BIT(22) : 0;
1176 r[7] |= pr->otag_exist ? BIT(21) : 0;
1177 r[7] |= pr->itag_exist ? BIT(20) : 0;
1178 r[7] |= ((u32) (pr->frame_type_l2 & 0x3)) << 18;
1179 r[7] |= pr->igr_normal_port ? BIT(17) : 0;
1180 r[7] |= ((u32) (pr->tid & 0x1)) << 16;
1181
1182 r[14] |= pr->mgnt_vlan_m ? BIT(15) : 0;
1183 if (pr->phase == PHASE_IACL)
1184 r[14] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
1185 else
1186 r[14] |= pr->content_too_deep_m ? BIT(14) : 0;
1187 r[14] |= pr->not_first_frag_m ? BIT(13) : 0;
1188 r[14] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
1189 r[14] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
1190 r[14] |= pr->otag_fmt_m ? BIT(7) : 0;
1191 r[14] |= pr->itag_fmt_m ? BIT(6) : 0;
1192 r[14] |= pr->otag_exist_m ? BIT(5) : 0;
1193 r[14] |= pr->itag_exist_m ? BIT(4) : 0;
1194 r[14] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
1195 r[14] |= pr->igr_normal_port_m ? BIT(1) : 0;
1196 r[14] |= (u32) (pr->tid_m & 0x1);
1197
1198 r[15] |= pr->valid ? BIT(31) : 0;
1199 r[15] |= pr->cond_not ? BIT(30) : 0;
1200 r[15] |= pr->cond_and1 ? BIT(29) : 0;
1201 r[15] |= pr->cond_and2 ? BIT(28) : 0;
1202 }
1203
1204 static void rtl931x_write_pie_action(u32 r[], struct pie_rule *pr)
1205 {
1206 // Either drop or forward
1207 if (pr->drop) {
1208 r[15] |= BIT(11) | BIT(12) | BIT(13); // Do Green, Yellow and Red drops
1209 // Actually DROP, not PERMIT in Green / Yellow / Red
1210 r[16] |= BIT(27) | BIT(28) | BIT(29);
1211 } else {
1212 r[15] |= pr->fwd_sel ? BIT(14) : 0;
1213 r[16] |= pr->fwd_act << 24;
1214 r[16] |= BIT(21); // We overwrite any drop
1215 }
1216 if (pr->phase == PHASE_VACL)
1217 r[16] |= pr->fwd_sa_lrn ? BIT(22) : 0;
1218 r[15] |= pr->bypass_sel ? BIT(10) : 0;
1219 r[15] |= pr->nopri_sel ? BIT(21) : 0;
1220 r[15] |= pr->tagst_sel ? BIT(20) : 0;
1221 r[15] |= pr->ovid_sel ? BIT(18) : 0;
1222 r[15] |= pr->ivid_sel ? BIT(16) : 0;
1223 r[15] |= pr->meter_sel ? BIT(27) : 0;
1224 r[15] |= pr->mir_sel ? BIT(15) : 0;
1225 r[15] |= pr->log_sel ? BIT(26) : 0;
1226
1227 r[16] |= ((u32)(pr->fwd_data & 0xfff)) << 9;
1228 // r[15] |= pr->log_octets ? BIT(31) : 0;
1229 r[15] |= (u32)(pr->meter_data) >> 2;
1230 r[16] |= (((u32)(pr->meter_data) >> 7) & 0x3) << 29;
1231
1232 r[16] |= ((u32)(pr->ivid_act & 0x3)) << 21;
1233 r[15] |= ((u32)(pr->ivid_data & 0xfff)) << 9;
1234 r[16] |= ((u32)(pr->ovid_act & 0x3)) << 30;
1235 r[16] |= ((u32)(pr->ovid_data & 0xfff)) << 16;
1236 r[16] |= ((u32)(pr->mir_data & 0x3)) << 6;
1237 r[17] |= ((u32)(pr->tagst_data & 0xf)) << 28;
1238 r[17] |= ((u32)(pr->nopri_data & 0x7)) << 25;
1239 r[17] |= pr->bypass_ibc_sc ? BIT(16) : 0;
1240 }
1241
1242 void rtl931x_pie_rule_dump_raw(u32 r[])
1243 {
1244 pr_info("Raw IACL table entry:\n");
1245 pr_info("r 0 - 7: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1246 r[0], r[1], r[2], r[3], r[4], r[5], r[6], r[7]);
1247 pr_info("r 8 - 15: %08x %08x %08x %08x %08x %08x %08x %08x\n",
1248 r[8], r[9], r[10], r[11], r[12], r[13], r[14], r[15]);
1249 pr_info("r 16 - 18: %08x %08x %08x\n", r[16], r[17], r[18]);
1250 pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
1251 pr_info("Fixed : %06x\n", r[6] >> 8);
1252 pr_info("Match M: %08x %08x %08x %08x %08x %08x\n",
1253 (r[6] << 24) | (r[7] >> 8), (r[7] << 24) | (r[8] >> 8), (r[8] << 24) | (r[9] >> 8),
1254 (r[9] << 24) | (r[10] >> 8), (r[10] << 24) | (r[11] >> 8),
1255 (r[11] << 24) | (r[12] >> 8));
1256 pr_info("R[13]: %08x\n", r[13]);
1257 pr_info("Fixed M: %06x\n", ((r[12] << 16) | (r[13] >> 16)) & 0xffffff);
1258 pr_info("Valid / not / and1 / and2 : %1x\n", (r[13] >> 12) & 0xf);
1259 pr_info("r 13-16: %08x %08x %08x %08x\n", r[13], r[14], r[15], r[16]);
1260 }
1261
1262 static int rtl931x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
1263 {
1264 // Access IACL table (0) via register 1, the table size is 4096
1265 struct table_reg *q = rtl_table_get(RTL9310_TBL_1, 0);
1266 u32 r[22];
1267 int i;
1268 int block = idx / PIE_BLOCK_SIZE;
1269 u32 t_select = sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block));
1270
1271 pr_info("%s: %d, t_select: %08x\n", __func__, idx, t_select);
1272
1273 for (i = 0; i < 22; i++)
1274 r[i] = 0;
1275
1276 if (!pr->valid) {
1277 rtl_table_write(q, idx);
1278 rtl_table_release(q);
1279 return 0;
1280 }
1281 rtl931x_write_pie_fixed_fields(r, pr);
1282
1283 pr_info("%s: template %d\n", __func__, (t_select >> (pr->tid * 4)) & 0xf);
1284 rtl931x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 4)) & 0xf]);
1285
1286 rtl931x_write_pie_action(r, pr);
1287
1288 rtl931x_pie_rule_dump_raw(r);
1289
1290 for (i = 0; i < 22; i++)
1291 sw_w32(r[i], rtl_table_data(q, i));
1292
1293 rtl_table_write(q, idx);
1294 rtl_table_release(q);
1295
1296 return 0;
1297 }
1298
1299 static bool rtl931x_pie_templ_has(int t, enum template_field_id field_type)
1300 {
1301 int i;
1302 enum template_field_id ft;
1303
1304 for (i = 0; i < N_FIXED_FIELDS_RTL931X; i++) {
1305 ft = fixed_templates[t][i];
1306 if (field_type == ft)
1307 return true;
1308 }
1309
1310 return false;
1311 }
1312
1313 /*
1314 * Verify that the rule pr is compatible with a given template t in block block
1315 * Note that this function is SoC specific since the values of e.g. TEMPLATE_FIELD_SIP0
1316 * depend on the SoC
1317 */
1318 static int rtl931x_pie_verify_template(struct rtl838x_switch_priv *priv,
1319 struct pie_rule *pr, int t, int block)
1320 {
1321 int i;
1322
1323 if (!pr->is_ipv6 && pr->sip_m && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
1324 return -1;
1325
1326 if (!pr->is_ipv6 && pr->dip_m && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
1327 return -1;
1328
1329 if (pr->is_ipv6) {
1330 if ((pr->sip6_m.s6_addr32[0] || pr->sip6_m.s6_addr32[1]
1331 || pr->sip6_m.s6_addr32[2] || pr->sip6_m.s6_addr32[3])
1332 && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
1333 return -1;
1334 if ((pr->dip6_m.s6_addr32[0] || pr->dip6_m.s6_addr32[1]
1335 || pr->dip6_m.s6_addr32[2] || pr->dip6_m.s6_addr32[3])
1336 && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
1337 return -1;
1338 }
1339
1340 if (ether_addr_to_u64(pr->smac) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
1341 return -1;
1342
1343 if (ether_addr_to_u64(pr->dmac) && !rtl931x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
1344 return -1;
1345
1346 // TODO: Check more
1347
1348 i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
1349
1350 if (i >= PIE_BLOCK_SIZE)
1351 return -1;
1352
1353 return i + PIE_BLOCK_SIZE * block;
1354 }
1355
1356 static int rtl931x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1357 {
1358 int idx, block, j, t;
1359 int min_block = 0;
1360 int max_block = priv->n_pie_blocks / 2;
1361
1362 if (pr->is_egress) {
1363 min_block = max_block;
1364 max_block = priv->n_pie_blocks;
1365 }
1366 pr_info("In %s\n", __func__);
1367
1368 mutex_lock(&priv->pie_mutex);
1369
1370 for (block = min_block; block < max_block; block++) {
1371 for (j = 0; j < 2; j++) {
1372 t = (sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block)) >> (j * 4)) & 0xf;
1373 pr_info("Testing block %d, template %d, template id %d\n", block, j, t);
1374 pr_info("%s: %08x\n",
1375 __func__, sw_r32(RTL931X_PIE_BLK_TMPLTE_CTRL(block)));
1376 idx = rtl931x_pie_verify_template(priv, pr, t, block);
1377 if (idx >= 0)
1378 break;
1379 }
1380 if (j < 2)
1381 break;
1382 }
1383
1384 if (block >= priv->n_pie_blocks) {
1385 mutex_unlock(&priv->pie_mutex);
1386 return -EOPNOTSUPP;
1387 }
1388
1389 pr_info("Using block: %d, index %d, template-id %d\n", block, idx, j);
1390 set_bit(idx, priv->pie_use_bm);
1391
1392 pr->valid = true;
1393 pr->tid = j; // Mapped to template number
1394 pr->tid_m = 0x1;
1395 pr->id = idx;
1396
1397 rtl931x_pie_lookup_enable(priv, idx);
1398 rtl931x_pie_rule_write(priv, idx, pr);
1399
1400 mutex_unlock(&priv->pie_mutex);
1401 return 0;
1402 }
1403
1404 /*
1405 * Delete a range of Packet Inspection Engine rules
1406 */
1407 static int rtl931x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
1408 {
1409 u32 v = (index_from << 1)| (index_to << 13 ) | BIT(0);
1410
1411 pr_info("%s: from %d to %d\n", __func__, index_from, index_to);
1412 mutex_lock(&priv->reg_mutex);
1413
1414 // Write from-to and execute bit into control register
1415 sw_w32(v, RTL931X_PIE_CLR_CTRL);
1416
1417 // Wait until command has completed
1418 do {
1419 } while (sw_r32(RTL931X_PIE_CLR_CTRL) & BIT(0));
1420
1421 mutex_unlock(&priv->reg_mutex);
1422 return 0;
1423 }
1424
1425 static void rtl931x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
1426 {
1427 int idx = pr->id;
1428
1429 rtl931x_pie_rule_del(priv, idx, idx);
1430 clear_bit(idx, priv->pie_use_bm);
1431 }
1432
1433 static void rtl931x_pie_init(struct rtl838x_switch_priv *priv)
1434 {
1435 int i;
1436 u32 template_selectors;
1437
1438 mutex_init(&priv->pie_mutex);
1439
1440 pr_info("%s\n", __func__);
1441 // Enable ACL lookup on all ports, including CPU_PORT
1442 for (i = 0; i <= priv->cpu_port; i++)
1443 sw_w32(1, RTL931X_ACL_PORT_LOOKUP_CTRL(i));
1444
1445 // Include IPG in metering
1446 sw_w32_mask(0, 1, RTL931X_METER_GLB_CTRL);
1447
1448 // Delete all present rules, block size is 128 on all SoC families
1449 rtl931x_pie_rule_del(priv, 0, priv->n_pie_blocks * 128 - 1);
1450
1451 // Assign first half blocks 0-7 to VACL phase, second half to IACL
1452 // 3 bits are used for each block, values for PIE blocks are
1453 // 6: Disabled, 0: VACL, 1: IACL, 2: EACL
1454 // And for OpenFlow Flow blocks: 3: Ingress Flow table 0,
1455 // 4: Ingress Flow Table 3, 5: Egress flow table 0
1456 for (i = 0; i < priv->n_pie_blocks; i++) {
1457 int pos = (i % 10) * 3;
1458 u32 r = RTL931X_PIE_BLK_PHASE_CTRL + 4 * (i / 10);
1459
1460 if (i < priv->n_pie_blocks / 2)
1461 sw_w32_mask(0x7 << pos, 0, r);
1462 else
1463 sw_w32_mask(0x7 << pos, 1 << pos, r);
1464 }
1465
1466 // Enable predefined templates 0, 1 for first quarter of all blocks
1467 template_selectors = 0 | (1 << 4);
1468 for (i = 0; i < priv->n_pie_blocks / 4; i++)
1469 sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
1470
1471 // Enable predefined templates 2, 3 for second quarter of all blocks
1472 template_selectors = 2 | (3 << 4);
1473 for (i = priv->n_pie_blocks / 4; i < priv->n_pie_blocks / 2; i++)
1474 sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
1475
1476 // Enable predefined templates 0, 1 for third quater of all blocks
1477 template_selectors = 0 | (1 << 4);
1478 for (i = priv->n_pie_blocks / 2; i < priv->n_pie_blocks * 3 / 4; i++)
1479 sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
1480
1481 // Enable predefined templates 2, 3 for fourth quater of all blocks
1482 template_selectors = 2 | (3 << 4);
1483 for (i = priv->n_pie_blocks * 3 / 4; i < priv->n_pie_blocks; i++)
1484 sw_w32(template_selectors, RTL931X_PIE_BLK_TMPLTE_CTRL(i));
1485
1486 }
1487
1488 int rtl931x_l3_setup(struct rtl838x_switch_priv *priv)
1489 {
1490 return 0;
1491 }
1492
1493 void rtl931x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
1494 {
1495 sw_w32(FIELD_PREP(RTL931X_VLAN_PORT_TAG_EGR_OTAG_STS_MASK,
1496 keep_outer ? RTL931X_VLAN_PORT_TAG_STS_TAGGED : RTL931X_VLAN_PORT_TAG_STS_UNTAG) |
1497 FIELD_PREP(RTL931X_VLAN_PORT_TAG_EGR_ITAG_STS_MASK,
1498 keep_inner ? RTL931X_VLAN_PORT_TAG_STS_TAGGED : RTL931X_VLAN_PORT_TAG_STS_UNTAG),
1499 RTL931X_VLAN_PORT_TAG_CTRL(port));
1500 }
1501
1502 void rtl931x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
1503 {
1504 if (type == PBVLAN_TYPE_INNER)
1505 sw_w32_mask(0x3 << 12, mode << 12, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
1506 else
1507 sw_w32_mask(0x3 << 26, mode << 26, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
1508 }
1509
1510 void rtl931x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
1511 {
1512 if (type == PBVLAN_TYPE_INNER)
1513 sw_w32_mask(0xfff, pvid, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
1514 else
1515 sw_w32_mask(0xfff << 14, pvid << 14, RTL931X_VLAN_PORT_IGR_CTRL + (port << 2));
1516 }
1517
1518 static void rtl931x_set_igr_filter(int port, enum igr_filter state)
1519 {
1520 sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
1521 RTL931X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
1522 }
1523
1524 static void rtl931x_set_egr_filter(int port, enum egr_filter state)
1525 {
1526 sw_w32_mask(0x1 << (port % 0x20), state << (port % 0x20),
1527 RTL931X_VLAN_PORT_EGR_FLTR + (((port >> 5) << 2)));
1528 }
1529
1530 void rtl931x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
1531 {
1532 u32 l3shift = 0;
1533 u32 newmask = 0;
1534
1535 /* TODO: for now we set algoidx to 0 */
1536 algoidx=0;
1537
1538 if (algomsk & TRUNK_DISTRIBUTION_ALGO_SIP_BIT) {
1539 l3shift = 4;
1540 newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SIP_BIT;
1541 }
1542 if (algomsk & TRUNK_DISTRIBUTION_ALGO_DIP_BIT) {
1543 l3shift = 4;
1544 newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DIP_BIT;
1545 }
1546 if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) {
1547 l3shift = 4;
1548 newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT;
1549 }
1550 if (algomsk & TRUNK_DISTRIBUTION_ALGO_SRC_L4PORT_BIT) {
1551 l3shift = 4;
1552 newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SRC_L4PORT_BIT;
1553 }
1554
1555 if (l3shift == 4) {
1556 if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT)
1557 newmask |= TRUNK_DISTRIBUTION_ALGO_L3_SMAC_BIT;
1558 if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT)
1559 newmask |= TRUNK_DISTRIBUTION_ALGO_L3_DMAC_BIT;
1560 } else {
1561 if (algomsk & TRUNK_DISTRIBUTION_ALGO_SMAC_BIT)
1562 newmask |= TRUNK_DISTRIBUTION_ALGO_L2_SMAC_BIT;
1563 if (algomsk & TRUNK_DISTRIBUTION_ALGO_DMAC_BIT)
1564 newmask |= TRUNK_DISTRIBUTION_ALGO_L2_DMAC_BIT;
1565 }
1566
1567 sw_w32(newmask << l3shift, RTL931X_TRK_HASH_CTRL + (algoidx << 2));
1568 }
1569
1570 static void rtl931x_led_init(struct rtl838x_switch_priv *priv)
1571 {
1572 int i, pos;
1573 u32 v, set;
1574 u64 pm_copper = 0, pm_fiber = 0;
1575 u32 setlen;
1576 const __be32 *led_set;
1577 char set_name[9];
1578 struct device_node *node;
1579
1580 pr_info("%s called\n", __func__);
1581 node = of_find_compatible_node(NULL, NULL, "realtek,rtl9300-leds");
1582 if (!node) {
1583 pr_info("%s No compatible LED node found\n", __func__);
1584 return;
1585 }
1586
1587 for (i= 0; i < priv->cpu_port; i++) {
1588 pos = (i << 1) % 32;
1589 sw_w32_mask(0x3 << pos, 0, RTL931X_LED_PORT_FIB_SET_SEL_CTRL(i));
1590 sw_w32_mask(0x3 << pos, 0, RTL931X_LED_PORT_COPR_SET_SEL_CTRL(i));
1591
1592 if (!priv->ports[i].phy)
1593 continue;
1594
1595 v = 0x1; // Found on the EdgeCore, but we do not have any HW description
1596 sw_w32_mask(0x3 << pos, v << pos, RTL931X_LED_PORT_NUM_CTRL(i));
1597
1598 if (priv->ports[i].phy_is_integrated)
1599 pm_fiber |= BIT_ULL(i);
1600 else
1601 pm_copper |= BIT_ULL(i);
1602
1603 set = priv->ports[i].led_set;
1604 sw_w32_mask(0, set << pos, RTL931X_LED_PORT_COPR_SET_SEL_CTRL(i));
1605 sw_w32_mask(0, set << pos, RTL931X_LED_PORT_FIB_SET_SEL_CTRL(i));
1606 }
1607
1608 for (i = 0; i < 4; i++) {
1609 sprintf(set_name, "led_set%d", i);
1610 pr_info(">%s<\n", set_name);
1611 led_set = of_get_property(node, set_name, &setlen);
1612 if (!led_set || setlen != 16)
1613 break;
1614 v = be32_to_cpup(led_set) << 16 | be32_to_cpup(led_set + 1);
1615 sw_w32(v, RTL931X_LED_SET0_0_CTRL - 4 - i * 8);
1616 v = be32_to_cpup(led_set + 2) << 16 | be32_to_cpup(led_set + 3);
1617 sw_w32(v, RTL931X_LED_SET0_0_CTRL - i * 8);
1618 }
1619
1620 // Set LED mode to serial (0x1)
1621 sw_w32_mask(0x3, 0x1, RTL931X_LED_GLB_CTRL);
1622
1623 rtl839x_set_port_reg_le(pm_copper, RTL931X_LED_PORT_COPR_MASK_CTRL);
1624 rtl839x_set_port_reg_le(pm_fiber, RTL931X_LED_PORT_FIB_MASK_CTRL);
1625 rtl839x_set_port_reg_le(pm_copper | pm_fiber, RTL931X_LED_PORT_COMBO_MASK_CTRL);
1626
1627 for (i = 0; i < 32; i++)
1628 pr_info("%s %08x: %08x\n",__func__, 0xbb000600 + i * 4, sw_r32(0x0600 + i * 4));
1629
1630 }
1631
1632 const struct rtl838x_reg rtl931x_reg = {
1633 .mask_port_reg_be = rtl839x_mask_port_reg_be,
1634 .set_port_reg_be = rtl839x_set_port_reg_be,
1635 .get_port_reg_be = rtl839x_get_port_reg_be,
1636 .mask_port_reg_le = rtl839x_mask_port_reg_le,
1637 .set_port_reg_le = rtl839x_set_port_reg_le,
1638 .get_port_reg_le = rtl839x_get_port_reg_le,
1639 .stat_port_rst = RTL931X_STAT_PORT_RST,
1640 .stat_rst = RTL931X_STAT_RST,
1641 .stat_port_std_mib = 0, // Not defined
1642 .traffic_enable = rtl931x_traffic_enable,
1643 .traffic_disable = rtl931x_traffic_disable,
1644 .traffic_get = rtl931x_traffic_get,
1645 .traffic_set = rtl931x_traffic_set,
1646 .l2_ctrl_0 = RTL931X_L2_CTRL,
1647 .l2_ctrl_1 = RTL931X_L2_AGE_CTRL,
1648 .l2_port_aging_out = RTL931X_L2_PORT_AGE_CTRL,
1649 .set_ageing_time = rtl931x_set_ageing_time,
1650 // .smi_poll_ctrl does not exist
1651 .l2_tbl_flush_ctrl = RTL931X_L2_TBL_FLUSH_CTRL,
1652 .exec_tbl0_cmd = rtl931x_exec_tbl0_cmd,
1653 .exec_tbl1_cmd = rtl931x_exec_tbl1_cmd,
1654 .tbl_access_data_0 = rtl931x_tbl_access_data_0,
1655 .isr_glb_src = RTL931X_ISR_GLB_SRC,
1656 .isr_port_link_sts_chg = RTL931X_ISR_PORT_LINK_STS_CHG,
1657 .imr_port_link_sts_chg = RTL931X_IMR_PORT_LINK_STS_CHG,
1658 // imr_glb does not exist on RTL931X
1659 .vlan_tables_read = rtl931x_vlan_tables_read,
1660 .vlan_set_tagged = rtl931x_vlan_set_tagged,
1661 .vlan_set_untagged = rtl931x_vlan_set_untagged,
1662 .vlan_profile_dump = rtl931x_vlan_profile_dump,
1663 .vlan_profile_setup = rtl931x_vlan_profile_setup,
1664 .vlan_fwd_on_inner = rtl931x_vlan_fwd_on_inner,
1665 .stp_get = rtl931x_stp_get,
1666 .stp_set = rtl931x_stp_set,
1667 .mac_force_mode_ctrl = rtl931x_mac_force_mode_ctrl,
1668 .mac_port_ctrl = rtl931x_mac_port_ctrl,
1669 .l2_port_new_salrn = rtl931x_l2_port_new_salrn,
1670 .l2_port_new_sa_fwd = rtl931x_l2_port_new_sa_fwd,
1671 .mir_ctrl = RTL931X_MIR_CTRL,
1672 .mir_dpm = RTL931X_MIR_DPM_CTRL,
1673 .mir_spm = RTL931X_MIR_SPM_CTRL,
1674 .mac_link_sts = RTL931X_MAC_LINK_STS,
1675 .mac_link_dup_sts = RTL931X_MAC_LINK_DUP_STS,
1676 .mac_link_spd_sts = rtl931x_mac_link_spd_sts,
1677 .mac_rx_pause_sts = RTL931X_MAC_RX_PAUSE_STS,
1678 .mac_tx_pause_sts = RTL931X_MAC_TX_PAUSE_STS,
1679 .read_l2_entry_using_hash = rtl931x_read_l2_entry_using_hash,
1680 .write_l2_entry_using_hash = rtl931x_write_l2_entry_using_hash,
1681 .read_cam = rtl931x_read_cam,
1682 .write_cam = rtl931x_write_cam,
1683 .vlan_port_keep_tag_set = rtl931x_vlan_port_keep_tag_set,
1684 .vlan_port_pvidmode_set = rtl931x_vlan_port_pvidmode_set,
1685 .vlan_port_pvid_set = rtl931x_vlan_port_pvid_set,
1686 .trk_mbr_ctr = rtl931x_trk_mbr_ctr,
1687 .set_vlan_igr_filter = rtl931x_set_igr_filter,
1688 .set_vlan_egr_filter = rtl931x_set_egr_filter,
1689 .set_distribution_algorithm = rtl931x_set_distribution_algorithm,
1690 .l2_hash_key = rtl931x_l2_hash_key,
1691 .read_mcast_pmask = rtl931x_read_mcast_pmask,
1692 .write_mcast_pmask = rtl931x_write_mcast_pmask,
1693 .pie_init = rtl931x_pie_init,
1694 .pie_rule_write = rtl931x_pie_rule_write,
1695 .pie_rule_add = rtl931x_pie_rule_add,
1696 .pie_rule_rm = rtl931x_pie_rule_rm,
1697 .l2_learning_setup = rtl931x_l2_learning_setup,
1698 .l3_setup = rtl931x_l3_setup,
1699 .led_init = rtl931x_led_init,
1700 };
1701