USB iso mode fixes
[openwrt/staging/mkresin.git] / target / linux / cns3xxx / patches-3.3 / 200-dwc_otg.patch
1 --- a/drivers/Makefile
2 +++ b/drivers/Makefile
3 @@ -71,6 +71,7 @@ obj-$(CONFIG_PARIDE) += block/paride/
4 obj-$(CONFIG_TC) += tc/
5 obj-$(CONFIG_UWB) += uwb/
6 obj-$(CONFIG_USB_OTG_UTILS) += usb/
7 +obj-$(CONFIG_USB_DWC_OTG) += usb/dwc/
8 obj-$(CONFIG_USB) += usb/
9 obj-$(CONFIG_PCI) += usb/
10 obj-$(CONFIG_USB_GADGET) += usb/
11 --- a/drivers/usb/Kconfig
12 +++ b/drivers/usb/Kconfig
13 @@ -134,6 +134,8 @@ source "drivers/usb/musb/Kconfig"
14
15 source "drivers/usb/renesas_usbhs/Kconfig"
16
17 +source "drivers/usb/dwc/Kconfig"
18 +
19 source "drivers/usb/class/Kconfig"
20
21 source "drivers/usb/storage/Kconfig"
22 --- /dev/null
23 +++ b/drivers/usb/dwc/Kconfig
24 @@ -0,0 +1,44 @@
25 +#
26 +# USB Dual Role (OTG-ready) Controller Drivers
27 +# for silicon based on Synopsys DesignWare IP
28 +#
29 +
30 +comment "Enable Host or Gadget support for DesignWare OTG controller"
31 +depends on !USB && USB_GADGET=n
32 +
33 +config USB_DWC_OTG
34 + tristate "Synopsys DWC OTG Controller"
35 + depends on USB
36 + help
37 + This driver provides USB Device Controller support for the
38 + Synopsys DesignWare USB OTG Core used on the Cavium CNS34xx SOC.
39 +
40 +config DWC_DEBUG
41 + bool "Enable DWC Debugging"
42 + depends on USB_DWC_OTG
43 + default n
44 + help
45 + Enable DWC driver debugging
46 +
47 +choice
48 + prompt "DWC Mode Selection"
49 + depends on USB_DWC_OTG
50 + default DWC_HOST_ONLY
51 + help
52 + Select the DWC Core in OTG, Host only, or Device only mode.
53 +
54 +config DWC_HOST_ONLY
55 + bool "DWC Host Only Mode"
56 +
57 +config DWC_OTG_MODE
58 + bool "DWC OTG Mode"
59 + select USB_GADGET
60 + select USB_GADGET_SELECTED
61 +
62 +config DWC_DEVICE_ONLY
63 + bool "DWC Device Only Mode"
64 + select USB_GADGET
65 + select USB_GADGET_SELECTED
66 +
67 +endchoice
68 +
69 --- /dev/null
70 +++ b/drivers/usb/dwc/Makefile
71 @@ -0,0 +1,26 @@
72 +#
73 +# Makefile for DWC_otg Highspeed USB controller driver
74 +#
75 +
76 +EXTRA_CFLAGS += -DDWC_HS_ELECT_TST
77 +#EXTRA_CFLAGS += -Dlinux -DDWC_HS_ELECT_TST
78 +#EXTRA_CFLAGS += -DDWC_EN_ISOC
79 +
80 +ifneq ($(CONFIG_DWC_HOST_ONLY),)
81 +EXTRA_CFLAGS += -DDWC_HOST_ONLY
82 +endif
83 +
84 +ifneq ($(CONFIG_DWC_DEVICE_ONLY),)
85 +EXTRA_CFLAGS += -DDWC_DEVICE_ONLY
86 +endif
87 +
88 +ifneq ($(CONFIG_DWC_DEBUG),)
89 +EXTRA_CFLAGS += -DDEBUG
90 +endif
91 +
92 +obj-$(CONFIG_USB_DWC_OTG) := dwc_otg.o
93 +
94 +dwc_otg-objs := otg_driver.o otg_attr.o
95 +dwc_otg-objs += otg_cil.o otg_cil_intr.o
96 +dwc_otg-objs += otg_pcd.o otg_pcd_intr.o
97 +dwc_otg-objs += otg_hcd.o otg_hcd_intr.o otg_hcd_queue.o
98 --- /dev/null
99 +++ b/drivers/usb/dwc/otg_attr.c
100 @@ -0,0 +1,886 @@
101 +/* ==========================================================================
102 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.c $
103 + * $Revision: #31 $
104 + * $Date: 2008/07/15 $
105 + * $Change: 1064918 $
106 + *
107 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
108 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
109 + * otherwise expressly agreed to in writing between Synopsys and you.
110 + *
111 + * The Software IS NOT an item of Licensed Software or Licensed Product under
112 + * any End User Software License Agreement or Agreement for Licensed Product
113 + * with Synopsys or any supplement thereto. You are permitted to use and
114 + * redistribute this Software in source and binary forms, with or without
115 + * modification, provided that redistributions of source code must retain this
116 + * notice. You may not view, use, disclose, copy or distribute this file or
117 + * any information contained herein except pursuant to this license grant from
118 + * Synopsys. If you do not agree with this notice, including the disclaimer
119 + * below, then you are not authorized to use the Software.
120 + *
121 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
122 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
123 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
124 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
125 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
126 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
127 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
128 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
129 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
130 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
131 + * DAMAGE.
132 + * ========================================================================== */
133 +
134 +/** @file
135 + *
136 + * The diagnostic interface will provide access to the controller for
137 + * bringing up the hardware and testing. The Linux driver attributes
138 + * feature will be used to provide the Linux Diagnostic
139 + * Interface. These attributes are accessed through sysfs.
140 + */
141 +
142 +/** @page "Linux Module Attributes"
143 + *
144 + * The Linux module attributes feature is used to provide the Linux
145 + * Diagnostic Interface. These attributes are accessed through sysfs.
146 + * The diagnostic interface will provide access to the controller for
147 + * bringing up the hardware and testing.
148 +
149 +
150 + The following table shows the attributes.
151 + <table>
152 + <tr>
153 + <td><b> Name</b></td>
154 + <td><b> Description</b></td>
155 + <td><b> Access</b></td>
156 + </tr>
157 +
158 + <tr>
159 + <td> mode </td>
160 + <td> Returns the current mode: 0 for device mode, 1 for host mode</td>
161 + <td> Read</td>
162 + </tr>
163 +
164 + <tr>
165 + <td> hnpcapable </td>
166 + <td> Gets or sets the "HNP-capable" bit in the Core USB Configuraton Register.
167 + Read returns the current value.</td>
168 + <td> Read/Write</td>
169 + </tr>
170 +
171 + <tr>
172 + <td> srpcapable </td>
173 + <td> Gets or sets the "SRP-capable" bit in the Core USB Configuraton Register.
174 + Read returns the current value.</td>
175 + <td> Read/Write</td>
176 + </tr>
177 +
178 + <tr>
179 + <td> hnp </td>
180 + <td> Initiates the Host Negotiation Protocol. Read returns the status.</td>
181 + <td> Read/Write</td>
182 + </tr>
183 +
184 + <tr>
185 + <td> srp </td>
186 + <td> Initiates the Session Request Protocol. Read returns the status.</td>
187 + <td> Read/Write</td>
188 + </tr>
189 +
190 + <tr>
191 + <td> buspower </td>
192 + <td> Gets or sets the Power State of the bus (0 - Off or 1 - On)</td>
193 + <td> Read/Write</td>
194 + </tr>
195 +
196 + <tr>
197 + <td> bussuspend </td>
198 + <td> Suspends the USB bus.</td>
199 + <td> Read/Write</td>
200 + </tr>
201 +
202 + <tr>
203 + <td> busconnected </td>
204 + <td> Gets the connection status of the bus</td>
205 + <td> Read</td>
206 + </tr>
207 +
208 + <tr>
209 + <td> gotgctl </td>
210 + <td> Gets or sets the Core Control Status Register.</td>
211 + <td> Read/Write</td>
212 + </tr>
213 +
214 + <tr>
215 + <td> gusbcfg </td>
216 + <td> Gets or sets the Core USB Configuration Register</td>
217 + <td> Read/Write</td>
218 + </tr>
219 +
220 + <tr>
221 + <td> grxfsiz </td>
222 + <td> Gets or sets the Receive FIFO Size Register</td>
223 + <td> Read/Write</td>
224 + </tr>
225 +
226 + <tr>
227 + <td> gnptxfsiz </td>
228 + <td> Gets or sets the non-periodic Transmit Size Register</td>
229 + <td> Read/Write</td>
230 + </tr>
231 +
232 + <tr>
233 + <td> gpvndctl </td>
234 + <td> Gets or sets the PHY Vendor Control Register</td>
235 + <td> Read/Write</td>
236 + </tr>
237 +
238 + <tr>
239 + <td> ggpio </td>
240 + <td> Gets the value in the lower 16-bits of the General Purpose IO Register
241 + or sets the upper 16 bits.</td>
242 + <td> Read/Write</td>
243 + </tr>
244 +
245 + <tr>
246 + <td> guid </td>
247 + <td> Gets or sets the value of the User ID Register</td>
248 + <td> Read/Write</td>
249 + </tr>
250 +
251 + <tr>
252 + <td> gsnpsid </td>
253 + <td> Gets the value of the Synopsys ID Regester</td>
254 + <td> Read</td>
255 + </tr>
256 +
257 + <tr>
258 + <td> devspeed </td>
259 + <td> Gets or sets the device speed setting in the DCFG register</td>
260 + <td> Read/Write</td>
261 + </tr>
262 +
263 + <tr>
264 + <td> enumspeed </td>
265 + <td> Gets the device enumeration Speed.</td>
266 + <td> Read</td>
267 + </tr>
268 +
269 + <tr>
270 + <td> hptxfsiz </td>
271 + <td> Gets the value of the Host Periodic Transmit FIFO</td>
272 + <td> Read</td>
273 + </tr>
274 +
275 + <tr>
276 + <td> hprt0 </td>
277 + <td> Gets or sets the value in the Host Port Control and Status Register</td>
278 + <td> Read/Write</td>
279 + </tr>
280 +
281 + <tr>
282 + <td> regoffset </td>
283 + <td> Sets the register offset for the next Register Access</td>
284 + <td> Read/Write</td>
285 + </tr>
286 +
287 + <tr>
288 + <td> regvalue </td>
289 + <td> Gets or sets the value of the register at the offset in the regoffset attribute.</td>
290 + <td> Read/Write</td>
291 + </tr>
292 +
293 + <tr>
294 + <td> remote_wakeup </td>
295 + <td> On read, shows the status of Remote Wakeup. On write, initiates a remote
296 + wakeup of the host. When bit 0 is 1 and Remote Wakeup is enabled, the Remote
297 + Wakeup signalling bit in the Device Control Register is set for 1
298 + milli-second.</td>
299 + <td> Read/Write</td>
300 + </tr>
301 +
302 + <tr>
303 + <td> regdump </td>
304 + <td> Dumps the contents of core registers.</td>
305 + <td> Read</td>
306 + </tr>
307 +
308 + <tr>
309 + <td> spramdump </td>
310 + <td> Dumps the contents of core registers.</td>
311 + <td> Read</td>
312 + </tr>
313 +
314 + <tr>
315 + <td> hcddump </td>
316 + <td> Dumps the current HCD state.</td>
317 + <td> Read</td>
318 + </tr>
319 +
320 + <tr>
321 + <td> hcd_frrem </td>
322 + <td> Shows the average value of the Frame Remaining
323 + field in the Host Frame Number/Frame Remaining register when an SOF interrupt
324 + occurs. This can be used to determine the average interrupt latency. Also
325 + shows the average Frame Remaining value for start_transfer and the "a" and
326 + "b" sample points. The "a" and "b" sample points may be used during debugging
327 + bto determine how long it takes to execute a section of the HCD code.</td>
328 + <td> Read</td>
329 + </tr>
330 +
331 + <tr>
332 + <td> rd_reg_test </td>
333 + <td> Displays the time required to read the GNPTXFSIZ register many times
334 + (the output shows the number of times the register is read).
335 + <td> Read</td>
336 + </tr>
337 +
338 + <tr>
339 + <td> wr_reg_test </td>
340 + <td> Displays the time required to write the GNPTXFSIZ register many times
341 + (the output shows the number of times the register is written).
342 + <td> Read</td>
343 + </tr>
344 +
345 + </table>
346 +
347 + Example usage:
348 + To get the current mode:
349 + cat /sys/devices/lm0/mode
350 +
351 + To power down the USB:
352 + echo 0 > /sys/devices/lm0/buspower
353 + */
354 +
355 +#include <linux/kernel.h>
356 +#include <linux/module.h>
357 +#include <linux/moduleparam.h>
358 +#include <linux/init.h>
359 +#include <linux/device.h>
360 +#include <linux/platform_device.h>
361 +#include <linux/errno.h>
362 +#include <linux/types.h>
363 +#include <linux/stat.h> /* permission constants */
364 +#include <linux/version.h>
365 +
366 +#include <asm/sizes.h>
367 +#include <asm/io.h>
368 +#include <asm/sizes.h>
369 +
370 +#include "otg_plat.h"
371 +#include "otg_attr.h"
372 +#include "otg_driver.h"
373 +#include "otg_pcd.h"
374 +#include "otg_hcd.h"
375 +
376 +/*
377 + * MACROs for defining sysfs attribute
378 + */
379 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
380 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
381 +{ \
382 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
383 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
384 + uint32_t val; \
385 + val = dwc_read_reg32 (_addr_); \
386 + val = (val & (_mask_)) >> _shift_; \
387 + return sprintf (buf, "%s = 0x%x\n", _string_, val); \
388 +}
389 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
390 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
391 + const char *buf, size_t count) \
392 +{ \
393 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
394 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
395 + uint32_t set = simple_strtoul(buf, NULL, 16); \
396 + uint32_t clear = set; \
397 + clear = ((~clear) << _shift_) & _mask_; \
398 + set = (set << _shift_) & _mask_; \
399 + dev_dbg(_dev, "Storing Address=0x%08x Set=0x%08x Clear=0x%08x\n", (uint32_t)_addr_, set, clear); \
400 + dwc_modify_reg32(_addr_, clear, set); \
401 + return count; \
402 +}
403 +
404 +/*
405 + * MACROs for defining sysfs attribute for 32-bit registers
406 + */
407 +#define DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
408 +static ssize_t _otg_attr_name_##_show (struct device *_dev, struct device_attribute *attr, char *buf) \
409 +{ \
410 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
411 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
412 + uint32_t val; \
413 + val = dwc_read_reg32 (_addr_); \
414 + return sprintf (buf, "%s = 0x%08x\n", _string_, val); \
415 +}
416 +#define DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
417 +static ssize_t _otg_attr_name_##_store (struct device *_dev, struct device_attribute *attr, \
418 + const char *buf, size_t count) \
419 +{ \
420 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
421 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
422 + uint32_t val = simple_strtoul(buf, NULL, 16); \
423 + dev_dbg(_dev, "Storing Address=0x%08x Val=0x%08x\n", (uint32_t)_addr_, val); \
424 + dwc_write_reg32(_addr_, val); \
425 + return count; \
426 +}
427 +
428 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
429 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
430 +DWC_OTG_DEVICE_ATTR_BITFIELD_STORE(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
431 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
432 +
433 +#define DWC_OTG_DEVICE_ATTR_BITFIELD_RO(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
434 +DWC_OTG_DEVICE_ATTR_BITFIELD_SHOW(_otg_attr_name_,_addr_,_mask_,_shift_,_string_) \
435 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
436 +
437 +#define DWC_OTG_DEVICE_ATTR_REG32_RW(_otg_attr_name_,_addr_,_string_) \
438 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
439 +DWC_OTG_DEVICE_ATTR_REG_STORE(_otg_attr_name_,_addr_,_string_) \
440 +DEVICE_ATTR(_otg_attr_name_,0644,_otg_attr_name_##_show,_otg_attr_name_##_store);
441 +
442 +#define DWC_OTG_DEVICE_ATTR_REG32_RO(_otg_attr_name_,_addr_,_string_) \
443 +DWC_OTG_DEVICE_ATTR_REG_SHOW(_otg_attr_name_,_addr_,_string_) \
444 +DEVICE_ATTR(_otg_attr_name_,0444,_otg_attr_name_##_show,NULL);
445 +
446 +
447 +/** @name Functions for Show/Store of Attributes */
448 +/**@{*/
449 +
450 +/**
451 + * Show the register offset of the Register Access.
452 + */
453 +static ssize_t regoffset_show( struct device *_dev,
454 + struct device_attribute *attr,
455 + char *buf)
456 +{
457 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
458 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
459 + return snprintf(buf, sizeof("0xFFFFFFFF\n")+1,"0x%08x\n", otg_dev->reg_offset);
460 +}
461 +
462 +/**
463 + * Set the register offset for the next Register Access Read/Write
464 + */
465 +static ssize_t regoffset_store( struct device *_dev,
466 + struct device_attribute *attr,
467 + const char *buf,
468 + size_t count )
469 +{
470 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
471 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
472 + uint32_t offset = simple_strtoul(buf, NULL, 16);
473 + //dev_dbg(_dev, "Offset=0x%08x\n", offset);
474 + if (offset < SZ_256K ) {
475 + otg_dev->reg_offset = offset;
476 + }
477 + else {
478 + dev_err( _dev, "invalid offset\n" );
479 + }
480 +
481 + return count;
482 +}
483 +DEVICE_ATTR(regoffset, S_IRUGO|S_IWUSR, (void *)regoffset_show, regoffset_store);
484 +
485 +
486 +/**
487 + * Show the value of the register at the offset in the reg_offset
488 + * attribute.
489 + */
490 +static ssize_t regvalue_show( struct device *_dev,
491 + struct device_attribute *attr,
492 + char *buf)
493 +{
494 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
495 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
496 + uint32_t val;
497 + volatile uint32_t *addr;
498 +
499 + if (otg_dev->reg_offset != 0xFFFFFFFF &&
500 + 0 != otg_dev->base) {
501 + /* Calculate the address */
502 + addr = (uint32_t*)(otg_dev->reg_offset +
503 + (uint8_t*)otg_dev->base);
504 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
505 + val = dwc_read_reg32( addr );
506 + return snprintf(buf, sizeof("Reg@0xFFFFFFFF = 0xFFFFFFFF\n")+1,
507 + "Reg@0x%06x = 0x%08x\n",
508 + otg_dev->reg_offset, val);
509 + }
510 + else {
511 + dev_err(_dev, "Invalid offset (0x%0x)\n",
512 + otg_dev->reg_offset);
513 + return sprintf(buf, "invalid offset\n" );
514 + }
515 +}
516 +
517 +/**
518 + * Store the value in the register at the offset in the reg_offset
519 + * attribute.
520 + *
521 + */
522 +static ssize_t regvalue_store( struct device *_dev,
523 + struct device_attribute *attr,
524 + const char *buf,
525 + size_t count )
526 +{
527 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
528 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
529 + volatile uint32_t * addr;
530 + uint32_t val = simple_strtoul(buf, NULL, 16);
531 + //dev_dbg(_dev, "Offset=0x%08x Val=0x%08x\n", otg_dev->reg_offset, val);
532 + if (otg_dev->reg_offset != 0xFFFFFFFF && 0 != otg_dev->base) {
533 + /* Calculate the address */
534 + addr = (uint32_t*)(otg_dev->reg_offset +
535 + (uint8_t*)otg_dev->base);
536 + //dev_dbg(_dev, "@0x%08x\n", (unsigned)addr);
537 + dwc_write_reg32( addr, val );
538 + }
539 + else {
540 + dev_err(_dev, "Invalid Register Offset (0x%08x)\n",
541 + otg_dev->reg_offset);
542 + }
543 + return count;
544 +}
545 +DEVICE_ATTR(regvalue, S_IRUGO|S_IWUSR, regvalue_show, regvalue_store);
546 +
547 +/*
548 + * Attributes
549 + */
550 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(mode,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<20),20,"Mode");
551 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(hnpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<9),9,"Mode");
552 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(srpcapable,&(otg_dev->core_if->core_global_regs->gusbcfg),(1<<8),8,"Mode");
553 +
554 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(buspower,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
555 +//DWC_OTG_DEVICE_ATTR_BITFIELD_RW(bussuspend,&(otg_dev->core_if->core_global_regs->gotgctl),(1<<8),8,"Mode");
556 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(busconnected,otg_dev->core_if->host_if->hprt0,0x01,0,"Bus Connected");
557 +
558 +DWC_OTG_DEVICE_ATTR_REG32_RW(gotgctl,&(otg_dev->core_if->core_global_regs->gotgctl),"GOTGCTL");
559 +DWC_OTG_DEVICE_ATTR_REG32_RW(gusbcfg,&(otg_dev->core_if->core_global_regs->gusbcfg),"GUSBCFG");
560 +DWC_OTG_DEVICE_ATTR_REG32_RW(grxfsiz,&(otg_dev->core_if->core_global_regs->grxfsiz),"GRXFSIZ");
561 +DWC_OTG_DEVICE_ATTR_REG32_RW(gnptxfsiz,&(otg_dev->core_if->core_global_regs->gnptxfsiz),"GNPTXFSIZ");
562 +DWC_OTG_DEVICE_ATTR_REG32_RW(gpvndctl,&(otg_dev->core_if->core_global_regs->gpvndctl),"GPVNDCTL");
563 +DWC_OTG_DEVICE_ATTR_REG32_RW(ggpio,&(otg_dev->core_if->core_global_regs->ggpio),"GGPIO");
564 +DWC_OTG_DEVICE_ATTR_REG32_RW(guid,&(otg_dev->core_if->core_global_regs->guid),"GUID");
565 +DWC_OTG_DEVICE_ATTR_REG32_RO(gsnpsid,&(otg_dev->core_if->core_global_regs->gsnpsid),"GSNPSID");
566 +DWC_OTG_DEVICE_ATTR_BITFIELD_RW(devspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dcfg),0x3,0,"Device Speed");
567 +DWC_OTG_DEVICE_ATTR_BITFIELD_RO(enumspeed,&(otg_dev->core_if->dev_if->dev_global_regs->dsts),0x6,1,"Device Enumeration Speed");
568 +
569 +DWC_OTG_DEVICE_ATTR_REG32_RO(hptxfsiz,&(otg_dev->core_if->core_global_regs->hptxfsiz),"HPTXFSIZ");
570 +DWC_OTG_DEVICE_ATTR_REG32_RW(hprt0,otg_dev->core_if->host_if->hprt0,"HPRT0");
571 +
572 +
573 +/**
574 + * @todo Add code to initiate the HNP.
575 + */
576 +/**
577 + * Show the HNP status bit
578 + */
579 +static ssize_t hnp_show( struct device *_dev,
580 + struct device_attribute *attr,
581 + char *buf)
582 +{
583 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
584 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
585 + gotgctl_data_t val;
586 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
587 + return sprintf (buf, "HstNegScs = 0x%x\n", val.b.hstnegscs);
588 +}
589 +
590 +/**
591 + * Set the HNP Request bit
592 + */
593 +static ssize_t hnp_store( struct device *_dev,
594 + struct device_attribute *attr,
595 + const char *buf,
596 + size_t count )
597 +{
598 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
599 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
600 + uint32_t in = simple_strtoul(buf, NULL, 16);
601 + uint32_t *addr = (uint32_t *)&(otg_dev->core_if->core_global_regs->gotgctl);
602 + gotgctl_data_t mem;
603 + mem.d32 = dwc_read_reg32(addr);
604 + mem.b.hnpreq = in;
605 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
606 + dwc_write_reg32(addr, mem.d32);
607 + return count;
608 +}
609 +DEVICE_ATTR(hnp, 0644, hnp_show, hnp_store);
610 +
611 +/**
612 + * @todo Add code to initiate the SRP.
613 + */
614 +/**
615 + * Show the SRP status bit
616 + */
617 +static ssize_t srp_show( struct device *_dev,
618 + struct device_attribute *attr,
619 + char *buf)
620 +{
621 +#ifndef DWC_HOST_ONLY
622 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
623 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
624 + gotgctl_data_t val;
625 + val.d32 = dwc_read_reg32 (&(otg_dev->core_if->core_global_regs->gotgctl));
626 + return sprintf (buf, "SesReqScs = 0x%x\n", val.b.sesreqscs);
627 +#else
628 + return sprintf(buf, "Host Only Mode!\n");
629 +#endif
630 +}
631 +
632 +
633 +
634 +/**
635 + * Set the SRP Request bit
636 + */
637 +static ssize_t srp_store( struct device *_dev,
638 + struct device_attribute *attr,
639 + const char *buf,
640 + size_t count )
641 +{
642 +#ifndef DWC_HOST_ONLY
643 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
644 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
645 + dwc_otg_pcd_initiate_srp(otg_dev->pcd);
646 +#endif
647 + return count;
648 +}
649 +DEVICE_ATTR(srp, 0644, srp_show, srp_store);
650 +
651 +/**
652 + * @todo Need to do more for power on/off?
653 + */
654 +/**
655 + * Show the Bus Power status
656 + */
657 +static ssize_t buspower_show( struct device *_dev,
658 + struct device_attribute *attr,
659 + char *buf)
660 +{
661 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
662 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
663 + hprt0_data_t val;
664 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
665 + return sprintf (buf, "Bus Power = 0x%x\n", val.b.prtpwr);
666 +}
667 +
668 +
669 +/**
670 + * Set the Bus Power status
671 + */
672 +static ssize_t buspower_store( struct device *_dev,
673 + struct device_attribute *attr,
674 + const char *buf,
675 + size_t count )
676 +{
677 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
678 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
679 + uint32_t on = simple_strtoul(buf, NULL, 16);
680 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
681 + hprt0_data_t mem;
682 +
683 + mem.d32 = dwc_read_reg32(addr);
684 + mem.b.prtpwr = on;
685 +
686 + //dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
687 + dwc_write_reg32(addr, mem.d32);
688 +
689 + return count;
690 +}
691 +DEVICE_ATTR(buspower, 0644, buspower_show, buspower_store);
692 +
693 +/**
694 + * @todo Need to do more for suspend?
695 + */
696 +/**
697 + * Show the Bus Suspend status
698 + */
699 +static ssize_t bussuspend_show( struct device *_dev,
700 + struct device_attribute *attr,
701 + char *buf)
702 +{
703 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
704 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
705 + hprt0_data_t val;
706 + val.d32 = dwc_read_reg32 (otg_dev->core_if->host_if->hprt0);
707 + return sprintf (buf, "Bus Suspend = 0x%x\n", val.b.prtsusp);
708 +}
709 +
710 +/**
711 + * Set the Bus Suspend status
712 + */
713 +static ssize_t bussuspend_store( struct device *_dev,
714 + struct device_attribute *attr,
715 + const char *buf,
716 + size_t count )
717 +{
718 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
719 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
720 + uint32_t in = simple_strtoul(buf, NULL, 16);
721 + uint32_t *addr = (uint32_t *)otg_dev->core_if->host_if->hprt0;
722 + hprt0_data_t mem;
723 + mem.d32 = dwc_read_reg32(addr);
724 + mem.b.prtsusp = in;
725 + dev_dbg(_dev, "Storing Address=0x%08x Data=0x%08x\n", (uint32_t)addr, mem.d32);
726 + dwc_write_reg32(addr, mem.d32);
727 + return count;
728 +}
729 +DEVICE_ATTR(bussuspend, 0644, bussuspend_show, bussuspend_store);
730 +
731 +/**
732 + * Show the status of Remote Wakeup.
733 + */
734 +static ssize_t remote_wakeup_show( struct device *_dev,
735 + struct device_attribute *attr,
736 + char *buf)
737 +{
738 +#ifndef DWC_HOST_ONLY
739 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
740 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
741 + dctl_data_t val;
742 + val.d32 =
743 + dwc_read_reg32( &otg_dev->core_if->dev_if->dev_global_regs->dctl);
744 + return sprintf( buf, "Remote Wakeup = %d Enabled = %d\n",
745 + val.b.rmtwkupsig, otg_dev->pcd->remote_wakeup_enable);
746 +#else
747 + return sprintf(buf, "Host Only Mode!\n");
748 +#endif
749 +}
750 +/**
751 + * Initiate a remote wakeup of the host. The Device control register
752 + * Remote Wakeup Signal bit is written if the PCD Remote wakeup enable
753 + * flag is set.
754 + *
755 + */
756 +static ssize_t remote_wakeup_store( struct device *_dev,
757 + struct device_attribute *attr,
758 + const char *buf,
759 + size_t count )
760 +{
761 +#ifndef DWC_HOST_ONLY
762 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
763 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
764 + uint32_t val = simple_strtoul(buf, NULL, 16);
765 + if (val&1) {
766 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 1);
767 + }
768 + else {
769 + dwc_otg_pcd_remote_wakeup(otg_dev->pcd, 0);
770 + }
771 +#endif
772 + return count;
773 +}
774 +DEVICE_ATTR(remote_wakeup, S_IRUGO|S_IWUSR, remote_wakeup_show,
775 + remote_wakeup_store);
776 +
777 +/**
778 + * Dump global registers and either host or device registers (depending on the
779 + * current mode of the core).
780 + */
781 +static ssize_t regdump_show( struct device *_dev,
782 + struct device_attribute *attr,
783 + char *buf)
784 +{
785 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
786 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
787 + dwc_otg_dump_global_registers( otg_dev->core_if);
788 + if (dwc_otg_is_host_mode(otg_dev->core_if)) {
789 + dwc_otg_dump_host_registers( otg_dev->core_if);
790 + } else {
791 + dwc_otg_dump_dev_registers( otg_dev->core_if);
792 +
793 + }
794 + return sprintf( buf, "Register Dump\n" );
795 +}
796 +
797 +DEVICE_ATTR(regdump, S_IRUGO|S_IWUSR, regdump_show, 0);
798 +
799 +/**
800 + * Dump global registers and either host or device registers (depending on the
801 + * current mode of the core).
802 + */
803 +static ssize_t spramdump_show( struct device *_dev,
804 + struct device_attribute *attr,
805 + char *buf)
806 +{
807 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
808 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
809 + dwc_otg_dump_spram( otg_dev->core_if);
810 +
811 + return sprintf( buf, "SPRAM Dump\n" );
812 +}
813 +
814 +DEVICE_ATTR(spramdump, S_IRUGO|S_IWUSR, spramdump_show, 0);
815 +
816 +/**
817 + * Dump the current hcd state.
818 + */
819 +static ssize_t hcddump_show( struct device *_dev,
820 + struct device_attribute *attr,
821 + char *buf)
822 +{
823 +#ifndef DWC_DEVICE_ONLY
824 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
825 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
826 + dwc_otg_hcd_dump_state(otg_dev->hcd);
827 +#endif
828 + return sprintf( buf, "HCD Dump\n" );
829 +}
830 +
831 +DEVICE_ATTR(hcddump, S_IRUGO|S_IWUSR, hcddump_show, 0);
832 +
833 +/**
834 + * Dump the average frame remaining at SOF. This can be used to
835 + * determine average interrupt latency. Frame remaining is also shown for
836 + * start transfer and two additional sample points.
837 + */
838 +static ssize_t hcd_frrem_show( struct device *_dev,
839 + struct device_attribute *attr,
840 + char *buf)
841 +{
842 +#ifndef DWC_DEVICE_ONLY
843 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
844 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
845 + dwc_otg_hcd_dump_frrem(otg_dev->hcd);
846 +#endif
847 + return sprintf( buf, "HCD Dump Frame Remaining\n" );
848 +}
849 +
850 +DEVICE_ATTR(hcd_frrem, S_IRUGO|S_IWUSR, hcd_frrem_show, 0);
851 +
852 +/**
853 + * Displays the time required to read the GNPTXFSIZ register many times (the
854 + * output shows the number of times the register is read).
855 + */
856 +#define RW_REG_COUNT 10000000
857 +#define MSEC_PER_JIFFIE 1000/HZ
858 +static ssize_t rd_reg_test_show( struct device *_dev,
859 + struct device_attribute *attr,
860 + char *buf)
861 +{
862 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
863 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
864 + int i;
865 + int time;
866 + int start_jiffies;
867 +
868 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
869 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
870 + start_jiffies = jiffies;
871 + for (i = 0; i < RW_REG_COUNT; i++) {
872 + dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
873 + }
874 + time = jiffies - start_jiffies;
875 + return sprintf( buf, "Time to read GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
876 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time );
877 +}
878 +
879 +DEVICE_ATTR(rd_reg_test, S_IRUGO|S_IWUSR, rd_reg_test_show, 0);
880 +
881 +/**
882 + * Displays the time required to write the GNPTXFSIZ register many times (the
883 + * output shows the number of times the register is written).
884 + */
885 +static ssize_t wr_reg_test_show( struct device *_dev,
886 + struct device_attribute *attr,
887 + char *buf)
888 +{
889 + struct platform_device *pdev = container_of(_dev, struct platform_device, dev); \
890 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev); \
891 + uint32_t reg_val;
892 + int i;
893 + int time;
894 + int start_jiffies;
895 +
896 + printk("HZ %d, MSEC_PER_JIFFIE %d, loops_per_jiffy %lu\n",
897 + HZ, MSEC_PER_JIFFIE, loops_per_jiffy);
898 + reg_val = dwc_read_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz);
899 + start_jiffies = jiffies;
900 + for (i = 0; i < RW_REG_COUNT; i++) {
901 + dwc_write_reg32(&otg_dev->core_if->core_global_regs->gnptxfsiz, reg_val);
902 + }
903 + time = jiffies - start_jiffies;
904 + return sprintf( buf, "Time to write GNPTXFSIZ reg %d times: %d msecs (%d jiffies)\n",
905 + RW_REG_COUNT, time * MSEC_PER_JIFFIE, time);
906 +}
907 +
908 +DEVICE_ATTR(wr_reg_test, S_IRUGO|S_IWUSR, wr_reg_test_show, 0);
909 +/**@}*/
910 +
911 +/**
912 + * Create the device files
913 + */
914 +void dwc_otg_attr_create (struct platform_device *pdev)
915 +{
916 + struct device *dev = &pdev->dev;
917 + int error;
918 +
919 + error = device_create_file(dev, &dev_attr_regoffset);
920 + error = device_create_file(dev, &dev_attr_regvalue);
921 + error = device_create_file(dev, &dev_attr_mode);
922 + error = device_create_file(dev, &dev_attr_hnpcapable);
923 + error = device_create_file(dev, &dev_attr_srpcapable);
924 + error = device_create_file(dev, &dev_attr_hnp);
925 + error = device_create_file(dev, &dev_attr_srp);
926 + error = device_create_file(dev, &dev_attr_buspower);
927 + error = device_create_file(dev, &dev_attr_bussuspend);
928 + error = device_create_file(dev, &dev_attr_busconnected);
929 + error = device_create_file(dev, &dev_attr_gotgctl);
930 + error = device_create_file(dev, &dev_attr_gusbcfg);
931 + error = device_create_file(dev, &dev_attr_grxfsiz);
932 + error = device_create_file(dev, &dev_attr_gnptxfsiz);
933 + error = device_create_file(dev, &dev_attr_gpvndctl);
934 + error = device_create_file(dev, &dev_attr_ggpio);
935 + error = device_create_file(dev, &dev_attr_guid);
936 + error = device_create_file(dev, &dev_attr_gsnpsid);
937 + error = device_create_file(dev, &dev_attr_devspeed);
938 + error = device_create_file(dev, &dev_attr_enumspeed);
939 + error = device_create_file(dev, &dev_attr_hptxfsiz);
940 + error = device_create_file(dev, &dev_attr_hprt0);
941 + error = device_create_file(dev, &dev_attr_remote_wakeup);
942 + error = device_create_file(dev, &dev_attr_regdump);
943 + error = device_create_file(dev, &dev_attr_spramdump);
944 + error = device_create_file(dev, &dev_attr_hcddump);
945 + error = device_create_file(dev, &dev_attr_hcd_frrem);
946 + error = device_create_file(dev, &dev_attr_rd_reg_test);
947 + error = device_create_file(dev, &dev_attr_wr_reg_test);
948 +}
949 +
950 +/**
951 + * Remove the device files
952 + */
953 +void dwc_otg_attr_remove (struct platform_device *pdev)
954 +{
955 + struct device *dev = &pdev->dev;
956 +
957 + device_remove_file(dev, &dev_attr_regoffset);
958 + device_remove_file(dev, &dev_attr_regvalue);
959 + device_remove_file(dev, &dev_attr_mode);
960 + device_remove_file(dev, &dev_attr_hnpcapable);
961 + device_remove_file(dev, &dev_attr_srpcapable);
962 + device_remove_file(dev, &dev_attr_hnp);
963 + device_remove_file(dev, &dev_attr_srp);
964 + device_remove_file(dev, &dev_attr_buspower);
965 + device_remove_file(dev, &dev_attr_bussuspend);
966 + device_remove_file(dev, &dev_attr_busconnected);
967 + device_remove_file(dev, &dev_attr_gotgctl);
968 + device_remove_file(dev, &dev_attr_gusbcfg);
969 + device_remove_file(dev, &dev_attr_grxfsiz);
970 + device_remove_file(dev, &dev_attr_gnptxfsiz);
971 + device_remove_file(dev, &dev_attr_gpvndctl);
972 + device_remove_file(dev, &dev_attr_ggpio);
973 + device_remove_file(dev, &dev_attr_guid);
974 + device_remove_file(dev, &dev_attr_gsnpsid);
975 + device_remove_file(dev, &dev_attr_devspeed);
976 + device_remove_file(dev, &dev_attr_enumspeed);
977 + device_remove_file(dev, &dev_attr_hptxfsiz);
978 + device_remove_file(dev, &dev_attr_hprt0);
979 + device_remove_file(dev, &dev_attr_remote_wakeup);
980 + device_remove_file(dev, &dev_attr_regdump);
981 + device_remove_file(dev, &dev_attr_spramdump);
982 + device_remove_file(dev, &dev_attr_hcddump);
983 + device_remove_file(dev, &dev_attr_hcd_frrem);
984 + device_remove_file(dev, &dev_attr_rd_reg_test);
985 + device_remove_file(dev, &dev_attr_wr_reg_test);
986 +}
987 --- /dev/null
988 +++ b/drivers/usb/dwc/otg_attr.h
989 @@ -0,0 +1,67 @@
990 +/* ==========================================================================
991 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_attr.h $
992 + * $Revision: #7 $
993 + * $Date: 2005/03/28 $
994 + * $Change: 477051 $
995 + *
996 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
997 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
998 + * otherwise expressly agreed to in writing between Synopsys and you.
999 + *
1000 + * The Software IS NOT an item of Licensed Software or Licensed Product under
1001 + * any End User Software License Agreement or Agreement for Licensed Product
1002 + * with Synopsys or any supplement thereto. You are permitted to use and
1003 + * redistribute this Software in source and binary forms, with or without
1004 + * modification, provided that redistributions of source code must retain this
1005 + * notice. You may not view, use, disclose, copy or distribute this file or
1006 + * any information contained herein except pursuant to this license grant from
1007 + * Synopsys. If you do not agree with this notice, including the disclaimer
1008 + * below, then you are not authorized to use the Software.
1009 + *
1010 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
1011 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1012 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1013 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1014 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1015 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1016 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1017 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1018 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1019 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1020 + * DAMAGE.
1021 + * ========================================================================== */
1022 +
1023 +#if !defined(__DWC_OTG_ATTR_H__)
1024 +#define __DWC_OTG_ATTR_H__
1025 +
1026 +/** @file
1027 + * This file contains the interface to the Linux device attributes.
1028 + */
1029 +extern struct device_attribute dev_attr_regoffset;
1030 +extern struct device_attribute dev_attr_regvalue;
1031 +
1032 +extern struct device_attribute dev_attr_mode;
1033 +extern struct device_attribute dev_attr_hnpcapable;
1034 +extern struct device_attribute dev_attr_srpcapable;
1035 +extern struct device_attribute dev_attr_hnp;
1036 +extern struct device_attribute dev_attr_srp;
1037 +extern struct device_attribute dev_attr_buspower;
1038 +extern struct device_attribute dev_attr_bussuspend;
1039 +extern struct device_attribute dev_attr_busconnected;
1040 +extern struct device_attribute dev_attr_gotgctl;
1041 +extern struct device_attribute dev_attr_gusbcfg;
1042 +extern struct device_attribute dev_attr_grxfsiz;
1043 +extern struct device_attribute dev_attr_gnptxfsiz;
1044 +extern struct device_attribute dev_attr_gpvndctl;
1045 +extern struct device_attribute dev_attr_ggpio;
1046 +extern struct device_attribute dev_attr_guid;
1047 +extern struct device_attribute dev_attr_gsnpsid;
1048 +extern struct device_attribute dev_attr_devspeed;
1049 +extern struct device_attribute dev_attr_enumspeed;
1050 +extern struct device_attribute dev_attr_hptxfsiz;
1051 +extern struct device_attribute dev_attr_hprt0;
1052 +
1053 +void dwc_otg_attr_create (struct platform_device *pdev);
1054 +void dwc_otg_attr_remove (struct platform_device *pdev);
1055 +
1056 +#endif
1057 --- /dev/null
1058 +++ b/drivers/usb/dwc/otg_cil.c
1059 @@ -0,0 +1,3831 @@
1060 +/* ==========================================================================
1061 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.c $
1062 + * $Revision: #147 $
1063 + * $Date: 2008/10/16 $
1064 + * $Change: 1117667 $
1065 + *
1066 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
1067 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
1068 + * otherwise expressly agreed to in writing between Synopsys and you.
1069 + *
1070 + * The Software IS NOT an item of Licensed Software or Licensed Product under
1071 + * any End User Software License Agreement or Agreement for Licensed Product
1072 + * with Synopsys or any supplement thereto. You are permitted to use and
1073 + * redistribute this Software in source and binary forms, with or without
1074 + * modification, provided that redistributions of source code must retain this
1075 + * notice. You may not view, use, disclose, copy or distribute this file or
1076 + * any information contained herein except pursuant to this license grant from
1077 + * Synopsys. If you do not agree with this notice, including the disclaimer
1078 + * below, then you are not authorized to use the Software.
1079 + *
1080 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
1081 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1082 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1083 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
1084 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
1085 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
1086 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
1087 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
1088 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
1089 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
1090 + * DAMAGE.
1091 + * ========================================================================== */
1092 +
1093 +/** @file
1094 + *
1095 + * The Core Interface Layer provides basic services for accessing and
1096 + * managing the DWC_otg hardware. These services are used by both the
1097 + * Host Controller Driver and the Peripheral Controller Driver.
1098 + *
1099 + * The CIL manages the memory map for the core so that the HCD and PCD
1100 + * don't have to do this separately. It also handles basic tasks like
1101 + * reading/writing the registers and data FIFOs in the controller.
1102 + * Some of the data access functions provide encapsulation of several
1103 + * operations required to perform a task, such as writing multiple
1104 + * registers to start a transfer. Finally, the CIL performs basic
1105 + * services that are not specific to either the host or device modes
1106 + * of operation. These services include management of the OTG Host
1107 + * Negotiation Protocol (HNP) and Session Request Protocol (SRP). A
1108 + * Diagnostic API is also provided to allow testing of the controller
1109 + * hardware.
1110 + *
1111 + * The Core Interface Layer has the following requirements:
1112 + * - Provides basic controller operations.
1113 + * - Minimal use of OS services.
1114 + * - The OS services used will be abstracted by using inline functions
1115 + * or macros.
1116 + *
1117 + */
1118 +#include <asm/unaligned.h>
1119 +#include <linux/dma-mapping.h>
1120 +#ifdef DEBUG
1121 +#include <linux/jiffies.h>
1122 +#endif
1123 +
1124 +#include "otg_plat.h"
1125 +#include "otg_regs.h"
1126 +#include "otg_cil.h"
1127 +#include "otg_pcd.h"
1128 +
1129 +
1130 +/**
1131 + * This function is called to initialize the DWC_otg CSR data
1132 + * structures. The register addresses in the device and host
1133 + * structures are initialized from the base address supplied by the
1134 + * caller. The calling function must make the OS calls to get the
1135 + * base address of the DWC_otg controller registers. The core_params
1136 + * argument holds the parameters that specify how the core should be
1137 + * configured.
1138 + *
1139 + * @param[in] reg_base_addr Base address of DWC_otg core registers
1140 + * @param[in] core_params Pointer to the core configuration parameters
1141 + *
1142 + */
1143 +dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *reg_base_addr,
1144 + dwc_otg_core_params_t *core_params)
1145 +{
1146 + dwc_otg_core_if_t *core_if = 0;
1147 + dwc_otg_dev_if_t *dev_if = 0;
1148 + dwc_otg_host_if_t *host_if = 0;
1149 + uint8_t *reg_base = (uint8_t *)reg_base_addr;
1150 + int i = 0;
1151 +
1152 + DWC_DEBUGPL(DBG_CILV, "%s(%p,%p)\n", __func__, reg_base_addr, core_params);
1153 +
1154 + core_if = kmalloc(sizeof(dwc_otg_core_if_t), GFP_KERNEL);
1155 +
1156 + if (core_if == 0) {
1157 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_core_if_t failed\n");
1158 + return 0;
1159 + }
1160 +
1161 + memset(core_if, 0, sizeof(dwc_otg_core_if_t));
1162 +
1163 + core_if->core_params = core_params;
1164 + core_if->core_global_regs = (dwc_otg_core_global_regs_t *)reg_base;
1165 +
1166 + /*
1167 + * Allocate the Device Mode structures.
1168 + */
1169 + dev_if = kmalloc(sizeof(dwc_otg_dev_if_t), GFP_KERNEL);
1170 +
1171 + if (dev_if == 0) {
1172 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_dev_if_t failed\n");
1173 + kfree(core_if);
1174 + return 0;
1175 + }
1176 +
1177 + dev_if->dev_global_regs =
1178 + (dwc_otg_device_global_regs_t *)(reg_base + DWC_DEV_GLOBAL_REG_OFFSET);
1179 +
1180 + for (i=0; i<MAX_EPS_CHANNELS; i++)
1181 + {
1182 + dev_if->in_ep_regs[i] = (dwc_otg_dev_in_ep_regs_t *)
1183 + (reg_base + DWC_DEV_IN_EP_REG_OFFSET +
1184 + (i * DWC_EP_REG_OFFSET));
1185 +
1186 + dev_if->out_ep_regs[i] = (dwc_otg_dev_out_ep_regs_t *)
1187 + (reg_base + DWC_DEV_OUT_EP_REG_OFFSET +
1188 + (i * DWC_EP_REG_OFFSET));
1189 + DWC_DEBUGPL(DBG_CILV, "in_ep_regs[%d]->diepctl=%p\n",
1190 + i, &dev_if->in_ep_regs[i]->diepctl);
1191 + DWC_DEBUGPL(DBG_CILV, "out_ep_regs[%d]->doepctl=%p\n",
1192 + i, &dev_if->out_ep_regs[i]->doepctl);
1193 + }
1194 +
1195 + dev_if->speed = 0; // unknown
1196 +
1197 + core_if->dev_if = dev_if;
1198 +
1199 + /*
1200 + * Allocate the Host Mode structures.
1201 + */
1202 + host_if = kmalloc(sizeof(dwc_otg_host_if_t), GFP_KERNEL);
1203 +
1204 + if (host_if == 0) {
1205 + DWC_DEBUGPL(DBG_CIL, "Allocation of dwc_otg_host_if_t failed\n");
1206 + kfree(dev_if);
1207 + kfree(core_if);
1208 + return 0;
1209 + }
1210 +
1211 + host_if->host_global_regs = (dwc_otg_host_global_regs_t *)
1212 + (reg_base + DWC_OTG_HOST_GLOBAL_REG_OFFSET);
1213 +
1214 + host_if->hprt0 = (uint32_t*)(reg_base + DWC_OTG_HOST_PORT_REGS_OFFSET);
1215 +
1216 + for (i=0; i<MAX_EPS_CHANNELS; i++)
1217 + {
1218 + host_if->hc_regs[i] = (dwc_otg_hc_regs_t *)
1219 + (reg_base + DWC_OTG_HOST_CHAN_REGS_OFFSET +
1220 + (i * DWC_OTG_CHAN_REGS_OFFSET));
1221 + DWC_DEBUGPL(DBG_CILV, "hc_reg[%d]->hcchar=%p\n",
1222 + i, &host_if->hc_regs[i]->hcchar);
1223 + }
1224 +
1225 + host_if->num_host_channels = MAX_EPS_CHANNELS;
1226 + core_if->host_if = host_if;
1227 +
1228 + for (i=0; i<MAX_EPS_CHANNELS; i++)
1229 + {
1230 + core_if->data_fifo[i] =
1231 + (uint32_t *)(reg_base + DWC_OTG_DATA_FIFO_OFFSET +
1232 + (i * DWC_OTG_DATA_FIFO_SIZE));
1233 + DWC_DEBUGPL(DBG_CILV, "data_fifo[%d]=0x%08x\n",
1234 + i, (unsigned)core_if->data_fifo[i]);
1235 + }
1236 +
1237 + core_if->pcgcctl = (uint32_t*)(reg_base + DWC_OTG_PCGCCTL_OFFSET);
1238 +
1239 + /*
1240 + * Store the contents of the hardware configuration registers here for
1241 + * easy access later.
1242 + */
1243 + core_if->hwcfg1.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg1);
1244 + core_if->hwcfg2.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg2);
1245 + core_if->hwcfg3.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg3);
1246 + core_if->hwcfg4.d32 = dwc_read_reg32(&core_if->core_global_regs->ghwcfg4);
1247 +
1248 + DWC_DEBUGPL(DBG_CILV,"hwcfg1=%08x\n",core_if->hwcfg1.d32);
1249 + DWC_DEBUGPL(DBG_CILV,"hwcfg2=%08x\n",core_if->hwcfg2.d32);
1250 + DWC_DEBUGPL(DBG_CILV,"hwcfg3=%08x\n",core_if->hwcfg3.d32);
1251 + DWC_DEBUGPL(DBG_CILV,"hwcfg4=%08x\n",core_if->hwcfg4.d32);
1252 +
1253 + core_if->hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
1254 + core_if->dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
1255 +
1256 + DWC_DEBUGPL(DBG_CILV,"hcfg=%08x\n",core_if->hcfg.d32);
1257 + DWC_DEBUGPL(DBG_CILV,"dcfg=%08x\n",core_if->dcfg.d32);
1258 +
1259 + DWC_DEBUGPL(DBG_CILV,"op_mode=%0x\n",core_if->hwcfg2.b.op_mode);
1260 + DWC_DEBUGPL(DBG_CILV,"arch=%0x\n",core_if->hwcfg2.b.architecture);
1261 + DWC_DEBUGPL(DBG_CILV,"num_dev_ep=%d\n",core_if->hwcfg2.b.num_dev_ep);
1262 + DWC_DEBUGPL(DBG_CILV,"num_host_chan=%d\n",core_if->hwcfg2.b.num_host_chan);
1263 + DWC_DEBUGPL(DBG_CILV,"nonperio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.nonperio_tx_q_depth);
1264 + DWC_DEBUGPL(DBG_CILV,"host_perio_tx_q_depth=0x%0x\n",core_if->hwcfg2.b.host_perio_tx_q_depth);
1265 + DWC_DEBUGPL(DBG_CILV,"dev_token_q_depth=0x%0x\n",core_if->hwcfg2.b.dev_token_q_depth);
1266 +
1267 + DWC_DEBUGPL(DBG_CILV,"Total FIFO SZ=%d\n", core_if->hwcfg3.b.dfifo_depth);
1268 + DWC_DEBUGPL(DBG_CILV,"xfer_size_cntr_width=%0x\n", core_if->hwcfg3.b.xfer_size_cntr_width);
1269 +
1270 + /*
1271 + * Set the SRP sucess bit for FS-I2c
1272 + */
1273 + core_if->srp_success = 0;
1274 + core_if->srp_timer_started = 0;
1275 +
1276 +
1277 + /*
1278 + * Create new workqueue and init works
1279 + */
1280 + core_if->wq_otg = create_singlethread_workqueue("dwc_otg");
1281 + if(core_if->wq_otg == 0) {
1282 + DWC_DEBUGPL(DBG_CIL, "Creation of wq_otg failed\n");
1283 + kfree(host_if);
1284 + kfree(dev_if);
1285 + kfree(core_if);
1286 + return 0 * HZ;
1287 + }
1288 + INIT_WORK(&core_if->w_conn_id, w_conn_id_status_change);
1289 + INIT_DELAYED_WORK(&core_if->w_wkp, w_wakeup_detected);
1290 +
1291 + return core_if;
1292 +}
1293 +
1294 +/**
1295 + * This function frees the structures allocated by dwc_otg_cil_init().
1296 + *
1297 + * @param[in] core_if The core interface pointer returned from
1298 + * dwc_otg_cil_init().
1299 + *
1300 + */
1301 +void dwc_otg_cil_remove(dwc_otg_core_if_t *core_if)
1302 +{
1303 + /* Disable all interrupts */
1304 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 1, 0);
1305 + dwc_write_reg32(&core_if->core_global_regs->gintmsk, 0);
1306 +
1307 + if (core_if->wq_otg) {
1308 + destroy_workqueue(core_if->wq_otg);
1309 + }
1310 + if (core_if->dev_if) {
1311 + kfree(core_if->dev_if);
1312 + }
1313 + if (core_if->host_if) {
1314 + kfree(core_if->host_if);
1315 + }
1316 + kfree(core_if);
1317 +}
1318 +
1319 +/**
1320 + * This function enables the controller's Global Interrupt in the AHB Config
1321 + * register.
1322 + *
1323 + * @param[in] core_if Programming view of DWC_otg controller.
1324 + */
1325 +void dwc_otg_enable_global_interrupts(dwc_otg_core_if_t *core_if)
1326 +{
1327 + gahbcfg_data_t ahbcfg = { .d32 = 0};
1328 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1329 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, 0, ahbcfg.d32);
1330 +}
1331 +
1332 +/**
1333 + * This function disables the controller's Global Interrupt in the AHB Config
1334 + * register.
1335 + *
1336 + * @param[in] core_if Programming view of DWC_otg controller.
1337 + */
1338 +void dwc_otg_disable_global_interrupts(dwc_otg_core_if_t *core_if)
1339 +{
1340 + gahbcfg_data_t ahbcfg = { .d32 = 0};
1341 + ahbcfg.b.glblintrmsk = 1; /* Enable interrupts */
1342 + dwc_modify_reg32(&core_if->core_global_regs->gahbcfg, ahbcfg.d32, 0);
1343 +}
1344 +
1345 +/**
1346 + * This function initializes the commmon interrupts, used in both
1347 + * device and host modes.
1348 + *
1349 + * @param[in] core_if Programming view of the DWC_otg controller
1350 + *
1351 + */
1352 +static void dwc_otg_enable_common_interrupts(dwc_otg_core_if_t *core_if)
1353 +{
1354 + dwc_otg_core_global_regs_t *global_regs =
1355 + core_if->core_global_regs;
1356 + gintmsk_data_t intr_mask = { .d32 = 0};
1357 +
1358 + /* Clear any pending OTG Interrupts */
1359 + dwc_write_reg32(&global_regs->gotgint, 0xFFFFFFFF);
1360 +
1361 + /* Clear any pending interrupts */
1362 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
1363 +
1364 + /*
1365 + * Enable the interrupts in the GINTMSK.
1366 + */
1367 + intr_mask.b.modemismatch = 1;
1368 + intr_mask.b.otgintr = 1;
1369 +
1370 + if (!core_if->dma_enable) {
1371 + intr_mask.b.rxstsqlvl = 1;
1372 + }
1373 +
1374 + intr_mask.b.conidstschng = 1;
1375 + intr_mask.b.wkupintr = 1;
1376 + intr_mask.b.disconnect = 1;
1377 + intr_mask.b.usbsuspend = 1;
1378 + intr_mask.b.sessreqintr = 1;
1379 + dwc_write_reg32(&global_regs->gintmsk, intr_mask.d32);
1380 +}
1381 +
1382 +/**
1383 + * Initializes the FSLSPClkSel field of the HCFG register depending on the PHY
1384 + * type.
1385 + */
1386 +static void init_fslspclksel(dwc_otg_core_if_t *core_if)
1387 +{
1388 + uint32_t val;
1389 + hcfg_data_t hcfg;
1390 +
1391 + if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
1392 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
1393 + (core_if->core_params->ulpi_fs_ls)) ||
1394 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1395 + /* Full speed PHY */
1396 + val = DWC_HCFG_48_MHZ;
1397 + }
1398 + else {
1399 + /* High speed PHY running at full speed or high speed */
1400 + val = DWC_HCFG_30_60_MHZ;
1401 + }
1402 +
1403 + DWC_DEBUGPL(DBG_CIL, "Initializing HCFG.FSLSPClkSel to 0x%1x\n", val);
1404 + hcfg.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hcfg);
1405 + hcfg.b.fslspclksel = val;
1406 + dwc_write_reg32(&core_if->host_if->host_global_regs->hcfg, hcfg.d32);
1407 +}
1408 +
1409 +/**
1410 + * Initializes the DevSpd field of the DCFG register depending on the PHY type
1411 + * and the enumeration speed of the device.
1412 + */
1413 +static void init_devspd(dwc_otg_core_if_t *core_if)
1414 +{
1415 + uint32_t val;
1416 + dcfg_data_t dcfg;
1417 +
1418 + if (((core_if->hwcfg2.b.hs_phy_type == 2) &&
1419 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
1420 + (core_if->core_params->ulpi_fs_ls)) ||
1421 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1422 + /* Full speed PHY */
1423 + val = 0x3;
1424 + }
1425 + else if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL) {
1426 + /* High speed PHY running at full speed */
1427 + val = 0x1;
1428 + }
1429 + else {
1430 + /* High speed PHY running at high speed */
1431 + val = 0x0;
1432 + }
1433 +
1434 + DWC_DEBUGPL(DBG_CIL, "Initializing DCFG.DevSpd to 0x%1x\n", val);
1435 +
1436 + dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
1437 + dcfg.b.devspd = val;
1438 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dcfg, dcfg.d32);
1439 +}
1440 +
1441 +/**
1442 + * This function calculates the number of IN EPS
1443 + * using GHWCFG1 and GHWCFG2 registers values
1444 + *
1445 + * @param core_if Programming view of the DWC_otg controller
1446 + */
1447 +static uint32_t calc_num_in_eps(dwc_otg_core_if_t *core_if)
1448 +{
1449 + uint32_t num_in_eps = 0;
1450 + uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
1451 + uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 3;
1452 + uint32_t num_tx_fifos = core_if->hwcfg4.b.num_in_eps;
1453 + int i;
1454 +
1455 +
1456 + for(i = 0; i < num_eps; ++i)
1457 + {
1458 + if(!(hwcfg1 & 0x1))
1459 + num_in_eps++;
1460 +
1461 + hwcfg1 >>= 2;
1462 + }
1463 +
1464 + if(core_if->hwcfg4.b.ded_fifo_en) {
1465 + num_in_eps = (num_in_eps > num_tx_fifos) ? num_tx_fifos : num_in_eps;
1466 + }
1467 +
1468 + return num_in_eps;
1469 +}
1470 +
1471 +
1472 +/**
1473 + * This function calculates the number of OUT EPS
1474 + * using GHWCFG1 and GHWCFG2 registers values
1475 + *
1476 + * @param core_if Programming view of the DWC_otg controller
1477 + */
1478 +static uint32_t calc_num_out_eps(dwc_otg_core_if_t *core_if)
1479 +{
1480 + uint32_t num_out_eps = 0;
1481 + uint32_t num_eps = core_if->hwcfg2.b.num_dev_ep;
1482 + uint32_t hwcfg1 = core_if->hwcfg1.d32 >> 2;
1483 + int i;
1484 +
1485 + for(i = 0; i < num_eps; ++i)
1486 + {
1487 + if(!(hwcfg1 & 0x2))
1488 + num_out_eps++;
1489 +
1490 + hwcfg1 >>= 2;
1491 + }
1492 + return num_out_eps;
1493 +}
1494 +/**
1495 + * This function initializes the DWC_otg controller registers and
1496 + * prepares the core for device mode or host mode operation.
1497 + *
1498 + * @param core_if Programming view of the DWC_otg controller
1499 + *
1500 + */
1501 +void dwc_otg_core_init(dwc_otg_core_if_t *core_if)
1502 +{
1503 + int i = 0;
1504 + dwc_otg_core_global_regs_t *global_regs =
1505 + core_if->core_global_regs;
1506 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
1507 + gahbcfg_data_t ahbcfg = { .d32 = 0 };
1508 + gusbcfg_data_t usbcfg = { .d32 = 0 };
1509 + gi2cctl_data_t i2cctl = { .d32 = 0 };
1510 +
1511 + DWC_DEBUGPL(DBG_CILV, "dwc_otg_core_init(%p)\n", core_if);
1512 +
1513 + /* Common Initialization */
1514 +
1515 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1516 +
1517 +// usbcfg.b.tx_end_delay = 1;
1518 + /* Program the ULPI External VBUS bit if needed */
1519 + usbcfg.b.ulpi_ext_vbus_drv =
1520 + (core_if->core_params->phy_ulpi_ext_vbus == DWC_PHY_ULPI_EXTERNAL_VBUS) ? 1 : 0;
1521 +
1522 + /* Set external TS Dline pulsing */
1523 + usbcfg.b.term_sel_dl_pulse = (core_if->core_params->ts_dline == 1) ? 1 : 0;
1524 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1525 +
1526 +
1527 + /* Reset the Controller */
1528 + dwc_otg_core_reset(core_if);
1529 +
1530 + /* Initialize parameters from Hardware configuration registers. */
1531 + dev_if->num_in_eps = calc_num_in_eps(core_if);
1532 + dev_if->num_out_eps = calc_num_out_eps(core_if);
1533 +
1534 +
1535 + DWC_DEBUGPL(DBG_CIL, "num_dev_perio_in_ep=%d\n", core_if->hwcfg4.b.num_dev_perio_in_ep);
1536 +
1537 + for (i=0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; i++)
1538 + {
1539 + dev_if->perio_tx_fifo_size[i] =
1540 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1541 + DWC_DEBUGPL(DBG_CIL, "Periodic Tx FIFO SZ #%d=0x%0x\n",
1542 + i, dev_if->perio_tx_fifo_size[i]);
1543 + }
1544 +
1545 + for (i=0; i < core_if->hwcfg4.b.num_in_eps; i++)
1546 + {
1547 + dev_if->tx_fifo_size[i] =
1548 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]) >> 16;
1549 + DWC_DEBUGPL(DBG_CIL, "Tx FIFO SZ #%d=0x%0x\n",
1550 + i, dev_if->perio_tx_fifo_size[i]);
1551 + }
1552 +
1553 + core_if->total_fifo_size = core_if->hwcfg3.b.dfifo_depth;
1554 + core_if->rx_fifo_size =
1555 + dwc_read_reg32(&global_regs->grxfsiz);
1556 + core_if->nperio_tx_fifo_size =
1557 + dwc_read_reg32(&global_regs->gnptxfsiz) >> 16;
1558 +
1559 + DWC_DEBUGPL(DBG_CIL, "Total FIFO SZ=%d\n", core_if->total_fifo_size);
1560 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO SZ=%d\n", core_if->rx_fifo_size);
1561 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO SZ=%d\n", core_if->nperio_tx_fifo_size);
1562 +
1563 + /* This programming sequence needs to happen in FS mode before any other
1564 + * programming occurs */
1565 + if ((core_if->core_params->speed == DWC_SPEED_PARAM_FULL) &&
1566 + (core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS)) {
1567 + /* If FS mode with FS PHY */
1568 +
1569 + /* core_init() is now called on every switch so only call the
1570 + * following for the first time through. */
1571 + if (!core_if->phy_init_done) {
1572 + core_if->phy_init_done = 1;
1573 + DWC_DEBUGPL(DBG_CIL, "FS_PHY detected\n");
1574 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1575 + usbcfg.b.physel = 1;
1576 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1577 +
1578 + /* Reset after a PHY select */
1579 + dwc_otg_core_reset(core_if);
1580 + }
1581 +
1582 + /* Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
1583 + * do this on HNP Dev/Host mode switches (done in dev_init and
1584 + * host_init). */
1585 + if (dwc_otg_is_host_mode(core_if)) {
1586 + init_fslspclksel(core_if);
1587 + }
1588 + else {
1589 + init_devspd(core_if);
1590 + }
1591 +
1592 + if (core_if->core_params->i2c_enable) {
1593 + DWC_DEBUGPL(DBG_CIL, "FS_PHY Enabling I2c\n");
1594 + /* Program GUSBCFG.OtgUtmifsSel to I2C */
1595 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1596 + usbcfg.b.otgutmifssel = 1;
1597 + dwc_write_reg32 (&global_regs->gusbcfg, usbcfg.d32);
1598 +
1599 + /* Program GI2CCTL.I2CEn */
1600 + i2cctl.d32 = dwc_read_reg32(&global_regs->gi2cctl);
1601 + i2cctl.b.i2cdevaddr = 1;
1602 + i2cctl.b.i2cen = 0;
1603 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1604 + i2cctl.b.i2cen = 1;
1605 + dwc_write_reg32 (&global_regs->gi2cctl, i2cctl.d32);
1606 + }
1607 +
1608 + } /* endif speed == DWC_SPEED_PARAM_FULL */
1609 +
1610 + else {
1611 + /* High speed PHY. */
1612 + if (!core_if->phy_init_done) {
1613 + core_if->phy_init_done = 1;
1614 + /* HS PHY parameters. These parameters are preserved
1615 + * during soft reset so only program the first time. Do
1616 + * a soft reset immediately after setting phyif. */
1617 + usbcfg.b.ulpi_utmi_sel = core_if->core_params->phy_type;
1618 + if (usbcfg.b.ulpi_utmi_sel == 1) {
1619 + /* ULPI interface */
1620 + usbcfg.b.phyif = 0;
1621 + usbcfg.b.ddrsel = core_if->core_params->phy_ulpi_ddr;
1622 + }
1623 + else {
1624 + /* UTMI+ interface */
1625 + if (core_if->core_params->phy_utmi_width == 16) {
1626 + usbcfg.b.phyif = 1;
1627 + }
1628 + else {
1629 + usbcfg.b.phyif = 0;
1630 + }
1631 + }
1632 +
1633 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1634 +
1635 + /* Reset after setting the PHY parameters */
1636 + dwc_otg_core_reset(core_if);
1637 + }
1638 + }
1639 +
1640 + if ((core_if->hwcfg2.b.hs_phy_type == 2) &&
1641 + (core_if->hwcfg2.b.fs_phy_type == 1) &&
1642 + (core_if->core_params->ulpi_fs_ls)) {
1643 + DWC_DEBUGPL(DBG_CIL, "Setting ULPI FSLS\n");
1644 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1645 + usbcfg.b.ulpi_fsls = 1;
1646 + usbcfg.b.ulpi_clk_sus_m = 1;
1647 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1648 + }
1649 + else {
1650 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1651 + usbcfg.b.ulpi_fsls = 0;
1652 + usbcfg.b.ulpi_clk_sus_m = 0;
1653 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1654 + }
1655 +
1656 + /* Program the GAHBCFG Register.*/
1657 + switch (core_if->hwcfg2.b.architecture) {
1658 +
1659 + case DWC_SLAVE_ONLY_ARCH:
1660 + DWC_DEBUGPL(DBG_CIL, "Slave Only Mode\n");
1661 + ahbcfg.b.nptxfemplvl_txfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1662 + ahbcfg.b.ptxfemplvl = DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY;
1663 + core_if->dma_enable = 0;
1664 + core_if->dma_desc_enable = 0;
1665 + break;
1666 +
1667 + case DWC_EXT_DMA_ARCH:
1668 + DWC_DEBUGPL(DBG_CIL, "External DMA Mode\n");
1669 + ahbcfg.b.hburstlen = core_if->core_params->dma_burst_size;
1670 + core_if->dma_enable = (core_if->core_params->dma_enable != 0);
1671 + core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
1672 + break;
1673 +
1674 + case DWC_INT_DMA_ARCH:
1675 + DWC_DEBUGPL(DBG_CIL, "Internal DMA Mode\n");
1676 + ahbcfg.b.hburstlen = DWC_GAHBCFG_INT_DMA_BURST_INCR;
1677 + core_if->dma_enable = (core_if->core_params->dma_enable != 0);
1678 + core_if->dma_desc_enable = (core_if->core_params->dma_desc_enable != 0);
1679 + break;
1680 +
1681 + }
1682 + ahbcfg.b.dmaenable = core_if->dma_enable;
1683 + dwc_write_reg32(&global_regs->gahbcfg, ahbcfg.d32);
1684 +
1685 + core_if->en_multiple_tx_fifo = core_if->hwcfg4.b.ded_fifo_en;
1686 +
1687 + core_if->pti_enh_enable = core_if->core_params->pti_enable != 0;
1688 + core_if->multiproc_int_enable = core_if->core_params->mpi_enable;
1689 + DWC_PRINT("Periodic Transfer Interrupt Enhancement - %s\n", ((core_if->pti_enh_enable) ? "enabled": "disabled"));
1690 + DWC_PRINT("Multiprocessor Interrupt Enhancement - %s\n", ((core_if->multiproc_int_enable) ? "enabled": "disabled"));
1691 +
1692 + /*
1693 + * Program the GUSBCFG register.
1694 + */
1695 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
1696 +
1697 + switch (core_if->hwcfg2.b.op_mode) {
1698 + case DWC_MODE_HNP_SRP_CAPABLE:
1699 + usbcfg.b.hnpcap = (core_if->core_params->otg_cap ==
1700 + DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE);
1701 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1702 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1703 + break;
1704 +
1705 + case DWC_MODE_SRP_ONLY_CAPABLE:
1706 + usbcfg.b.hnpcap = 0;
1707 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1708 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1709 + break;
1710 +
1711 + case DWC_MODE_NO_HNP_SRP_CAPABLE:
1712 + usbcfg.b.hnpcap = 0;
1713 + usbcfg.b.srpcap = 0;
1714 + break;
1715 +
1716 + case DWC_MODE_SRP_CAPABLE_DEVICE:
1717 + usbcfg.b.hnpcap = 0;
1718 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1719 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1720 + break;
1721 +
1722 + case DWC_MODE_NO_SRP_CAPABLE_DEVICE:
1723 + usbcfg.b.hnpcap = 0;
1724 + usbcfg.b.srpcap = 0;
1725 + break;
1726 +
1727 + case DWC_MODE_SRP_CAPABLE_HOST:
1728 + usbcfg.b.hnpcap = 0;
1729 + usbcfg.b.srpcap = (core_if->core_params->otg_cap !=
1730 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE);
1731 + break;
1732 +
1733 + case DWC_MODE_NO_SRP_CAPABLE_HOST:
1734 + usbcfg.b.hnpcap = 0;
1735 + usbcfg.b.srpcap = 0;
1736 + break;
1737 + }
1738 +
1739 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
1740 +
1741 + /* Enable common interrupts */
1742 + dwc_otg_enable_common_interrupts(core_if);
1743 +
1744 + /* Do device or host intialization based on mode during PCD
1745 + * and HCD initialization */
1746 + if (dwc_otg_is_host_mode(core_if)) {
1747 + DWC_DEBUGPL(DBG_ANY, "Host Mode\n");
1748 + core_if->op_state = A_HOST;
1749 + }
1750 + else {
1751 + DWC_DEBUGPL(DBG_ANY, "Device Mode\n");
1752 + core_if->op_state = B_PERIPHERAL;
1753 +#ifdef DWC_DEVICE_ONLY
1754 + dwc_otg_core_dev_init(core_if);
1755 +#endif
1756 + }
1757 +}
1758 +
1759 +
1760 +/**
1761 + * This function enables the Device mode interrupts.
1762 + *
1763 + * @param core_if Programming view of DWC_otg controller
1764 + */
1765 +void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *core_if)
1766 +{
1767 + gintmsk_data_t intr_mask = { .d32 = 0};
1768 + dwc_otg_core_global_regs_t *global_regs =
1769 + core_if->core_global_regs;
1770 +
1771 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
1772 +
1773 + /* Disable all interrupts. */
1774 + dwc_write_reg32(&global_regs->gintmsk, 0);
1775 +
1776 + /* Clear any pending interrupts */
1777 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
1778 +
1779 + /* Enable the common interrupts */
1780 + dwc_otg_enable_common_interrupts(core_if);
1781 +
1782 + /* Enable interrupts */
1783 + intr_mask.b.usbreset = 1;
1784 + intr_mask.b.enumdone = 1;
1785 +
1786 + if(!core_if->multiproc_int_enable) {
1787 + intr_mask.b.inepintr = 1;
1788 + intr_mask.b.outepintr = 1;
1789 + }
1790 +
1791 + intr_mask.b.erlysuspend = 1;
1792 +
1793 + if(core_if->en_multiple_tx_fifo == 0) {
1794 + intr_mask.b.epmismatch = 1;
1795 + }
1796 +
1797 +
1798 +#ifdef DWC_EN_ISOC
1799 + if(core_if->dma_enable) {
1800 + if(core_if->dma_desc_enable == 0) {
1801 + if(core_if->pti_enh_enable) {
1802 + dctl_data_t dctl = { .d32 = 0 };
1803 + dctl.b.ifrmnum = 1;
1804 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl, 0, dctl.d32);
1805 + } else {
1806 + intr_mask.b.incomplisoin = 1;
1807 + intr_mask.b.incomplisoout = 1;
1808 + }
1809 + }
1810 + } else {
1811 + intr_mask.b.incomplisoin = 1;
1812 + intr_mask.b.incomplisoout = 1;
1813 + }
1814 +#endif // DWC_EN_ISOC
1815 +
1816 +/** @todo NGS: Should this be a module parameter? */
1817 +#ifdef USE_PERIODIC_EP
1818 + intr_mask.b.isooutdrop = 1;
1819 + intr_mask.b.eopframe = 1;
1820 + intr_mask.b.incomplisoin = 1;
1821 + intr_mask.b.incomplisoout = 1;
1822 +#endif
1823 +
1824 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
1825 +
1826 + DWC_DEBUGPL(DBG_CIL, "%s() gintmsk=%0x\n", __func__,
1827 + dwc_read_reg32(&global_regs->gintmsk));
1828 +}
1829 +
1830 +/**
1831 + * This function initializes the DWC_otg controller registers for
1832 + * device mode.
1833 + *
1834 + * @param core_if Programming view of DWC_otg controller
1835 + *
1836 + */
1837 +void dwc_otg_core_dev_init(dwc_otg_core_if_t *core_if)
1838 +{
1839 + int i,size;
1840 + u_int32_t *default_value_array;
1841 +
1842 + dwc_otg_core_global_regs_t *global_regs =
1843 + core_if->core_global_regs;
1844 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
1845 + dwc_otg_core_params_t *params = core_if->core_params;
1846 + dcfg_data_t dcfg = { .d32 = 0};
1847 + grstctl_t resetctl = { .d32 = 0 };
1848 + uint32_t rx_fifo_size;
1849 + fifosize_data_t nptxfifosize;
1850 + fifosize_data_t txfifosize;
1851 + dthrctl_data_t dthrctl;
1852 +
1853 + /* Restart the Phy Clock */
1854 + dwc_write_reg32(core_if->pcgcctl, 0);
1855 +
1856 + /* Device configuration register */
1857 + init_devspd(core_if);
1858 + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
1859 + dcfg.b.descdma = (core_if->dma_desc_enable) ? 1 : 0;
1860 + dcfg.b.perfrint = DWC_DCFG_FRAME_INTERVAL_80;
1861 +
1862 + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
1863 +
1864 + /* Configure data FIFO sizes */
1865 + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
1866 + DWC_DEBUGPL(DBG_CIL, "Total FIFO Size=%d\n", core_if->total_fifo_size);
1867 + DWC_DEBUGPL(DBG_CIL, "Rx FIFO Size=%d\n", params->dev_rx_fifo_size);
1868 + DWC_DEBUGPL(DBG_CIL, "NP Tx FIFO Size=%d\n", params->dev_nperio_tx_fifo_size);
1869 +
1870 + /* Rx FIFO */
1871 + DWC_DEBUGPL(DBG_CIL, "initial grxfsiz=%08x\n",
1872 + dwc_read_reg32(&global_regs->grxfsiz));
1873 +
1874 + rx_fifo_size = params->dev_rx_fifo_size;
1875 + dwc_write_reg32(&global_regs->grxfsiz, rx_fifo_size);
1876 +
1877 + DWC_DEBUGPL(DBG_CIL, "new grxfsiz=%08x\n",
1878 + dwc_read_reg32(&global_regs->grxfsiz));
1879 +
1880 + /** Set Periodic Tx FIFO Mask all bits 0 */
1881 + core_if->p_tx_msk = 0;
1882 +
1883 + /** Set Tx FIFO Mask all bits 0 */
1884 + core_if->tx_msk = 0;
1885 +
1886 + /* Non-periodic Tx FIFO */
1887 + DWC_DEBUGPL(DBG_CIL, "initial gnptxfsiz=%08x\n",
1888 + dwc_read_reg32(&global_regs->gnptxfsiz));
1889 +
1890 + nptxfifosize.b.depth = params->dev_nperio_tx_fifo_size;
1891 + nptxfifosize.b.startaddr = params->dev_rx_fifo_size;
1892 +
1893 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
1894 +
1895 + DWC_DEBUGPL(DBG_CIL, "new gnptxfsiz=%08x\n",
1896 + dwc_read_reg32(&global_regs->gnptxfsiz));
1897 +
1898 + txfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
1899 + if(core_if->en_multiple_tx_fifo == 0) {
1900 + //core_if->hwcfg4.b.ded_fifo_en==0
1901 +
1902 + /**@todo NGS: Fix Periodic FIFO Sizing! */
1903 + /*
1904 + * Periodic Tx FIFOs These FIFOs are numbered from 1 to 15.
1905 + * Indexes of the FIFO size module parameters in the
1906 + * dev_perio_tx_fifo_size array and the FIFO size registers in
1907 + * the dptxfsiz array run from 0 to 14.
1908 + */
1909 + /** @todo Finish debug of this */
1910 + size=core_if->hwcfg4.b.num_dev_perio_in_ep;
1911 + default_value_array=params->dev_perio_tx_fifo_size;
1912 +
1913 + }
1914 + else {
1915 + //core_if->hwcfg4.b.ded_fifo_en==1
1916 + /*
1917 + * Tx FIFOs These FIFOs are numbered from 1 to 15.
1918 + * Indexes of the FIFO size module parameters in the
1919 + * dev_tx_fifo_size array and the FIFO size registers in
1920 + * the dptxfsiz_dieptxf array run from 0 to 14.
1921 + */
1922 +
1923 + size=core_if->hwcfg4.b.num_in_eps;
1924 + default_value_array=params->dev_tx_fifo_size;
1925 +
1926 + }
1927 + for (i=0; i < size; i++)
1928 + {
1929 +
1930 + txfifosize.b.depth = default_value_array[i];
1931 + DWC_DEBUGPL(DBG_CIL, "initial dptxfsiz_dieptxf[%d]=%08x\n", i,
1932 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1933 + dwc_write_reg32(&global_regs->dptxfsiz_dieptxf[i],
1934 + txfifosize.d32);
1935 + DWC_DEBUGPL(DBG_CIL, "new dptxfsiz_dieptxf[%d]=%08x\n", i,
1936 + dwc_read_reg32(&global_regs->dptxfsiz_dieptxf[i]));
1937 + txfifosize.b.startaddr += txfifosize.b.depth;
1938 + }
1939 + }
1940 + /* Flush the FIFOs */
1941 + dwc_otg_flush_tx_fifo(core_if, 0x10); /* all Tx FIFOs */
1942 + dwc_otg_flush_rx_fifo(core_if);
1943 +
1944 + /* Flush the Learning Queue. */
1945 + resetctl.b.intknqflsh = 1;
1946 + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
1947 +
1948 + /* Clear all pending Device Interrupts */
1949 +
1950 + if(core_if->multiproc_int_enable) {
1951 + }
1952 +
1953 + /** @todo - if the condition needed to be checked
1954 + * or in any case all pending interrutps should be cleared?
1955 + */
1956 + if(core_if->multiproc_int_enable) {
1957 + for(i = 0; i < core_if->dev_if->num_in_eps; ++i) {
1958 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[i], 0);
1959 + }
1960 +
1961 + for(i = 0; i < core_if->dev_if->num_out_eps; ++i) {
1962 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[i], 0);
1963 + }
1964 +
1965 + dwc_write_reg32(&dev_if->dev_global_regs->deachint, 0xFFFFFFFF);
1966 + dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, 0);
1967 + } else {
1968 + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, 0);
1969 + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, 0);
1970 + dwc_write_reg32(&dev_if->dev_global_regs->daint, 0xFFFFFFFF);
1971 + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, 0);
1972 + }
1973 +
1974 + for (i=0; i <= dev_if->num_in_eps; i++)
1975 + {
1976 + depctl_data_t depctl;
1977 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
1978 + if (depctl.b.epena) {
1979 + depctl.d32 = 0;
1980 + depctl.b.epdis = 1;
1981 + depctl.b.snak = 1;
1982 + }
1983 + else {
1984 + depctl.d32 = 0;
1985 + }
1986 +
1987 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl, depctl.d32);
1988 +
1989 +
1990 + dwc_write_reg32(&dev_if->in_ep_regs[i]->dieptsiz, 0);
1991 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepdma, 0);
1992 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepint, 0xFF);
1993 + }
1994 +
1995 + for (i=0; i <= dev_if->num_out_eps; i++)
1996 + {
1997 + depctl_data_t depctl;
1998 + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
1999 + if (depctl.b.epena) {
2000 + depctl.d32 = 0;
2001 + depctl.b.epdis = 1;
2002 + depctl.b.snak = 1;
2003 + }
2004 + else {
2005 + depctl.d32 = 0;
2006 + }
2007 +
2008 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl, depctl.d32);
2009 +
2010 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doeptsiz, 0);
2011 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepdma, 0);
2012 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepint, 0xFF);
2013 + }
2014 +
2015 + if(core_if->en_multiple_tx_fifo && core_if->dma_enable) {
2016 + dev_if->non_iso_tx_thr_en = params->thr_ctl & 0x1;
2017 + dev_if->iso_tx_thr_en = (params->thr_ctl >> 1) & 0x1;
2018 + dev_if->rx_thr_en = (params->thr_ctl >> 2) & 0x1;
2019 +
2020 + dev_if->rx_thr_length = params->rx_thr_length;
2021 + dev_if->tx_thr_length = params->tx_thr_length;
2022 +
2023 + dev_if->setup_desc_index = 0;
2024 +
2025 + dthrctl.d32 = 0;
2026 + dthrctl.b.non_iso_thr_en = dev_if->non_iso_tx_thr_en;
2027 + dthrctl.b.iso_thr_en = dev_if->iso_tx_thr_en;
2028 + dthrctl.b.tx_thr_len = dev_if->tx_thr_length;
2029 + dthrctl.b.rx_thr_en = dev_if->rx_thr_en;
2030 + dthrctl.b.rx_thr_len = dev_if->rx_thr_length;
2031 +
2032 + dwc_write_reg32(&dev_if->dev_global_regs->dtknqr3_dthrctl, dthrctl.d32);
2033 +
2034 + DWC_DEBUGPL(DBG_CIL, "Non ISO Tx Thr - %d\nISO Tx Thr - %d\nRx Thr - %d\nTx Thr Len - %d\nRx Thr Len - %d\n",
2035 + dthrctl.b.non_iso_thr_en, dthrctl.b.iso_thr_en, dthrctl.b.rx_thr_en, dthrctl.b.tx_thr_len, dthrctl.b.rx_thr_len);
2036 +
2037 + }
2038 +
2039 + dwc_otg_enable_device_interrupts(core_if);
2040 +
2041 + {
2042 + diepmsk_data_t msk = { .d32 = 0 };
2043 + msk.b.txfifoundrn = 1;
2044 + if(core_if->multiproc_int_enable) {
2045 + dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], msk.d32, msk.d32);
2046 + } else {
2047 + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, msk.d32, msk.d32);
2048 + }
2049 + }
2050 +
2051 +
2052 + if(core_if->multiproc_int_enable) {
2053 + /* Set NAK on Babble */
2054 + dctl_data_t dctl = { .d32 = 0};
2055 + dctl.b.nakonbble = 1;
2056 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, 0, dctl.d32);
2057 + }
2058 +}
2059 +
2060 +/**
2061 + * This function enables the Host mode interrupts.
2062 + *
2063 + * @param core_if Programming view of DWC_otg controller
2064 + */
2065 +void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *core_if)
2066 +{
2067 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
2068 + gintmsk_data_t intr_mask = { .d32 = 0 };
2069 +
2070 + DWC_DEBUGPL(DBG_CIL, "%s()\n", __func__);
2071 +
2072 + /* Disable all interrupts. */
2073 + dwc_write_reg32(&global_regs->gintmsk, 0);
2074 +
2075 + /* Clear any pending interrupts. */
2076 + dwc_write_reg32(&global_regs->gintsts, 0xFFFFFFFF);
2077 +
2078 + /* Enable the common interrupts */
2079 + dwc_otg_enable_common_interrupts(core_if);
2080 +
2081 + /*
2082 + * Enable host mode interrupts without disturbing common
2083 + * interrupts.
2084 + */
2085 + intr_mask.b.sofintr = 1;
2086 + intr_mask.b.portintr = 1;
2087 + intr_mask.b.hcintr = 1;
2088 +
2089 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, intr_mask.d32);
2090 +}
2091 +
2092 +/**
2093 + * This function disables the Host Mode interrupts.
2094 + *
2095 + * @param core_if Programming view of DWC_otg controller
2096 + */
2097 +void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *core_if)
2098 +{
2099 + dwc_otg_core_global_regs_t *global_regs =
2100 + core_if->core_global_regs;
2101 + gintmsk_data_t intr_mask = { .d32 = 0 };
2102 +
2103 + DWC_DEBUGPL(DBG_CILV, "%s()\n", __func__);
2104 +
2105 + /*
2106 + * Disable host mode interrupts without disturbing common
2107 + * interrupts.
2108 + */
2109 + intr_mask.b.sofintr = 1;
2110 + intr_mask.b.portintr = 1;
2111 + intr_mask.b.hcintr = 1;
2112 + intr_mask.b.ptxfempty = 1;
2113 + intr_mask.b.nptxfempty = 1;
2114 +
2115 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
2116 +}
2117 +
2118 +/**
2119 + * This function initializes the DWC_otg controller registers for
2120 + * host mode.
2121 + *
2122 + * This function flushes the Tx and Rx FIFOs and it flushes any entries in the
2123 + * request queues. Host channels are reset to ensure that they are ready for
2124 + * performing transfers.
2125 + *
2126 + * @param core_if Programming view of DWC_otg controller
2127 + *
2128 + */
2129 +void dwc_otg_core_host_init(dwc_otg_core_if_t *core_if)
2130 +{
2131 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
2132 + dwc_otg_host_if_t *host_if = core_if->host_if;
2133 + dwc_otg_core_params_t *params = core_if->core_params;
2134 + hprt0_data_t hprt0 = { .d32 = 0 };
2135 + fifosize_data_t nptxfifosize;
2136 + fifosize_data_t ptxfifosize;
2137 + int i;
2138 + hcchar_data_t hcchar;
2139 + hcfg_data_t hcfg;
2140 + dwc_otg_hc_regs_t *hc_regs;
2141 + int num_channels;
2142 + gotgctl_data_t gotgctl = { .d32 = 0 };
2143 +
2144 + DWC_DEBUGPL(DBG_CILV,"%s(%p)\n", __func__, core_if);
2145 +
2146 + /* Restart the Phy Clock */
2147 + dwc_write_reg32(core_if->pcgcctl, 0);
2148 +
2149 + /* Initialize Host Configuration Register */
2150 + init_fslspclksel(core_if);
2151 + if (core_if->core_params->speed == DWC_SPEED_PARAM_FULL)
2152 + {
2153 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
2154 + hcfg.b.fslssupp = 1;
2155 + dwc_write_reg32(&host_if->host_global_regs->hcfg, hcfg.d32);
2156 + }
2157 +
2158 + /* Configure data FIFO sizes */
2159 + if (core_if->hwcfg2.b.dynamic_fifo && params->enable_dynamic_fifo) {
2160 + DWC_DEBUGPL(DBG_CIL,"Total FIFO Size=%d\n", core_if->total_fifo_size);
2161 + DWC_DEBUGPL(DBG_CIL,"Rx FIFO Size=%d\n", params->host_rx_fifo_size);
2162 + DWC_DEBUGPL(DBG_CIL,"NP Tx FIFO Size=%d\n", params->host_nperio_tx_fifo_size);
2163 + DWC_DEBUGPL(DBG_CIL,"P Tx FIFO Size=%d\n", params->host_perio_tx_fifo_size);
2164 +
2165 + /* Rx FIFO */
2166 + DWC_DEBUGPL(DBG_CIL,"initial grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
2167 + dwc_write_reg32(&global_regs->grxfsiz, params->host_rx_fifo_size);
2168 + DWC_DEBUGPL(DBG_CIL,"new grxfsiz=%08x\n", dwc_read_reg32(&global_regs->grxfsiz));
2169 +
2170 + /* Non-periodic Tx FIFO */
2171 + DWC_DEBUGPL(DBG_CIL,"initial gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
2172 + nptxfifosize.b.depth = params->host_nperio_tx_fifo_size;
2173 + nptxfifosize.b.startaddr = params->host_rx_fifo_size;
2174 + dwc_write_reg32(&global_regs->gnptxfsiz, nptxfifosize.d32);
2175 + DWC_DEBUGPL(DBG_CIL,"new gnptxfsiz=%08x\n", dwc_read_reg32(&global_regs->gnptxfsiz));
2176 +
2177 + /* Periodic Tx FIFO */
2178 + DWC_DEBUGPL(DBG_CIL,"initial hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2179 + ptxfifosize.b.depth = params->host_perio_tx_fifo_size;
2180 + ptxfifosize.b.startaddr = nptxfifosize.b.startaddr + nptxfifosize.b.depth;
2181 + dwc_write_reg32(&global_regs->hptxfsiz, ptxfifosize.d32);
2182 + DWC_DEBUGPL(DBG_CIL,"new hptxfsiz=%08x\n", dwc_read_reg32(&global_regs->hptxfsiz));
2183 + }
2184 +
2185 + /* Clear Host Set HNP Enable in the OTG Control Register */
2186 + gotgctl.b.hstsethnpen = 1;
2187 + dwc_modify_reg32(&global_regs->gotgctl, gotgctl.d32, 0);
2188 +
2189 + /* Make sure the FIFOs are flushed. */
2190 + dwc_otg_flush_tx_fifo(core_if, 0x10 /* all Tx FIFOs */);
2191 + dwc_otg_flush_rx_fifo(core_if);
2192 +
2193 + /* Flush out any leftover queued requests. */
2194 + num_channels = core_if->core_params->host_channels;
2195 + for (i = 0; i < num_channels; i++)
2196 + {
2197 + hc_regs = core_if->host_if->hc_regs[i];
2198 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2199 + hcchar.b.chen = 0;
2200 + hcchar.b.chdis = 1;
2201 + hcchar.b.epdir = 0;
2202 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2203 + }
2204 +
2205 + /* Halt all channels to put them into a known state. */
2206 + for (i = 0; i < num_channels; i++)
2207 + {
2208 + int count = 0;
2209 + hc_regs = core_if->host_if->hc_regs[i];
2210 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2211 + hcchar.b.chen = 1;
2212 + hcchar.b.chdis = 1;
2213 + hcchar.b.epdir = 0;
2214 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2215 + DWC_DEBUGPL(DBG_HCDV, "%s: Halt channel %d\n", __func__, i);
2216 + do {
2217 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2218 + if (++count > 1000)
2219 + {
2220 + DWC_ERROR("%s: Unable to clear halt on channel %d\n",
2221 + __func__, i);
2222 + break;
2223 + }
2224 + }
2225 + while (hcchar.b.chen);
2226 + }
2227 +
2228 + /* Turn on the vbus power. */
2229 + DWC_PRINT("Init: Port Power? op_state=%d\n", core_if->op_state);
2230 + if (core_if->op_state == A_HOST) {
2231 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
2232 + DWC_PRINT("Init: Power Port (%d)\n", hprt0.b.prtpwr);
2233 + if (hprt0.b.prtpwr == 0) {
2234 + hprt0.b.prtpwr = 1;
2235 + dwc_write_reg32(host_if->hprt0, hprt0.d32);
2236 + }
2237 + }
2238 +
2239 + dwc_otg_enable_host_interrupts(core_if);
2240 +}
2241 +
2242 +/**
2243 + * Prepares a host channel for transferring packets to/from a specific
2244 + * endpoint. The HCCHARn register is set up with the characteristics specified
2245 + * in _hc. Host channel interrupts that may need to be serviced while this
2246 + * transfer is in progress are enabled.
2247 + *
2248 + * @param core_if Programming view of DWC_otg controller
2249 + * @param hc Information needed to initialize the host channel
2250 + */
2251 +void dwc_otg_hc_init(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2252 +{
2253 + uint32_t intr_enable;
2254 + hcintmsk_data_t hc_intr_mask;
2255 + gintmsk_data_t gintmsk = { .d32 = 0 };
2256 + hcchar_data_t hcchar;
2257 + hcsplt_data_t hcsplt;
2258 +
2259 + uint8_t hc_num = hc->hc_num;
2260 + dwc_otg_host_if_t *host_if = core_if->host_if;
2261 + dwc_otg_hc_regs_t *hc_regs = host_if->hc_regs[hc_num];
2262 +
2263 + /* Clear old interrupt conditions for this host channel. */
2264 + hc_intr_mask.d32 = 0xFFFFFFFF;
2265 + hc_intr_mask.b.reserved = 0;
2266 + dwc_write_reg32(&hc_regs->hcint, hc_intr_mask.d32);
2267 +
2268 + /* Enable channel interrupts required for this transfer. */
2269 + hc_intr_mask.d32 = 0;
2270 + hc_intr_mask.b.chhltd = 1;
2271 + if (core_if->dma_enable) {
2272 + hc_intr_mask.b.ahberr = 1;
2273 + if (hc->error_state && !hc->do_split &&
2274 + hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
2275 + hc_intr_mask.b.ack = 1;
2276 + if (hc->ep_is_in) {
2277 + hc_intr_mask.b.datatglerr = 1;
2278 + if (hc->ep_type != DWC_OTG_EP_TYPE_INTR) {
2279 + hc_intr_mask.b.nak = 1;
2280 + }
2281 + }
2282 + }
2283 + }
2284 + else {
2285 + switch (hc->ep_type) {
2286 + case DWC_OTG_EP_TYPE_CONTROL:
2287 + case DWC_OTG_EP_TYPE_BULK:
2288 + hc_intr_mask.b.xfercompl = 1;
2289 + hc_intr_mask.b.stall = 1;
2290 + hc_intr_mask.b.xacterr = 1;
2291 + hc_intr_mask.b.datatglerr = 1;
2292 + if (hc->ep_is_in) {
2293 + hc_intr_mask.b.bblerr = 1;
2294 + }
2295 + else {
2296 + hc_intr_mask.b.nak = 1;
2297 + hc_intr_mask.b.nyet = 1;
2298 + if (hc->do_ping) {
2299 + hc_intr_mask.b.ack = 1;
2300 + }
2301 + }
2302 +
2303 + if (hc->do_split) {
2304 + hc_intr_mask.b.nak = 1;
2305 + if (hc->complete_split) {
2306 + hc_intr_mask.b.nyet = 1;
2307 + }
2308 + else {
2309 + hc_intr_mask.b.ack = 1;
2310 + }
2311 + }
2312 +
2313 + if (hc->error_state) {
2314 + hc_intr_mask.b.ack = 1;
2315 + }
2316 + break;
2317 + case DWC_OTG_EP_TYPE_INTR:
2318 + hc_intr_mask.b.xfercompl = 1;
2319 + hc_intr_mask.b.nak = 1;
2320 + hc_intr_mask.b.stall = 1;
2321 + hc_intr_mask.b.xacterr = 1;
2322 + hc_intr_mask.b.datatglerr = 1;
2323 + hc_intr_mask.b.frmovrun = 1;
2324 +
2325 + if (hc->ep_is_in) {
2326 + hc_intr_mask.b.bblerr = 1;
2327 + }
2328 + if (hc->error_state) {
2329 + hc_intr_mask.b.ack = 1;
2330 + }
2331 + if (hc->do_split) {
2332 + if (hc->complete_split) {
2333 + hc_intr_mask.b.nyet = 1;
2334 + }
2335 + else {
2336 + hc_intr_mask.b.ack = 1;
2337 + }
2338 + }
2339 + break;
2340 + case DWC_OTG_EP_TYPE_ISOC:
2341 + hc_intr_mask.b.xfercompl = 1;
2342 + hc_intr_mask.b.frmovrun = 1;
2343 + hc_intr_mask.b.ack = 1;
2344 +
2345 + if (hc->ep_is_in) {
2346 + hc_intr_mask.b.xacterr = 1;
2347 + hc_intr_mask.b.bblerr = 1;
2348 + }
2349 + break;
2350 + }
2351 + }
2352 + dwc_write_reg32(&hc_regs->hcintmsk, hc_intr_mask.d32);
2353 +
2354 +// if(hc->ep_type == DWC_OTG_EP_TYPE_BULK && !hc->ep_is_in)
2355 +// hc->max_packet = 512;
2356 + /* Enable the top level host channel interrupt. */
2357 + intr_enable = (1 << hc_num);
2358 + dwc_modify_reg32(&host_if->host_global_regs->haintmsk, 0, intr_enable);
2359 +
2360 + /* Make sure host channel interrupts are enabled. */
2361 + gintmsk.b.hcintr = 1;
2362 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, 0, gintmsk.d32);
2363 +
2364 + /*
2365 + * Program the HCCHARn register with the endpoint characteristics for
2366 + * the current transfer.
2367 + */
2368 + hcchar.d32 = 0;
2369 + hcchar.b.devaddr = hc->dev_addr;
2370 + hcchar.b.epnum = hc->ep_num;
2371 + hcchar.b.epdir = hc->ep_is_in;
2372 + hcchar.b.lspddev = (hc->speed == DWC_OTG_EP_SPEED_LOW);
2373 + hcchar.b.eptype = hc->ep_type;
2374 + hcchar.b.mps = hc->max_packet;
2375 +
2376 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcchar, hcchar.d32);
2377 +
2378 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2379 + DWC_DEBUGPL(DBG_HCDV, " Dev Addr: %d\n", hcchar.b.devaddr);
2380 + DWC_DEBUGPL(DBG_HCDV, " Ep Num: %d\n", hcchar.b.epnum);
2381 + DWC_DEBUGPL(DBG_HCDV, " Is In: %d\n", hcchar.b.epdir);
2382 + DWC_DEBUGPL(DBG_HCDV, " Is Low Speed: %d\n", hcchar.b.lspddev);
2383 + DWC_DEBUGPL(DBG_HCDV, " Ep Type: %d\n", hcchar.b.eptype);
2384 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2385 + DWC_DEBUGPL(DBG_HCDV, " Multi Cnt: %d\n", hcchar.b.multicnt);
2386 +
2387 + /*
2388 + * Program the HCSPLIT register for SPLITs
2389 + */
2390 + hcsplt.d32 = 0;
2391 + if (hc->do_split) {
2392 + DWC_DEBUGPL(DBG_HCDV, "Programming HC %d with split --> %s\n", hc->hc_num,
2393 + hc->complete_split ? "CSPLIT" : "SSPLIT");
2394 + hcsplt.b.compsplt = hc->complete_split;
2395 + hcsplt.b.xactpos = hc->xact_pos;
2396 + hcsplt.b.hubaddr = hc->hub_addr;
2397 + hcsplt.b.prtaddr = hc->port_addr;
2398 + DWC_DEBUGPL(DBG_HCDV, " comp split %d\n", hc->complete_split);
2399 + DWC_DEBUGPL(DBG_HCDV, " xact pos %d\n", hc->xact_pos);
2400 + DWC_DEBUGPL(DBG_HCDV, " hub addr %d\n", hc->hub_addr);
2401 + DWC_DEBUGPL(DBG_HCDV, " port addr %d\n", hc->port_addr);
2402 + DWC_DEBUGPL(DBG_HCDV, " is_in %d\n", hc->ep_is_in);
2403 + DWC_DEBUGPL(DBG_HCDV, " Max Pkt: %d\n", hcchar.b.mps);
2404 + DWC_DEBUGPL(DBG_HCDV, " xferlen: %d\n", hc->xfer_len);
2405 + }
2406 + dwc_write_reg32(&host_if->hc_regs[hc_num]->hcsplt, hcsplt.d32);
2407 +
2408 +}
2409 +
2410 +/**
2411 + * Attempts to halt a host channel. This function should only be called in
2412 + * Slave mode or to abort a transfer in either Slave mode or DMA mode. Under
2413 + * normal circumstances in DMA mode, the controller halts the channel when the
2414 + * transfer is complete or a condition occurs that requires application
2415 + * intervention.
2416 + *
2417 + * In slave mode, checks for a free request queue entry, then sets the Channel
2418 + * Enable and Channel Disable bits of the Host Channel Characteristics
2419 + * register of the specified channel to intiate the halt. If there is no free
2420 + * request queue entry, sets only the Channel Disable bit of the HCCHARn
2421 + * register to flush requests for this channel. In the latter case, sets a
2422 + * flag to indicate that the host channel needs to be halted when a request
2423 + * queue slot is open.
2424 + *
2425 + * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
2426 + * HCCHARn register. The controller ensures there is space in the request
2427 + * queue before submitting the halt request.
2428 + *
2429 + * Some time may elapse before the core flushes any posted requests for this
2430 + * host channel and halts. The Channel Halted interrupt handler completes the
2431 + * deactivation of the host channel.
2432 + *
2433 + * @param core_if Controller register interface.
2434 + * @param hc Host channel to halt.
2435 + * @param halt_status Reason for halting the channel.
2436 + */
2437 +void dwc_otg_hc_halt(dwc_otg_core_if_t *core_if,
2438 + dwc_hc_t *hc,
2439 + dwc_otg_halt_status_e halt_status)
2440 +{
2441 + gnptxsts_data_t nptxsts;
2442 + hptxsts_data_t hptxsts;
2443 + hcchar_data_t hcchar;
2444 + dwc_otg_hc_regs_t *hc_regs;
2445 + dwc_otg_core_global_regs_t *global_regs;
2446 + dwc_otg_host_global_regs_t *host_global_regs;
2447 +
2448 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2449 + global_regs = core_if->core_global_regs;
2450 + host_global_regs = core_if->host_if->host_global_regs;
2451 +
2452 + WARN_ON(halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS);
2453 +
2454 + if (halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
2455 + halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
2456 + /*
2457 + * Disable all channel interrupts except Ch Halted. The QTD
2458 + * and QH state associated with this transfer has been cleared
2459 + * (in the case of URB_DEQUEUE), so the channel needs to be
2460 + * shut down carefully to prevent crashes.
2461 + */
2462 + hcintmsk_data_t hcintmsk;
2463 + hcintmsk.d32 = 0;
2464 + hcintmsk.b.chhltd = 1;
2465 + dwc_write_reg32(&hc_regs->hcintmsk, hcintmsk.d32);
2466 +
2467 + /*
2468 + * Make sure no other interrupts besides halt are currently
2469 + * pending. Handling another interrupt could cause a crash due
2470 + * to the QTD and QH state.
2471 + */
2472 + dwc_write_reg32(&hc_regs->hcint, ~hcintmsk.d32);
2473 +
2474 + /*
2475 + * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
2476 + * even if the channel was already halted for some other
2477 + * reason.
2478 + */
2479 + hc->halt_status = halt_status;
2480 +
2481 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2482 + if (hcchar.b.chen == 0) {
2483 + /*
2484 + * The channel is either already halted or it hasn't
2485 + * started yet. In DMA mode, the transfer may halt if
2486 + * it finishes normally or a condition occurs that
2487 + * requires driver intervention. Don't want to halt
2488 + * the channel again. In either Slave or DMA mode,
2489 + * it's possible that the transfer has been assigned
2490 + * to a channel, but not started yet when an URB is
2491 + * dequeued. Don't want to halt a channel that hasn't
2492 + * started yet.
2493 + */
2494 + return;
2495 + }
2496 + }
2497 +
2498 + if (hc->halt_pending) {
2499 + /*
2500 + * A halt has already been issued for this channel. This might
2501 + * happen when a transfer is aborted by a higher level in
2502 + * the stack.
2503 + */
2504 +#ifdef DEBUG
2505 + DWC_PRINT("*** %s: Channel %d, _hc->halt_pending already set ***\n",
2506 + __func__, hc->hc_num);
2507 +
2508 +/* dwc_otg_dump_global_registers(core_if); */
2509 +/* dwc_otg_dump_host_registers(core_if); */
2510 +#endif
2511 + return;
2512 + }
2513 +
2514 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2515 + hcchar.b.chen = 1;
2516 + hcchar.b.chdis = 1;
2517 +
2518 + if (!core_if->dma_enable) {
2519 + /* Check for space in the request queue to issue the halt. */
2520 + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
2521 + hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
2522 + nptxsts.d32 = dwc_read_reg32(&global_regs->gnptxsts);
2523 + if (nptxsts.b.nptxqspcavail == 0) {
2524 + hcchar.b.chen = 0;
2525 + }
2526 + }
2527 + else {
2528 + hptxsts.d32 = dwc_read_reg32(&host_global_regs->hptxsts);
2529 + if ((hptxsts.b.ptxqspcavail == 0) || (core_if->queuing_high_bandwidth)) {
2530 + hcchar.b.chen = 0;
2531 + }
2532 + }
2533 + }
2534 +
2535 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2536 +
2537 + hc->halt_status = halt_status;
2538 +
2539 + if (hcchar.b.chen) {
2540 + hc->halt_pending = 1;
2541 + hc->halt_on_queue = 0;
2542 + }
2543 + else {
2544 + hc->halt_on_queue = 1;
2545 + }
2546 +
2547 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2548 + DWC_DEBUGPL(DBG_HCDV, " hcchar: 0x%08x\n", hcchar.d32);
2549 + DWC_DEBUGPL(DBG_HCDV, " halt_pending: %d\n", hc->halt_pending);
2550 + DWC_DEBUGPL(DBG_HCDV, " halt_on_queue: %d\n", hc->halt_on_queue);
2551 + DWC_DEBUGPL(DBG_HCDV, " halt_status: %d\n", hc->halt_status);
2552 +
2553 + return;
2554 +}
2555 +
2556 +/**
2557 + * Clears the transfer state for a host channel. This function is normally
2558 + * called after a transfer is done and the host channel is being released.
2559 + *
2560 + * @param core_if Programming view of DWC_otg controller.
2561 + * @param hc Identifies the host channel to clean up.
2562 + */
2563 +void dwc_otg_hc_cleanup(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2564 +{
2565 + dwc_otg_hc_regs_t *hc_regs;
2566 +
2567 + hc->xfer_started = 0;
2568 +
2569 + /*
2570 + * Clear channel interrupt enables and any unhandled channel interrupt
2571 + * conditions.
2572 + */
2573 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2574 + dwc_write_reg32(&hc_regs->hcintmsk, 0);
2575 + dwc_write_reg32(&hc_regs->hcint, 0xFFFFFFFF);
2576 +
2577 +#ifdef DEBUG
2578 + del_timer(&core_if->hc_xfer_timer[hc->hc_num]);
2579 + {
2580 + hcchar_data_t hcchar;
2581 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2582 + if (hcchar.b.chdis) {
2583 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2584 + __func__, hc->hc_num, hcchar.d32);
2585 + }
2586 + }
2587 +#endif
2588 +}
2589 +
2590 +/**
2591 + * Sets the channel property that indicates in which frame a periodic transfer
2592 + * should occur. This is always set to the _next_ frame. This function has no
2593 + * effect on non-periodic transfers.
2594 + *
2595 + * @param core_if Programming view of DWC_otg controller.
2596 + * @param hc Identifies the host channel to set up and its properties.
2597 + * @param hcchar Current value of the HCCHAR register for the specified host
2598 + * channel.
2599 + */
2600 +static inline void hc_set_even_odd_frame(dwc_otg_core_if_t *core_if,
2601 + dwc_hc_t *hc,
2602 + hcchar_data_t *hcchar)
2603 +{
2604 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2605 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2606 + hfnum_data_t hfnum;
2607 + hfnum.d32 = dwc_read_reg32(&core_if->host_if->host_global_regs->hfnum);
2608 +
2609 + /* 1 if _next_ frame is odd, 0 if it's even */
2610 + hcchar->b.oddfrm = (hfnum.b.frnum & 0x1) ? 0 : 1;
2611 +#ifdef DEBUG
2612 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR && hc->do_split && !hc->complete_split) {
2613 + switch (hfnum.b.frnum & 0x7) {
2614 + case 7:
2615 + core_if->hfnum_7_samples++;
2616 + core_if->hfnum_7_frrem_accum += hfnum.b.frrem;
2617 + break;
2618 + case 0:
2619 + core_if->hfnum_0_samples++;
2620 + core_if->hfnum_0_frrem_accum += hfnum.b.frrem;
2621 + break;
2622 + default:
2623 + core_if->hfnum_other_samples++;
2624 + core_if->hfnum_other_frrem_accum += hfnum.b.frrem;
2625 + break;
2626 + }
2627 + }
2628 +#endif
2629 + }
2630 +}
2631 +
2632 +#ifdef DEBUG
2633 +static void hc_xfer_timeout(unsigned long ptr)
2634 +{
2635 + hc_xfer_info_t *xfer_info = (hc_xfer_info_t *)ptr;
2636 + int hc_num = xfer_info->hc->hc_num;
2637 + DWC_WARN("%s: timeout on channel %d\n", __func__, hc_num);
2638 + DWC_WARN(" start_hcchar_val 0x%08x\n", xfer_info->core_if->start_hcchar_val[hc_num]);
2639 +}
2640 +#endif
2641 +
2642 +/*
2643 + * This function does the setup for a data transfer for a host channel and
2644 + * starts the transfer. May be called in either Slave mode or DMA mode. In
2645 + * Slave mode, the caller must ensure that there is sufficient space in the
2646 + * request queue and Tx Data FIFO.
2647 + *
2648 + * For an OUT transfer in Slave mode, it loads a data packet into the
2649 + * appropriate FIFO. If necessary, additional data packets will be loaded in
2650 + * the Host ISR.
2651 + *
2652 + * For an IN transfer in Slave mode, a data packet is requested. The data
2653 + * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
2654 + * additional data packets are requested in the Host ISR.
2655 + *
2656 + * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
2657 + * register along with a packet count of 1 and the channel is enabled. This
2658 + * causes a single PING transaction to occur. Other fields in HCTSIZ are
2659 + * simply set to 0 since no data transfer occurs in this case.
2660 + *
2661 + * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
2662 + * all the information required to perform the subsequent data transfer. In
2663 + * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
2664 + * controller performs the entire PING protocol, then starts the data
2665 + * transfer.
2666 + *
2667 + * @param core_if Programming view of DWC_otg controller.
2668 + * @param hc Information needed to initialize the host channel. The xfer_len
2669 + * value may be reduced to accommodate the max widths of the XferSize and
2670 + * PktCnt fields in the HCTSIZn register. The multi_count value may be changed
2671 + * to reflect the final xfer_len value.
2672 + */
2673 +void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2674 +{
2675 + hcchar_data_t hcchar;
2676 + hctsiz_data_t hctsiz;
2677 + uint16_t num_packets;
2678 + uint32_t max_hc_xfer_size = core_if->core_params->max_transfer_size;
2679 + uint16_t max_hc_pkt_count = core_if->core_params->max_packet_count;
2680 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2681 +
2682 + hctsiz.d32 = 0;
2683 +
2684 + if (hc->do_ping) {
2685 + if (!core_if->dma_enable) {
2686 + dwc_otg_hc_do_ping(core_if, hc);
2687 + hc->xfer_started = 1;
2688 + return;
2689 + }
2690 + else {
2691 + hctsiz.b.dopng = 1;
2692 + }
2693 + }
2694 +
2695 + if (hc->do_split) {
2696 + num_packets = 1;
2697 +
2698 + if (hc->complete_split && !hc->ep_is_in) {
2699 + /* For CSPLIT OUT Transfer, set the size to 0 so the
2700 + * core doesn't expect any data written to the FIFO */
2701 + hc->xfer_len = 0;
2702 + }
2703 + else if (hc->ep_is_in || (hc->xfer_len > hc->max_packet)) {
2704 + hc->xfer_len = hc->max_packet;
2705 + }
2706 + else if (!hc->ep_is_in && (hc->xfer_len > 188)) {
2707 + hc->xfer_len = 188;
2708 + }
2709 +
2710 + hctsiz.b.xfersize = hc->xfer_len;
2711 + }
2712 + else {
2713 + /*
2714 + * Ensure that the transfer length and packet count will fit
2715 + * in the widths allocated for them in the HCTSIZn register.
2716 + */
2717 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2718 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2719 + /*
2720 + * Make sure the transfer size is no larger than one
2721 + * (micro)frame's worth of data. (A check was done
2722 + * when the periodic transfer was accepted to ensure
2723 + * that a (micro)frame's worth of data can be
2724 + * programmed into a channel.)
2725 + */
2726 + uint32_t max_periodic_len = hc->multi_count * hc->max_packet;
2727 + if (hc->xfer_len > max_periodic_len) {
2728 + hc->xfer_len = max_periodic_len;
2729 + }
2730 + else {
2731 + }
2732 + }
2733 + else if (hc->xfer_len > max_hc_xfer_size) {
2734 + /* Make sure that xfer_len is a multiple of max packet size. */
2735 + hc->xfer_len = max_hc_xfer_size - hc->max_packet + 1;
2736 + }
2737 +
2738 + if (hc->xfer_len > 0) {
2739 + num_packets = (hc->xfer_len + hc->max_packet - 1) / hc->max_packet;
2740 + if (num_packets > max_hc_pkt_count) {
2741 + num_packets = max_hc_pkt_count;
2742 + hc->xfer_len = num_packets * hc->max_packet;
2743 + }
2744 + }
2745 + else {
2746 + /* Need 1 packet for transfer length of 0. */
2747 + num_packets = 1;
2748 + }
2749 +
2750 +#if 0
2751 +//host testusb item 10, would do series of Control transfer
2752 +//with URB_SHORT_NOT_OK set in transfer_flags ,
2753 +//changing the xfer_len would cause the test fail
2754 + if (hc->ep_is_in) {
2755 + /* Always program an integral # of max packets for IN transfers. */
2756 + hc->xfer_len = num_packets * hc->max_packet;
2757 + }
2758 +#endif
2759 +
2760 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2761 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2762 + /*
2763 + * Make sure that the multi_count field matches the
2764 + * actual transfer length.
2765 + */
2766 + hc->multi_count = num_packets;
2767 + }
2768 +
2769 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2770 + /* Set up the initial PID for the transfer. */
2771 + if (hc->speed == DWC_OTG_EP_SPEED_HIGH) {
2772 + if (hc->ep_is_in) {
2773 + if (hc->multi_count == 1) {
2774 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2775 + }
2776 + else if (hc->multi_count == 2) {
2777 + hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
2778 + }
2779 + else {
2780 + hc->data_pid_start = DWC_OTG_HC_PID_DATA2;
2781 + }
2782 + }
2783 + else {
2784 + if (hc->multi_count == 1) {
2785 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2786 + }
2787 + else {
2788 + hc->data_pid_start = DWC_OTG_HC_PID_MDATA;
2789 + }
2790 + }
2791 + }
2792 + else {
2793 + hc->data_pid_start = DWC_OTG_HC_PID_DATA0;
2794 + }
2795 + }
2796 +
2797 + hctsiz.b.xfersize = hc->xfer_len;
2798 + }
2799 +
2800 + hc->start_pkt_count = num_packets;
2801 + hctsiz.b.pktcnt = num_packets;
2802 + hctsiz.b.pid = hc->data_pid_start;
2803 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2804 +
2805 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2806 + DWC_DEBUGPL(DBG_HCDV, " Xfer Size: %d\n", hctsiz.b.xfersize);
2807 + DWC_DEBUGPL(DBG_HCDV, " Num Pkts: %d\n", hctsiz.b.pktcnt);
2808 + DWC_DEBUGPL(DBG_HCDV, " Start PID: %d\n", hctsiz.b.pid);
2809 +
2810 + if (core_if->dma_enable) {
2811 + dwc_write_reg32(&hc_regs->hcdma, (uint32_t)hc->xfer_buff);
2812 + }
2813 +
2814 + /* Start the split */
2815 + if (hc->do_split) {
2816 + hcsplt_data_t hcsplt;
2817 + hcsplt.d32 = dwc_read_reg32 (&hc_regs->hcsplt);
2818 + hcsplt.b.spltena = 1;
2819 + dwc_write_reg32(&hc_regs->hcsplt, hcsplt.d32);
2820 + }
2821 +
2822 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2823 + hcchar.b.multicnt = hc->multi_count;
2824 + hc_set_even_odd_frame(core_if, hc, &hcchar);
2825 +#ifdef DEBUG
2826 + core_if->start_hcchar_val[hc->hc_num] = hcchar.d32;
2827 + if (hcchar.b.chdis) {
2828 + DWC_WARN("%s: chdis set, channel %d, hcchar 0x%08x\n",
2829 + __func__, hc->hc_num, hcchar.d32);
2830 + }
2831 +#endif
2832 +
2833 + /* Set host channel enable after all other setup is complete. */
2834 + hcchar.b.chen = 1;
2835 + hcchar.b.chdis = 0;
2836 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2837 +
2838 + hc->xfer_started = 1;
2839 + hc->requests++;
2840 +
2841 + if (!core_if->dma_enable &&
2842 + !hc->ep_is_in && hc->xfer_len > 0) {
2843 + /* Load OUT packet into the appropriate Tx FIFO. */
2844 + dwc_otg_hc_write_packet(core_if, hc);
2845 + }
2846 +
2847 +#ifdef DEBUG
2848 + /* Start a timer for this transfer. */
2849 + core_if->hc_xfer_timer[hc->hc_num].function = hc_xfer_timeout;
2850 + core_if->hc_xfer_info[hc->hc_num].core_if = core_if;
2851 + core_if->hc_xfer_info[hc->hc_num].hc = hc;
2852 + core_if->hc_xfer_timer[hc->hc_num].data = (unsigned long)(&core_if->hc_xfer_info[hc->hc_num]);
2853 + core_if->hc_xfer_timer[hc->hc_num].expires = jiffies + (HZ*10);
2854 + add_timer(&core_if->hc_xfer_timer[hc->hc_num]);
2855 +#endif
2856 +}
2857 +
2858 +/**
2859 + * This function continues a data transfer that was started by previous call
2860 + * to <code>dwc_otg_hc_start_transfer</code>. The caller must ensure there is
2861 + * sufficient space in the request queue and Tx Data FIFO. This function
2862 + * should only be called in Slave mode. In DMA mode, the controller acts
2863 + * autonomously to complete transfers programmed to a host channel.
2864 + *
2865 + * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
2866 + * if there is any data remaining to be queued. For an IN transfer, another
2867 + * data packet is always requested. For the SETUP phase of a control transfer,
2868 + * this function does nothing.
2869 + *
2870 + * @return 1 if a new request is queued, 0 if no more requests are required
2871 + * for this transfer.
2872 + */
2873 +int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2874 +{
2875 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2876 +
2877 + if (hc->do_split) {
2878 + /* SPLITs always queue just once per channel */
2879 + return 0;
2880 + }
2881 + else if (hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
2882 + /* SETUPs are queued only once since they can't be NAKed. */
2883 + return 0;
2884 + }
2885 + else if (hc->ep_is_in) {
2886 + /*
2887 + * Always queue another request for other IN transfers. If
2888 + * back-to-back INs are issued and NAKs are received for both,
2889 + * the driver may still be processing the first NAK when the
2890 + * second NAK is received. When the interrupt handler clears
2891 + * the NAK interrupt for the first NAK, the second NAK will
2892 + * not be seen. So we can't depend on the NAK interrupt
2893 + * handler to requeue a NAKed request. Instead, IN requests
2894 + * are issued each time this function is called. When the
2895 + * transfer completes, the extra requests for the channel will
2896 + * be flushed.
2897 + */
2898 + hcchar_data_t hcchar;
2899 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2900 +
2901 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2902 + hc_set_even_odd_frame(core_if, hc, &hcchar);
2903 + hcchar.b.chen = 1;
2904 + hcchar.b.chdis = 0;
2905 + DWC_DEBUGPL(DBG_HCDV, " IN xfer: hcchar = 0x%08x\n", hcchar.d32);
2906 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2907 + hc->requests++;
2908 + return 1;
2909 + }
2910 + else {
2911 + /* OUT transfers. */
2912 + if (hc->xfer_count < hc->xfer_len) {
2913 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
2914 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
2915 + hcchar_data_t hcchar;
2916 + dwc_otg_hc_regs_t *hc_regs;
2917 + hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2918 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2919 + hc_set_even_odd_frame(core_if, hc, &hcchar);
2920 + }
2921 +
2922 + /* Load OUT packet into the appropriate Tx FIFO. */
2923 + dwc_otg_hc_write_packet(core_if, hc);
2924 + hc->requests++;
2925 + return 1;
2926 + }
2927 + else {
2928 + return 0;
2929 + }
2930 + }
2931 +}
2932 +
2933 +/**
2934 + * Starts a PING transfer. This function should only be called in Slave mode.
2935 + * The Do Ping bit is set in the HCTSIZ register, then the channel is enabled.
2936 + */
2937 +void dwc_otg_hc_do_ping(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2938 +{
2939 + hcchar_data_t hcchar;
2940 + hctsiz_data_t hctsiz;
2941 + dwc_otg_hc_regs_t *hc_regs = core_if->host_if->hc_regs[hc->hc_num];
2942 +
2943 + DWC_DEBUGPL(DBG_HCDV, "%s: Channel %d\n", __func__, hc->hc_num);
2944 +
2945 + hctsiz.d32 = 0;
2946 + hctsiz.b.dopng = 1;
2947 + hctsiz.b.pktcnt = 1;
2948 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
2949 +
2950 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
2951 + hcchar.b.chen = 1;
2952 + hcchar.b.chdis = 0;
2953 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
2954 +}
2955 +
2956 +/*
2957 + * This function writes a packet into the Tx FIFO associated with the Host
2958 + * Channel. For a channel associated with a non-periodic EP, the non-periodic
2959 + * Tx FIFO is written. For a channel associated with a periodic EP, the
2960 + * periodic Tx FIFO is written. This function should only be called in Slave
2961 + * mode.
2962 + *
2963 + * Upon return the xfer_buff and xfer_count fields in _hc are incremented by
2964 + * then number of bytes written to the Tx FIFO.
2965 + */
2966 +void dwc_otg_hc_write_packet(dwc_otg_core_if_t *core_if, dwc_hc_t *hc)
2967 +{
2968 + uint32_t i;
2969 + uint32_t remaining_count;
2970 + uint32_t byte_count;
2971 + uint32_t dword_count;
2972 +
2973 + uint32_t *data_buff = (uint32_t *)(hc->xfer_buff);
2974 + uint32_t *data_fifo = core_if->data_fifo[hc->hc_num];
2975 +
2976 + remaining_count = hc->xfer_len - hc->xfer_count;
2977 + if (remaining_count > hc->max_packet) {
2978 + byte_count = hc->max_packet;
2979 + }
2980 + else {
2981 + byte_count = remaining_count;
2982 + }
2983 +
2984 + dword_count = (byte_count + 3) / 4;
2985 +
2986 + if ((((unsigned long)data_buff) & 0x3) == 0) {
2987 + /* xfer_buff is DWORD aligned. */
2988 + for (i = 0; i < dword_count; i++, data_buff++)
2989 + {
2990 + dwc_write_reg32(data_fifo, *data_buff);
2991 + }
2992 + }
2993 + else {
2994 + /* xfer_buff is not DWORD aligned. */
2995 + for (i = 0; i < dword_count; i++, data_buff++)
2996 + {
2997 + dwc_write_reg32(data_fifo, get_unaligned(data_buff));
2998 + }
2999 + }
3000 +
3001 + hc->xfer_count += byte_count;
3002 + hc->xfer_buff += byte_count;
3003 +}
3004 +
3005 +/**
3006 + * Gets the current USB frame number. This is the frame number from the last
3007 + * SOF packet.
3008 + */
3009 +uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *core_if)
3010 +{
3011 + dsts_data_t dsts;
3012 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
3013 +
3014 + /* read current frame/microframe number from DSTS register */
3015 + return dsts.b.soffn;
3016 +}
3017 +
3018 +/**
3019 + * This function reads a setup packet from the Rx FIFO into the destination
3020 + * buffer. This function is called from the Rx Status Queue Level (RxStsQLvl)
3021 + * Interrupt routine when a SETUP packet has been received in Slave mode.
3022 + *
3023 + * @param core_if Programming view of DWC_otg controller.
3024 + * @param dest Destination buffer for packet data.
3025 + */
3026 +void dwc_otg_read_setup_packet(dwc_otg_core_if_t *core_if, uint32_t *dest)
3027 +{
3028 + /* Get the 8 bytes of a setup transaction data */
3029 +
3030 + /* Pop 2 DWORDS off the receive data FIFO into memory */
3031 + dest[0] = dwc_read_reg32(core_if->data_fifo[0]);
3032 + dest[1] = dwc_read_reg32(core_if->data_fifo[0]);
3033 +}
3034 +
3035 +
3036 +/**
3037 + * This function enables EP0 OUT to receive SETUP packets and configures EP0
3038 + * IN for transmitting packets. It is normally called when the
3039 + * "Enumeration Done" interrupt occurs.
3040 + *
3041 + * @param core_if Programming view of DWC_otg controller.
3042 + * @param ep The EP0 data.
3043 + */
3044 +void dwc_otg_ep0_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3045 +{
3046 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
3047 + dsts_data_t dsts;
3048 + depctl_data_t diepctl;
3049 + depctl_data_t doepctl;
3050 + dctl_data_t dctl = { .d32 = 0 };
3051 +
3052 + /* Read the Device Status and Endpoint 0 Control registers */
3053 + dsts.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dsts);
3054 + diepctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl);
3055 + doepctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl);
3056 +
3057 + /* Set the MPS of the IN EP based on the enumeration speed */
3058 + switch (dsts.b.enumspd) {
3059 + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
3060 + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
3061 + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
3062 + diepctl.b.mps = DWC_DEP0CTL_MPS_64;
3063 + break;
3064 + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
3065 + diepctl.b.mps = DWC_DEP0CTL_MPS_8;
3066 + break;
3067 + }
3068 +
3069 + dwc_write_reg32(&dev_if->in_ep_regs[0]->diepctl, diepctl.d32);
3070 +
3071 + /* Enable OUT EP for receive */
3072 + doepctl.b.epena = 1;
3073 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
3074 +
3075 +#ifdef VERBOSE
3076 + DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
3077 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
3078 + DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
3079 + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
3080 +#endif
3081 + dctl.b.cgnpinnak = 1;
3082 +
3083 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl, dctl.d32, dctl.d32);
3084 + DWC_DEBUGPL(DBG_PCDV,"dctl=%0x\n",
3085 + dwc_read_reg32(&dev_if->dev_global_regs->dctl));
3086 +}
3087 +
3088 +/**
3089 + * This function activates an EP. The Device EP control register for
3090 + * the EP is configured as defined in the ep structure. Note: This
3091 + * function is not used for EP0.
3092 + *
3093 + * @param core_if Programming view of DWC_otg controller.
3094 + * @param ep The EP to activate.
3095 + */
3096 +void dwc_otg_ep_activate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3097 +{
3098 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
3099 + depctl_data_t depctl;
3100 + volatile uint32_t *addr;
3101 + daint_data_t daintmsk = { .d32 = 0 };
3102 +
3103 + DWC_DEBUGPL(DBG_PCDV, "%s() EP%d-%s\n", __func__, ep->num,
3104 + (ep->is_in?"IN":"OUT"));
3105 +
3106 + /* Read DEPCTLn register */
3107 + if (ep->is_in == 1) {
3108 + addr = &dev_if->in_ep_regs[ep->num]->diepctl;
3109 + daintmsk.ep.in = 1<<ep->num;
3110 + }
3111 + else {
3112 + addr = &dev_if->out_ep_regs[ep->num]->doepctl;
3113 + daintmsk.ep.out = 1<<ep->num;
3114 + }
3115 +
3116 + /* If the EP is already active don't change the EP Control
3117 + * register. */
3118 + depctl.d32 = dwc_read_reg32(addr);
3119 + if (!depctl.b.usbactep) {
3120 + depctl.b.mps = ep->maxpacket;
3121 + depctl.b.eptype = ep->type;
3122 + depctl.b.txfnum = ep->tx_fifo_num;
3123 +
3124 + if (ep->type == DWC_OTG_EP_TYPE_ISOC) {
3125 + depctl.b.setd0pid = 1; // ???
3126 + }
3127 + else {
3128 + depctl.b.setd0pid = 1;
3129 + }
3130 + depctl.b.usbactep = 1;
3131 +
3132 + dwc_write_reg32(addr, depctl.d32);
3133 + DWC_DEBUGPL(DBG_PCDV,"DEPCTL(%.8x)=%08x\n",(u32)addr, dwc_read_reg32(addr));
3134 + }
3135 +
3136 + /* Enable the Interrupt for this EP */
3137 + if(core_if->multiproc_int_enable) {
3138 + if (ep->is_in == 1) {
3139 + diepmsk_data_t diepmsk = { .d32 = 0};
3140 + diepmsk.b.xfercompl = 1;
3141 + diepmsk.b.timeout = 1;
3142 + diepmsk.b.epdisabled = 1;
3143 + diepmsk.b.ahberr = 1;
3144 + diepmsk.b.intknepmis = 1;
3145 + diepmsk.b.txfifoundrn = 1; //?????
3146 +
3147 +
3148 + if(core_if->dma_desc_enable) {
3149 + diepmsk.b.bna = 1;
3150 + }
3151 +/*
3152 + if(core_if->dma_enable) {
3153 + doepmsk.b.nak = 1;
3154 + }
3155 +*/
3156 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num], diepmsk.d32);
3157 +
3158 + } else {
3159 + doepmsk_data_t doepmsk = { .d32 = 0};
3160 + doepmsk.b.xfercompl = 1;
3161 + doepmsk.b.ahberr = 1;
3162 + doepmsk.b.epdisabled = 1;
3163 +
3164 +
3165 + if(core_if->dma_desc_enable) {
3166 + doepmsk.b.bna = 1;
3167 + }
3168 +/*
3169 + doepmsk.b.babble = 1;
3170 + doepmsk.b.nyet = 1;
3171 + doepmsk.b.nak = 1;
3172 +*/
3173 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[ep->num], doepmsk.d32);
3174 + }
3175 + dwc_modify_reg32(&dev_if->dev_global_regs->deachintmsk,
3176 + 0, daintmsk.d32);
3177 + } else {
3178 + dwc_modify_reg32(&dev_if->dev_global_regs->daintmsk,
3179 + 0, daintmsk.d32);
3180 + }
3181 +
3182 + DWC_DEBUGPL(DBG_PCDV,"DAINTMSK=%0x\n",
3183 + dwc_read_reg32(&dev_if->dev_global_regs->daintmsk));
3184 +
3185 + ep->stall_clear_flag = 0;
3186 + return;
3187 +}
3188 +
3189 +/**
3190 + * This function deactivates an EP. This is done by clearing the USB Active
3191 + * EP bit in the Device EP control register. Note: This function is not used
3192 + * for EP0. EP0 cannot be deactivated.
3193 + *
3194 + * @param core_if Programming view of DWC_otg controller.
3195 + * @param ep The EP to deactivate.
3196 + */
3197 +void dwc_otg_ep_deactivate(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3198 +{
3199 + depctl_data_t depctl = { .d32 = 0 };
3200 + volatile uint32_t *addr;
3201 + daint_data_t daintmsk = { .d32 = 0};
3202 +
3203 + /* Read DEPCTLn register */
3204 + if (ep->is_in == 1) {
3205 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
3206 + daintmsk.ep.in = 1<<ep->num;
3207 + }
3208 + else {
3209 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
3210 + daintmsk.ep.out = 1<<ep->num;
3211 + }
3212 +
3213 + //disabled ep only when ep is enabled
3214 + //or got halt in the loop in test in cv9
3215 + depctl.d32=dwc_read_reg32(addr);
3216 + if(depctl.b.epena){
3217 + if (ep->is_in == 1) {
3218 + diepint_data_t diepint;
3219 + dwc_otg_dev_in_ep_regs_t *in_reg=core_if->dev_if->in_ep_regs[ep->num];
3220 +
3221 + //Set ep nak
3222 + depctl.d32=dwc_read_reg32(&in_reg->diepctl);
3223 + depctl.b.snak=1;
3224 + dwc_write_reg32(&in_reg->diepctl,depctl.d32);
3225 +
3226 + //wait for diepint.b.inepnakeff
3227 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3228 + while(!diepint.b.inepnakeff){
3229 + udelay(1);
3230 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3231 + }
3232 + diepint.d32=0;
3233 + diepint.b.inepnakeff=1;
3234 + dwc_write_reg32(&in_reg->diepint,diepint.d32);
3235 +
3236 + //set ep disable and snak
3237 + depctl.d32=dwc_read_reg32(&in_reg->diepctl);
3238 + depctl.b.snak=1;
3239 + depctl.b.epdis=1;
3240 + dwc_write_reg32(&in_reg->diepctl,depctl.d32);
3241 +
3242 + //wait for diepint.b.epdisabled
3243 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3244 + while(!diepint.b.epdisabled){
3245 + udelay(1);
3246 + diepint.d32=dwc_read_reg32(&in_reg->diepint);
3247 + }
3248 + diepint.d32=0;
3249 + diepint.b.epdisabled=1;
3250 + dwc_write_reg32(&in_reg->diepint,diepint.d32);
3251 +
3252 + //clear ep enable and disable bit
3253 + depctl.d32=dwc_read_reg32(&in_reg->diepctl);
3254 + depctl.b.epena=0;
3255 + depctl.b.epdis=0;
3256 + dwc_write_reg32(&in_reg->diepctl,depctl.d32);
3257 +
3258 + }
3259 +#if 0
3260 +//following DWC OTG DataBook v2.72a, 6.4.2.1.3 Disabling an OUT Endpoint,
3261 +//but this doesn't work, the old code do.
3262 + else {
3263 + doepint_data_t doepint;
3264 + dwc_otg_dev_out_ep_regs_t *out_reg=core_if->dev_if->out_ep_regs[ep->num];
3265 + dctl_data_t dctl;
3266 + gintsts_data_t gintsts;
3267 +
3268 + //set dctl global out nak
3269 + dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
3270 + dctl.b.sgoutnak=1;
3271 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl,dctl.d32);
3272 +
3273 + //wait for gintsts.goutnakeff
3274 + gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
3275 + while(!gintsts.b.goutnakeff){
3276 + udelay(1);
3277 + gintsts.d32=dwc_read_reg32(&core_if->core_global_regs->gintsts);
3278 + }
3279 + gintsts.d32=0;
3280 + gintsts.b.goutnakeff=1;
3281 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
3282 +
3283 + //set ep disable and snak
3284 + depctl.d32=dwc_read_reg32(&out_reg->doepctl);
3285 + depctl.b.snak=1;
3286 + depctl.b.epdis=1;
3287 + dwc_write_reg32(&out_reg->doepctl,depctl.d32);
3288 +
3289 + //wait for diepint.b.epdisabled
3290 + doepint.d32=dwc_read_reg32(&out_reg->doepint);
3291 + while(!doepint.b.epdisabled){
3292 + udelay(1);
3293 + doepint.d32=dwc_read_reg32(&out_reg->doepint);
3294 + }
3295 + doepint.d32=0;
3296 + doepint.b.epdisabled=1;
3297 + dwc_write_reg32(&out_reg->doepint,doepint.d32);
3298 +
3299 + //clear ep enable and disable bit
3300 + depctl.d32=dwc_read_reg32(&out_reg->doepctl);
3301 + depctl.b.epena=0;
3302 + depctl.b.epdis=0;
3303 + dwc_write_reg32(&out_reg->doepctl,depctl.d32);
3304 + }
3305 +#endif
3306 +
3307 + depctl.d32=0;
3308 + depctl.b.usbactep = 0;
3309 +
3310 + if (ep->is_in == 0) {
3311 + if(core_if->dma_enable||core_if->dma_desc_enable)
3312 + depctl.b.epdis = 1;
3313 + }
3314 +
3315 + dwc_write_reg32(addr, depctl.d32);
3316 + }
3317 +
3318 + /* Disable the Interrupt for this EP */
3319 + if(core_if->multiproc_int_enable) {
3320 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->deachintmsk,
3321 + daintmsk.d32, 0);
3322 +
3323 + if (ep->is_in == 1) {
3324 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[ep->num], 0);
3325 + } else {
3326 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[ep->num], 0);
3327 + }
3328 + } else {
3329 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->daintmsk,
3330 + daintmsk.d32, 0);
3331 + }
3332 +
3333 + if (ep->is_in == 1) {
3334 + DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
3335 + (u32)&core_if->dev_if->in_ep_regs[ep->num]->diepctl,
3336 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepctl),
3337 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz),
3338 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepint),
3339 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->diepdma),
3340 + dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts));
3341 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3342 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3343 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3344 + }
3345 + else {
3346 + DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
3347 + (u32)&core_if->dev_if->out_ep_regs[ep->num]->doepctl,
3348 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepctl),
3349 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz),
3350 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepint),
3351 + dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doepdma));
3352 +
3353 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3354 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3355 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3356 + }
3357 +
3358 +}
3359 +
3360 +/**
3361 + * This function does the setup for a data transfer for an EP and
3362 + * starts the transfer. For an IN transfer, the packets will be
3363 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
3364 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
3365 + *
3366 + * @param core_if Programming view of DWC_otg controller.
3367 + * @param ep The EP to start the transfer on.
3368 + */
3369 +static void init_dma_desc_chain(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3370 +{
3371 + dwc_otg_dma_desc_t* dma_desc;
3372 + uint32_t offset;
3373 + uint32_t xfer_est;
3374 + int i;
3375 +
3376 + ep->desc_cnt = ( ep->total_len / ep->maxxfer) +
3377 + ((ep->total_len % ep->maxxfer) ? 1 : 0);
3378 + if(!ep->desc_cnt)
3379 + ep->desc_cnt = 1;
3380 +
3381 + dma_desc = ep->desc_addr;
3382 + xfer_est = ep->total_len;
3383 + offset = 0;
3384 + for( i = 0; i < ep->desc_cnt; ++i) {
3385 + /** DMA Descriptor Setup */
3386 + if(xfer_est > ep->maxxfer) {
3387 + dma_desc->status.b.bs = BS_HOST_BUSY;
3388 + dma_desc->status.b.l = 0;
3389 + dma_desc->status.b.ioc = 0;
3390 + dma_desc->status.b.sp = 0;
3391 + dma_desc->status.b.bytes = ep->maxxfer;
3392 + dma_desc->buf = ep->dma_addr + offset;
3393 + dma_desc->status.b.bs = BS_HOST_READY;
3394 +
3395 + xfer_est -= ep->maxxfer;
3396 + offset += ep->maxxfer;
3397 + } else {
3398 + dma_desc->status.b.bs = BS_HOST_BUSY;
3399 + dma_desc->status.b.l = 1;
3400 + dma_desc->status.b.ioc = 1;
3401 + if(ep->is_in) {
3402 + dma_desc->status.b.sp = (xfer_est % ep->maxpacket) ?
3403 + 1 : ((ep->sent_zlp) ? 1 : 0);
3404 + dma_desc->status.b.bytes = xfer_est;
3405 + } else {
3406 + dma_desc->status.b.bytes = xfer_est + ((4 - (xfer_est & 0x3)) & 0x3) ;
3407 + }
3408 +
3409 + dma_desc->buf = ep->dma_addr + offset;
3410 + dma_desc->status.b.bs = BS_HOST_READY;
3411 + }
3412 + dma_desc ++;
3413 + }
3414 +}
3415 +
3416 +/**
3417 + * This function does the setup for a data transfer for an EP and
3418 + * starts the transfer. For an IN transfer, the packets will be
3419 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
3420 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
3421 + *
3422 + * @param core_if Programming view of DWC_otg controller.
3423 + * @param ep The EP to start the transfer on.
3424 + */
3425 +
3426 +void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3427 +{
3428 + depctl_data_t depctl;
3429 + deptsiz_data_t deptsiz;
3430 + gintmsk_data_t intr_mask = { .d32 = 0};
3431 +
3432 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
3433 +
3434 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3435 + "xfer_buff=%p start_xfer_buff=%p\n",
3436 + ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
3437 + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff);
3438 +
3439 + /* IN endpoint */
3440 + if (ep->is_in == 1) {
3441 + dwc_otg_dev_in_ep_regs_t *in_regs =
3442 + core_if->dev_if->in_ep_regs[ep->num];
3443 +
3444 + gnptxsts_data_t gtxstatus;
3445 +
3446 + gtxstatus.d32 =
3447 + dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
3448 +
3449 + if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
3450 +#ifdef DEBUG
3451 + DWC_PRINT("TX Queue Full (0x%0x)\n", gtxstatus.d32);
3452 +#endif
3453 + return;
3454 + }
3455 +
3456 + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
3457 + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
3458 +
3459 + ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
3460 + ep->maxxfer : (ep->total_len - ep->xfer_len);
3461 +
3462 + /* Zero Length Packet? */
3463 + if ((ep->xfer_len - ep->xfer_count) == 0) {
3464 + deptsiz.b.xfersize = 0;
3465 + deptsiz.b.pktcnt = 1;
3466 + }
3467 + else {
3468 + /* Program the transfer size and packet count
3469 + * as follows: xfersize = N * maxpacket +
3470 + * short_packet pktcnt = N + (short_packet
3471 + * exist ? 1 : 0)
3472 + */
3473 + deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
3474 + deptsiz.b.pktcnt =
3475 + (ep->xfer_len - ep->xfer_count - 1 + ep->maxpacket) /
3476 + ep->maxpacket;
3477 + }
3478 +
3479 +
3480 + /* Write the DMA register */
3481 + if (core_if->dma_enable) {
3482 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3483 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3484 + }
3485 + DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n", ep->num, ep->dma_addr);
3486 +
3487 + if (core_if->dma_desc_enable == 0) {
3488 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3489 +
3490 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3491 + dwc_write_reg32 (&(in_regs->diepdma),
3492 + (uint32_t)ep->dma_addr);
3493 + }
3494 + else {
3495 + init_dma_desc_chain(core_if, ep);
3496 + /** DIEPDMAn Register write */
3497 +
3498 + VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
3499 + dwc_write_reg32(&in_regs->diepdma, ep->dma_desc_addr);
3500 + }
3501 + }
3502 + else
3503 + {
3504 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3505 + if(ep->type != DWC_OTG_EP_TYPE_ISOC) {
3506 + /**
3507 + * Enable the Non-Periodic Tx FIFO empty interrupt,
3508 + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
3509 + * the data will be written into the fifo by the ISR.
3510 + */
3511 + if(core_if->en_multiple_tx_fifo == 0) {
3512 + intr_mask.b.nptxfempty = 1;
3513 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
3514 + intr_mask.d32, intr_mask.d32);
3515 + }
3516 + else {
3517 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3518 + if(ep->xfer_len > 0) {
3519 + uint32_t fifoemptymsk = 0;
3520 + fifoemptymsk = 1 << ep->num;
3521 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3522 + 0, fifoemptymsk);
3523 +
3524 + }
3525 + }
3526 + }
3527 + }
3528 +
3529 + /* EP enable, IN data in FIFO */
3530 + depctl.b.cnak = 1;
3531 + depctl.b.epena = 1;
3532 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3533 +
3534 + depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
3535 + depctl.b.nextep = ep->num;
3536 + dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
3537 +
3538 + DWC_DEBUGPL(DBG_PCD, "DIEPCTL(%.8x)=%08x DIEPTSIZ=%08x, DIEPINT=%.8x, DIEPDMA=%.8x, DTXFSTS=%.8x\n",
3539 + (u32)&in_regs->diepctl,
3540 + dwc_read_reg32(&in_regs->diepctl),
3541 + dwc_read_reg32(&in_regs->dieptsiz),
3542 + dwc_read_reg32(&in_regs->diepint),
3543 + dwc_read_reg32(&in_regs->diepdma),
3544 + dwc_read_reg32(&in_regs->dtxfsts));
3545 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3546 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3547 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3548 +
3549 + }
3550 + else {
3551 + /* OUT endpoint */
3552 + dwc_otg_dev_out_ep_regs_t *out_regs =
3553 + core_if->dev_if->out_ep_regs[ep->num];
3554 +
3555 + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
3556 + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
3557 +
3558 + ep->xfer_len += (ep->maxxfer < (ep->total_len - ep->xfer_len)) ?
3559 + ep->maxxfer : (ep->total_len - ep->xfer_len);
3560 +
3561 + /* Program the transfer size and packet count as follows:
3562 + *
3563 + * pktcnt = N
3564 + * xfersize = N * maxpacket
3565 + */
3566 + if ((ep->xfer_len - ep->xfer_count) == 0) {
3567 + /* Zero Length Packet */
3568 + deptsiz.b.xfersize = ep->maxpacket;
3569 + deptsiz.b.pktcnt = 1;
3570 + }
3571 + else {
3572 + deptsiz.b.pktcnt =
3573 + (ep->xfer_len - ep->xfer_count + (ep->maxpacket - 1)) /
3574 + ep->maxpacket;
3575 + ep->xfer_len = deptsiz.b.pktcnt * ep->maxpacket + ep->xfer_count;
3576 + deptsiz.b.xfersize = ep->xfer_len - ep->xfer_count;
3577 + }
3578 +
3579 + DWC_DEBUGPL(DBG_PCDV, "ep%d xfersize=%d pktcnt=%d\n",
3580 + ep->num,
3581 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
3582 +
3583 + if (core_if->dma_enable) {
3584 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3585 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3586 + }
3587 + DWC_DEBUGPL(DBG_PCDV, "ep%d dma_addr=%.8x\n",
3588 + ep->num,
3589 + ep->dma_addr);
3590 + if (!core_if->dma_desc_enable) {
3591 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3592 +
3593 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3594 + dwc_write_reg32 (&(out_regs->doepdma),
3595 + (uint32_t)ep->dma_addr);
3596 + }
3597 + else {
3598 + init_dma_desc_chain(core_if, ep);
3599 +
3600 + /** DOEPDMAn Register write */
3601 +
3602 + VERIFY_PCD_DMA_ADDR(ep->dma_desc_addr);
3603 + dwc_write_reg32(&out_regs->doepdma, ep->dma_desc_addr);
3604 + }
3605 + }
3606 + else {
3607 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3608 + }
3609 +
3610 + /* EP enable */
3611 + depctl.b.cnak = 1;
3612 + depctl.b.epena = 1;
3613 +
3614 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3615 +
3616 + DWC_DEBUGPL(DBG_PCD, "DOEPCTL(%.8x)=%08x DOEPTSIZ=%08x, DOEPINT=%.8x, DOEPDMA=%.8x\n",
3617 + (u32)&out_regs->doepctl,
3618 + dwc_read_reg32(&out_regs->doepctl),
3619 + dwc_read_reg32(&out_regs->doeptsiz),
3620 + dwc_read_reg32(&out_regs->doepint),
3621 + dwc_read_reg32(&out_regs->doepdma));
3622 +
3623 + DWC_DEBUGPL(DBG_PCD, "DAINTMSK=%08x GINTMSK=%08x\n",
3624 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk),
3625 + dwc_read_reg32(&core_if->core_global_regs->gintmsk));
3626 + }
3627 +}
3628 +
3629 +/**
3630 + * This function setup a zero length transfer in Buffer DMA and
3631 + * Slave modes for usb requests with zero field set
3632 + *
3633 + * @param core_if Programming view of DWC_otg controller.
3634 + * @param ep The EP to start the transfer on.
3635 + *
3636 + */
3637 +void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3638 +{
3639 +
3640 + depctl_data_t depctl;
3641 + deptsiz_data_t deptsiz;
3642 + gintmsk_data_t intr_mask = { .d32 = 0};
3643 +
3644 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s()\n", __func__);
3645 +
3646 + /* IN endpoint */
3647 + if (ep->is_in == 1) {
3648 + dwc_otg_dev_in_ep_regs_t *in_regs =
3649 + core_if->dev_if->in_ep_regs[ep->num];
3650 +
3651 + depctl.d32 = dwc_read_reg32(&(in_regs->diepctl));
3652 + deptsiz.d32 = dwc_read_reg32(&(in_regs->dieptsiz));
3653 +
3654 + deptsiz.b.xfersize = 0;
3655 + deptsiz.b.pktcnt = 1;
3656 +
3657 +
3658 + /* Write the DMA register */
3659 + if (core_if->dma_enable) {
3660 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3661 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3662 + }
3663 + if (core_if->dma_desc_enable == 0) {
3664 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3665 +
3666 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3667 + dwc_write_reg32 (&(in_regs->diepdma),
3668 + (uint32_t)ep->dma_addr);
3669 + }
3670 + }
3671 + else {
3672 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3673 + /**
3674 + * Enable the Non-Periodic Tx FIFO empty interrupt,
3675 + * or the Tx FIFO epmty interrupt in dedicated Tx FIFO mode,
3676 + * the data will be written into the fifo by the ISR.
3677 + */
3678 + if(core_if->en_multiple_tx_fifo == 0) {
3679 + intr_mask.b.nptxfempty = 1;
3680 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
3681 + intr_mask.d32, intr_mask.d32);
3682 + }
3683 + else {
3684 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3685 + if(ep->xfer_len > 0) {
3686 + uint32_t fifoemptymsk = 0;
3687 + fifoemptymsk = 1 << ep->num;
3688 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3689 + 0, fifoemptymsk);
3690 + }
3691 + }
3692 + }
3693 +
3694 + /* EP enable, IN data in FIFO */
3695 + depctl.b.cnak = 1;
3696 + depctl.b.epena = 1;
3697 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3698 +
3699 + depctl.d32 = dwc_read_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl);
3700 + depctl.b.nextep = ep->num;
3701 + dwc_write_reg32 (&core_if->dev_if->in_ep_regs[0]->diepctl, depctl.d32);
3702 +
3703 + }
3704 + else {
3705 + /* OUT endpoint */
3706 + dwc_otg_dev_out_ep_regs_t *out_regs =
3707 + core_if->dev_if->out_ep_regs[ep->num];
3708 +
3709 + depctl.d32 = dwc_read_reg32(&(out_regs->doepctl));
3710 + deptsiz.d32 = dwc_read_reg32(&(out_regs->doeptsiz));
3711 +
3712 + /* Zero Length Packet */
3713 + deptsiz.b.xfersize = ep->maxpacket;
3714 + deptsiz.b.pktcnt = 1;
3715 +
3716 + if (core_if->dma_enable) {
3717 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3718 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3719 + }
3720 + if (!core_if->dma_desc_enable) {
3721 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3722 +
3723 +
3724 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3725 + dwc_write_reg32 (&(out_regs->doepdma),
3726 + (uint32_t)ep->dma_addr);
3727 + }
3728 + }
3729 + else {
3730 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3731 + }
3732 +
3733 + /* EP enable */
3734 + depctl.b.cnak = 1;
3735 + depctl.b.epena = 1;
3736 +
3737 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
3738 +
3739 + }
3740 +}
3741 +
3742 +/**
3743 + * This function does the setup for a data transfer for EP0 and starts
3744 + * the transfer. For an IN transfer, the packets will be loaded into
3745 + * the appropriate Tx FIFO in the ISR. For OUT transfers, the packets are
3746 + * unloaded from the Rx FIFO in the ISR.
3747 + *
3748 + * @param core_if Programming view of DWC_otg controller.
3749 + * @param ep The EP0 data.
3750 + */
3751 +void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3752 +{
3753 + depctl_data_t depctl;
3754 + deptsiz0_data_t deptsiz;
3755 + gintmsk_data_t intr_mask = { .d32 = 0};
3756 + dwc_otg_dma_desc_t* dma_desc;
3757 +
3758 + DWC_DEBUGPL(DBG_PCD, "ep%d-%s xfer_len=%d xfer_cnt=%d "
3759 + "xfer_buff=%p start_xfer_buff=%p, dma_addr=%.8x\n",
3760 + ep->num, (ep->is_in?"IN":"OUT"), ep->xfer_len,
3761 + ep->xfer_count, ep->xfer_buff, ep->start_xfer_buff,ep->dma_addr);
3762 +
3763 + ep->total_len = ep->xfer_len;
3764 +
3765 + /* IN endpoint */
3766 + if (ep->is_in == 1) {
3767 + dwc_otg_dev_in_ep_regs_t *in_regs =
3768 + core_if->dev_if->in_ep_regs[0];
3769 +
3770 + gnptxsts_data_t gtxstatus;
3771 +
3772 + gtxstatus.d32 =
3773 + dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
3774 +
3775 + if(core_if->en_multiple_tx_fifo == 0 && gtxstatus.b.nptxqspcavail == 0) {
3776 +#ifdef DEBUG
3777 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3778 + DWC_DEBUGPL(DBG_PCD,"DIEPCTL0=%0x\n",
3779 + dwc_read_reg32(&in_regs->diepctl));
3780 + DWC_DEBUGPL(DBG_PCD, "DIEPTSIZ0=%0x (sz=%d, pcnt=%d)\n",
3781 + deptsiz.d32,
3782 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
3783 + DWC_PRINT("TX Queue or FIFO Full (0x%0x)\n",
3784 + gtxstatus.d32);
3785 +#endif
3786 + return;
3787 + }
3788 +
3789 +
3790 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3791 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3792 +
3793 + /* Zero Length Packet? */
3794 + if (ep->xfer_len == 0) {
3795 + deptsiz.b.xfersize = 0;
3796 + deptsiz.b.pktcnt = 1;
3797 + }
3798 + else {
3799 + /* Program the transfer size and packet count
3800 + * as follows: xfersize = N * maxpacket +
3801 + * short_packet pktcnt = N + (short_packet
3802 + * exist ? 1 : 0)
3803 + */
3804 + if (ep->xfer_len > ep->maxpacket) {
3805 + ep->xfer_len = ep->maxpacket;
3806 + deptsiz.b.xfersize = ep->maxpacket;
3807 + }
3808 + else {
3809 + deptsiz.b.xfersize = ep->xfer_len;
3810 + }
3811 + deptsiz.b.pktcnt = 1;
3812 +
3813 + }
3814 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
3815 + ep->xfer_len,
3816 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
3817 + /* Write the DMA register */
3818 + if (core_if->dma_enable) {
3819 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3820 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3821 + }
3822 + if(core_if->dma_desc_enable == 0) {
3823 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3824 +
3825 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3826 + dwc_write_reg32 (&(in_regs->diepdma),
3827 + (uint32_t)ep->dma_addr);
3828 + }
3829 + else {
3830 + dma_desc = core_if->dev_if->in_desc_addr;
3831 +
3832 + /** DMA Descriptor Setup */
3833 + dma_desc->status.b.bs = BS_HOST_BUSY;
3834 + dma_desc->status.b.l = 1;
3835 + dma_desc->status.b.ioc = 1;
3836 + dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
3837 + dma_desc->status.b.bytes = ep->xfer_len;
3838 + dma_desc->buf = ep->dma_addr;
3839 + dma_desc->status.b.bs = BS_HOST_READY;
3840 +
3841 + /** DIEPDMA0 Register write */
3842 +
3843 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
3844 + dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
3845 + }
3846 + }
3847 + else {
3848 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3849 + }
3850 +
3851 + /* EP enable, IN data in FIFO */
3852 + depctl.b.cnak = 1;
3853 + depctl.b.epena = 1;
3854 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
3855 +
3856 + /**
3857 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
3858 + * data will be written into the fifo by the ISR.
3859 + */
3860 + if (!core_if->dma_enable) {
3861 + if(core_if->en_multiple_tx_fifo == 0) {
3862 + intr_mask.b.nptxfempty = 1;
3863 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
3864 + intr_mask.d32, intr_mask.d32);
3865 + }
3866 + else {
3867 + /* Enable the Tx FIFO Empty Interrupt for this EP */
3868 + if(ep->xfer_len > 0) {
3869 + uint32_t fifoemptymsk = 0;
3870 + fifoemptymsk |= 1 << ep->num;
3871 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
3872 + 0, fifoemptymsk);
3873 + }
3874 + }
3875 + }
3876 + }
3877 + else {
3878 + /* OUT endpoint */
3879 + dwc_otg_dev_out_ep_regs_t *out_regs =
3880 + core_if->dev_if->out_ep_regs[0];
3881 +
3882 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
3883 + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
3884 +
3885 + /* Program the transfer size and packet count as follows:
3886 + * xfersize = N * (maxpacket + 4 - (maxpacket % 4))
3887 + * pktcnt = N */
3888 + /* Zero Length Packet */
3889 + deptsiz.b.xfersize = ep->maxpacket;
3890 + deptsiz.b.pktcnt = 1;
3891 +
3892 + DWC_DEBUGPL(DBG_PCDV, "len=%d xfersize=%d pktcnt=%d\n",
3893 + ep->xfer_len,
3894 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
3895 +
3896 + if (core_if->dma_enable) {
3897 + if (/*(core_if->dma_enable)&&*/(ep->dma_addr==DMA_ADDR_INVALID)) {
3898 + ep->dma_addr=dma_map_single(NULL,(void *)(ep->xfer_buff),(ep->xfer_len),DMA_TO_DEVICE);
3899 + }
3900 + if(!core_if->dma_desc_enable) {
3901 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3902 +
3903 +
3904 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
3905 + dwc_write_reg32 (&(out_regs->doepdma),
3906 + (uint32_t)ep->dma_addr);
3907 + }
3908 + else {
3909 + dma_desc = core_if->dev_if->out_desc_addr;
3910 +
3911 + /** DMA Descriptor Setup */
3912 + dma_desc->status.b.bs = BS_HOST_BUSY;
3913 + dma_desc->status.b.l = 1;
3914 + dma_desc->status.b.ioc = 1;
3915 + dma_desc->status.b.bytes = ep->maxpacket;
3916 + dma_desc->buf = ep->dma_addr;
3917 + dma_desc->status.b.bs = BS_HOST_READY;
3918 +
3919 + /** DOEPDMA0 Register write */
3920 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
3921 + dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
3922 + }
3923 + }
3924 + else {
3925 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
3926 + }
3927 +
3928 + /* EP enable */
3929 + depctl.b.cnak = 1;
3930 + depctl.b.epena = 1;
3931 + dwc_write_reg32 (&(out_regs->doepctl), depctl.d32);
3932 + }
3933 +}
3934 +
3935 +/**
3936 + * This function continues control IN transfers started by
3937 + * dwc_otg_ep0_start_transfer, when the transfer does not fit in a
3938 + * single packet. NOTE: The DIEPCTL0/DOEPCTL0 registers only have one
3939 + * bit for the packet count.
3940 + *
3941 + * @param core_if Programming view of DWC_otg controller.
3942 + * @param ep The EP0 data.
3943 + */
3944 +void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
3945 +{
3946 + depctl_data_t depctl;
3947 + deptsiz0_data_t deptsiz;
3948 + gintmsk_data_t intr_mask = { .d32 = 0};
3949 + dwc_otg_dma_desc_t* dma_desc;
3950 +
3951 + if (ep->is_in == 1) {
3952 + dwc_otg_dev_in_ep_regs_t *in_regs =
3953 + core_if->dev_if->in_ep_regs[0];
3954 + gnptxsts_data_t tx_status = { .d32 = 0 };
3955 +
3956 + tx_status.d32 = dwc_read_reg32(&core_if->core_global_regs->gnptxsts);
3957 + /** @todo Should there be check for room in the Tx
3958 + * Status Queue. If not remove the code above this comment. */
3959 +
3960 + depctl.d32 = dwc_read_reg32(&in_regs->diepctl);
3961 + deptsiz.d32 = dwc_read_reg32(&in_regs->dieptsiz);
3962 +
3963 + /* Program the transfer size and packet count
3964 + * as follows: xfersize = N * maxpacket +
3965 + * short_packet pktcnt = N + (short_packet
3966 + * exist ? 1 : 0)
3967 + */
3968 +
3969 +
3970 + if(core_if->dma_desc_enable == 0) {
3971 + deptsiz.b.xfersize = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
3972 + (ep->total_len - ep->xfer_count);
3973 + deptsiz.b.pktcnt = 1;
3974 + if(core_if->dma_enable == 0) {
3975 + ep->xfer_len += deptsiz.b.xfersize;
3976 + } else {
3977 + ep->xfer_len = deptsiz.b.xfersize;
3978 + }
3979 + dwc_write_reg32(&in_regs->dieptsiz, deptsiz.d32);
3980 + }
3981 + else {
3982 + ep->xfer_len = (ep->total_len - ep->xfer_count) > ep->maxpacket ? ep->maxpacket :
3983 + (ep->total_len - ep->xfer_count);
3984 +
3985 + dma_desc = core_if->dev_if->in_desc_addr;
3986 +
3987 + /** DMA Descriptor Setup */
3988 + dma_desc->status.b.bs = BS_HOST_BUSY;
3989 + dma_desc->status.b.l = 1;
3990 + dma_desc->status.b.ioc = 1;
3991 + dma_desc->status.b.sp = (ep->xfer_len == ep->maxpacket) ? 0 : 1;
3992 + dma_desc->status.b.bytes = ep->xfer_len;
3993 + dma_desc->buf = ep->dma_addr;
3994 + dma_desc->status.b.bs = BS_HOST_READY;
3995 +
3996 +
3997 + /** DIEPDMA0 Register write */
3998 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_in_desc_addr);
3999 + dwc_write_reg32(&in_regs->diepdma, core_if->dev_if->dma_in_desc_addr);
4000 + }
4001 +
4002 +
4003 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
4004 + ep->xfer_len,
4005 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
4006 +
4007 + /* Write the DMA register */
4008 + if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
4009 + if(core_if->dma_desc_enable == 0){
4010 +
4011 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
4012 + dwc_write_reg32 (&(in_regs->diepdma), (uint32_t)ep->dma_addr);
4013 + }
4014 + }
4015 +
4016 + /* EP enable, IN data in FIFO */
4017 + depctl.b.cnak = 1;
4018 + depctl.b.epena = 1;
4019 + dwc_write_reg32(&in_regs->diepctl, depctl.d32);
4020 +
4021 + /**
4022 + * Enable the Non-Periodic Tx FIFO empty interrupt, the
4023 + * data will be written into the fifo by the ISR.
4024 + */
4025 + if (!core_if->dma_enable) {
4026 + if(core_if->en_multiple_tx_fifo == 0) {
4027 + /* First clear it from GINTSTS */
4028 + intr_mask.b.nptxfempty = 1;
4029 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
4030 + intr_mask.d32, intr_mask.d32);
4031 +
4032 + }
4033 + else {
4034 + /* Enable the Tx FIFO Empty Interrupt for this EP */
4035 + if(ep->xfer_len > 0) {
4036 + uint32_t fifoemptymsk = 0;
4037 + fifoemptymsk |= 1 << ep->num;
4038 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
4039 + 0, fifoemptymsk);
4040 + }
4041 + }
4042 + }
4043 + }
4044 + else {
4045 + dwc_otg_dev_out_ep_regs_t *out_regs =
4046 + core_if->dev_if->out_ep_regs[0];
4047 +
4048 +
4049 + depctl.d32 = dwc_read_reg32(&out_regs->doepctl);
4050 + deptsiz.d32 = dwc_read_reg32(&out_regs->doeptsiz);
4051 +
4052 + /* Program the transfer size and packet count
4053 + * as follows: xfersize = N * maxpacket +
4054 + * short_packet pktcnt = N + (short_packet
4055 + * exist ? 1 : 0)
4056 + */
4057 + deptsiz.b.xfersize = ep->maxpacket;
4058 + deptsiz.b.pktcnt = 1;
4059 +
4060 +
4061 + if(core_if->dma_desc_enable == 0) {
4062 + dwc_write_reg32(&out_regs->doeptsiz, deptsiz.d32);
4063 + }
4064 + else {
4065 + dma_desc = core_if->dev_if->out_desc_addr;
4066 +
4067 + /** DMA Descriptor Setup */
4068 + dma_desc->status.b.bs = BS_HOST_BUSY;
4069 + dma_desc->status.b.l = 1;
4070 + dma_desc->status.b.ioc = 1;
4071 + dma_desc->status.b.bytes = ep->maxpacket;
4072 + dma_desc->buf = ep->dma_addr;
4073 + dma_desc->status.b.bs = BS_HOST_READY;
4074 +
4075 + /** DOEPDMA0 Register write */
4076 + VERIFY_PCD_DMA_ADDR(core_if->dev_if->dma_out_desc_addr);
4077 + dwc_write_reg32(&out_regs->doepdma, core_if->dev_if->dma_out_desc_addr);
4078 + }
4079 +
4080 +
4081 + DWC_DEBUGPL(DBG_PCDV, "IN len=%d xfersize=%d pktcnt=%d [%08x]\n",
4082 + ep->xfer_len,
4083 + deptsiz.b.xfersize, deptsiz.b.pktcnt, deptsiz.d32);
4084 +
4085 + /* Write the DMA register */
4086 + if (core_if->hwcfg2.b.architecture == DWC_INT_DMA_ARCH) {
4087 + if(core_if->dma_desc_enable == 0){
4088 +
4089 + VERIFY_PCD_DMA_ADDR(ep->dma_addr);
4090 + dwc_write_reg32 (&(out_regs->doepdma), (uint32_t)ep->dma_addr);
4091 + }
4092 + }
4093 +
4094 + /* EP enable, IN data in FIFO */
4095 + depctl.b.cnak = 1;
4096 + depctl.b.epena = 1;
4097 + dwc_write_reg32(&out_regs->doepctl, depctl.d32);
4098 +
4099 + }
4100 +}
4101 +
4102 +#ifdef DEBUG
4103 +void dump_msg(const u8 *buf, unsigned int length)
4104 +{
4105 + unsigned int start, num, i;
4106 + char line[52], *p;
4107 +
4108 + if (length >= 512)
4109 + return;
4110 + start = 0;
4111 + while (length > 0) {
4112 + num = min(length, 16u);
4113 + p = line;
4114 + for (i = 0; i < num; ++i)
4115 + {
4116 + if (i == 8)
4117 + *p++ = ' ';
4118 + sprintf(p, " %02x", buf[i]);
4119 + p += 3;
4120 + }
4121 + *p = 0;
4122 + DWC_PRINT("%6x: %s\n", start, line);
4123 + buf += num;
4124 + start += num;
4125 + length -= num;
4126 + }
4127 +}
4128 +#else
4129 +static inline void dump_msg(const u8 *buf, unsigned int length)
4130 +{
4131 +}
4132 +#endif
4133 +
4134 +/**
4135 + * This function writes a packet into the Tx FIFO associated with the
4136 + * EP. For non-periodic EPs the non-periodic Tx FIFO is written. For
4137 + * periodic EPs the periodic Tx FIFO associated with the EP is written
4138 + * with all packets for the next micro-frame.
4139 + *
4140 + * @param core_if Programming view of DWC_otg controller.
4141 + * @param ep The EP to write packet for.
4142 + * @param dma Indicates if DMA is being used.
4143 + */
4144 +void dwc_otg_ep_write_packet(dwc_otg_core_if_t *core_if, dwc_ep_t *ep, int dma)
4145 +{
4146 + /**
4147 + * The buffer is padded to DWORD on a per packet basis in
4148 + * slave/dma mode if the MPS is not DWORD aligned. The last
4149 + * packet, if short, is also padded to a multiple of DWORD.
4150 + *
4151 + * ep->xfer_buff always starts DWORD aligned in memory and is a
4152 + * multiple of DWORD in length
4153 + *
4154 + * ep->xfer_len can be any number of bytes
4155 + *
4156 + * ep->xfer_count is a multiple of ep->maxpacket until the last
4157 + * packet
4158 + *
4159 + * FIFO access is DWORD */
4160 +
4161 + uint32_t i;
4162 + uint32_t byte_count;
4163 + uint32_t dword_count;
4164 + uint32_t *fifo;
4165 + uint32_t *data_buff = (uint32_t *)ep->xfer_buff;
4166 +
4167 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p)\n", __func__, core_if, ep);
4168 + if (ep->xfer_count >= ep->xfer_len) {
4169 + DWC_WARN("%s() No data for EP%d!!!\n", __func__, ep->num);
4170 + return;
4171 + }
4172 +
4173 + /* Find the byte length of the packet either short packet or MPS */
4174 + if ((ep->xfer_len - ep->xfer_count) < ep->maxpacket) {
4175 + byte_count = ep->xfer_len - ep->xfer_count;
4176 + }
4177 + else {
4178 + byte_count = ep->maxpacket;
4179 + }
4180 +
4181 + /* Find the DWORD length, padded by extra bytes as neccessary if MPS
4182 + * is not a multiple of DWORD */
4183 + dword_count = (byte_count + 3) / 4;
4184 +
4185 +#ifdef VERBOSE
4186 + dump_msg(ep->xfer_buff, byte_count);
4187 +#endif
4188 +
4189 + /**@todo NGS Where are the Periodic Tx FIFO addresses
4190 + * intialized? What should this be? */
4191 +
4192 + fifo = core_if->data_fifo[ep->num];
4193 +
4194 +
4195 + DWC_DEBUGPL((DBG_PCDV|DBG_CILV), "fifo=%p buff=%p *p=%08x bc=%d\n", fifo, data_buff, *data_buff, byte_count);
4196 +
4197 + if (!dma) {
4198 + for (i=0; i<dword_count; i++, data_buff++) {
4199 + dwc_write_reg32(fifo, *data_buff);
4200 + }
4201 + }
4202 +
4203 + ep->xfer_count += byte_count;
4204 + ep->xfer_buff += byte_count;
4205 + ep->dma_addr += byte_count;
4206 +}
4207 +
4208 +/**
4209 + * Set the EP STALL.
4210 + *
4211 + * @param core_if Programming view of DWC_otg controller.
4212 + * @param ep The EP to set the stall on.
4213 + */
4214 +void dwc_otg_ep_set_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4215 +{
4216 + depctl_data_t depctl;
4217 + volatile uint32_t *depctl_addr;
4218 +
4219 + DWC_DEBUGPL(DBG_PCDV, "%s ep%d-%s1\n", __func__, ep->num,
4220 + (ep->is_in?"IN":"OUT"));
4221 +
4222 + DWC_PRINT("%s ep%d-%s\n", __func__, ep->num,
4223 + (ep->is_in?"in":"out"));
4224 +
4225 + if (ep->is_in == 1) {
4226 + depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
4227 + depctl.d32 = dwc_read_reg32(depctl_addr);
4228 +
4229 + /* set the disable and stall bits */
4230 +#if 0
4231 +//epdis is set here but not cleared at latter dwc_otg_ep_clear_stall,
4232 +//which cause the testusb item 13 failed(Host:pc, device: otg device)
4233 + if (depctl.b.epena) {
4234 + depctl.b.epdis = 1;
4235 + }
4236 +#endif
4237 + depctl.b.stall = 1;
4238 + dwc_write_reg32(depctl_addr, depctl.d32);
4239 + }
4240 + else {
4241 + depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
4242 + depctl.d32 = dwc_read_reg32(depctl_addr);
4243 +
4244 + /* set the stall bit */
4245 + depctl.b.stall = 1;
4246 + dwc_write_reg32(depctl_addr, depctl.d32);
4247 + }
4248 +
4249 + DWC_DEBUGPL(DBG_PCDV,"%s: DEPCTL(%.8x)=%0x\n",__func__,(u32)depctl_addr,dwc_read_reg32(depctl_addr));
4250 +
4251 + return;
4252 +}
4253 +
4254 +/**
4255 + * Clear the EP STALL.
4256 + *
4257 + * @param core_if Programming view of DWC_otg controller.
4258 + * @param ep The EP to clear stall from.
4259 + */
4260 +void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4261 +{
4262 + depctl_data_t depctl;
4263 + volatile uint32_t *depctl_addr;
4264 +
4265 + DWC_DEBUGPL(DBG_PCD, "%s ep%d-%s\n", __func__, ep->num,
4266 + (ep->is_in?"IN":"OUT"));
4267 +
4268 + if (ep->is_in == 1) {
4269 + depctl_addr = &(core_if->dev_if->in_ep_regs[ep->num]->diepctl);
4270 + }
4271 + else {
4272 + depctl_addr = &(core_if->dev_if->out_ep_regs[ep->num]->doepctl);
4273 + }
4274 +
4275 + depctl.d32 = dwc_read_reg32(depctl_addr);
4276 +
4277 + /* clear the stall bits */
4278 + depctl.b.stall = 0;
4279 +
4280 + /*
4281 + * USB Spec 9.4.5: For endpoints using data toggle, regardless
4282 + * of whether an endpoint has the Halt feature set, a
4283 + * ClearFeature(ENDPOINT_HALT) request always results in the
4284 + * data toggle being reinitialized to DATA0.
4285 + */
4286 + if (ep->type == DWC_OTG_EP_TYPE_INTR ||
4287 + ep->type == DWC_OTG_EP_TYPE_BULK) {
4288 + depctl.b.setd0pid = 1; /* DATA0 */
4289 + }
4290 +
4291 + dwc_write_reg32(depctl_addr, depctl.d32);
4292 + DWC_DEBUGPL(DBG_PCD,"DEPCTL=%0x\n",dwc_read_reg32(depctl_addr));
4293 + return;
4294 +}
4295 +
4296 +/**
4297 + * This function reads a packet from the Rx FIFO into the destination
4298 + * buffer. To read SETUP data use dwc_otg_read_setup_packet.
4299 + *
4300 + * @param core_if Programming view of DWC_otg controller.
4301 + * @param dest Destination buffer for the packet.
4302 + * @param bytes Number of bytes to copy to the destination.
4303 + */
4304 +void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
4305 + uint8_t *dest,
4306 + uint16_t bytes)
4307 +{
4308 + int i;
4309 + int word_count = (bytes + 3) / 4;
4310 +
4311 + volatile uint32_t *fifo = core_if->data_fifo[0];
4312 + uint32_t *data_buff = (uint32_t *)dest;
4313 +
4314 + /**
4315 + * @todo Account for the case where _dest is not dword aligned. This
4316 + * requires reading data from the FIFO into a uint32_t temp buffer,
4317 + * then moving it into the data buffer.
4318 + */
4319 +
4320 + DWC_DEBUGPL((DBG_PCDV | DBG_CILV), "%s(%p,%p,%d)\n", __func__,
4321 + core_if, dest, bytes);
4322 +
4323 + for (i=0; i<word_count; i++, data_buff++)
4324 + {
4325 + *data_buff = dwc_read_reg32(fifo);
4326 + }
4327 +
4328 + return;
4329 +}
4330 +
4331 +
4332 +
4333 +/**
4334 + * This functions reads the device registers and prints them
4335 + *
4336 + * @param core_if Programming view of DWC_otg controller.
4337 + */
4338 +void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *core_if)
4339 +{
4340 + int i;
4341 + volatile uint32_t *addr;
4342 +
4343 + DWC_PRINT("Device Global Registers\n");
4344 + addr=&core_if->dev_if->dev_global_regs->dcfg;
4345 + DWC_PRINT("DCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4346 + addr=&core_if->dev_if->dev_global_regs->dctl;
4347 + DWC_PRINT("DCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4348 + addr=&core_if->dev_if->dev_global_regs->dsts;
4349 + DWC_PRINT("DSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4350 + addr=&core_if->dev_if->dev_global_regs->diepmsk;
4351 + DWC_PRINT("DIEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4352 + addr=&core_if->dev_if->dev_global_regs->doepmsk;
4353 + DWC_PRINT("DOEPMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4354 + addr=&core_if->dev_if->dev_global_regs->daint;
4355 + DWC_PRINT("DAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4356 + addr=&core_if->dev_if->dev_global_regs->daintmsk;
4357 + DWC_PRINT("DAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4358 + addr=&core_if->dev_if->dev_global_regs->dtknqr1;
4359 + DWC_PRINT("DTKNQR1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4360 + if (core_if->hwcfg2.b.dev_token_q_depth > 6) {
4361 + addr=&core_if->dev_if->dev_global_regs->dtknqr2;
4362 + DWC_PRINT("DTKNQR2 @0x%08X : 0x%08X\n",
4363 + (uint32_t)addr,dwc_read_reg32(addr));
4364 + }
4365 +
4366 + addr=&core_if->dev_if->dev_global_regs->dvbusdis;
4367 + DWC_PRINT("DVBUSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4368 +
4369 + addr=&core_if->dev_if->dev_global_regs->dvbuspulse;
4370 + DWC_PRINT("DVBUSPULSE @0x%08X : 0x%08X\n",
4371 + (uint32_t)addr,dwc_read_reg32(addr));
4372 +
4373 + if (core_if->hwcfg2.b.dev_token_q_depth > 14) {
4374 + addr=&core_if->dev_if->dev_global_regs->dtknqr3_dthrctl;
4375 + DWC_PRINT("DTKNQR3_DTHRCTL @0x%08X : 0x%08X\n",
4376 + (uint32_t)addr, dwc_read_reg32(addr));
4377 + }
4378 +/*
4379 + if (core_if->hwcfg2.b.dev_token_q_depth > 22) {
4380 + addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
4381 + DWC_PRINT("DTKNQR4 @0x%08X : 0x%08X\n",
4382 + (uint32_t)addr, dwc_read_reg32(addr));
4383 + }
4384 +*/
4385 + addr=&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk;
4386 + DWC_PRINT("FIFOEMPMSK @0x%08X : 0x%08X\n", (uint32_t)addr, dwc_read_reg32(addr));
4387 +
4388 + addr=&core_if->dev_if->dev_global_regs->deachint;
4389 + DWC_PRINT("DEACHINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4390 + addr=&core_if->dev_if->dev_global_regs->deachintmsk;
4391 + DWC_PRINT("DEACHINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4392 +
4393 + for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
4394 + addr=&core_if->dev_if->dev_global_regs->diepeachintmsk[i];
4395 + DWC_PRINT("DIEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
4396 + }
4397 +
4398 +
4399 + for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
4400 + addr=&core_if->dev_if->dev_global_regs->doepeachintmsk[i];
4401 + DWC_PRINT("DOEPEACHINTMSK[%d] @0x%08X : 0x%08X\n", i, (uint32_t)addr, dwc_read_reg32(addr));
4402 + }
4403 +
4404 + for (i=0; i<= core_if->dev_if->num_in_eps; i++) {
4405 + DWC_PRINT("Device IN EP %d Registers\n", i);
4406 + addr=&core_if->dev_if->in_ep_regs[i]->diepctl;
4407 + DWC_PRINT("DIEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4408 + addr=&core_if->dev_if->in_ep_regs[i]->diepint;
4409 + DWC_PRINT("DIEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4410 + addr=&core_if->dev_if->in_ep_regs[i]->dieptsiz;
4411 + DWC_PRINT("DIETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4412 + addr=&core_if->dev_if->in_ep_regs[i]->diepdma;
4413 + DWC_PRINT("DIEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4414 + addr=&core_if->dev_if->in_ep_regs[i]->dtxfsts;
4415 + DWC_PRINT("DTXFSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4416 + //reading depdmab in non desc dma mode would halt the ahb bus...
4417 + if(core_if->dma_desc_enable){
4418 + addr=&core_if->dev_if->in_ep_regs[i]->diepdmab;
4419 + DWC_PRINT("DIEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4420 + }
4421 + }
4422 +
4423 +
4424 + for (i=0; i<= core_if->dev_if->num_out_eps; i++) {
4425 + DWC_PRINT("Device OUT EP %d Registers\n", i);
4426 + addr=&core_if->dev_if->out_ep_regs[i]->doepctl;
4427 + DWC_PRINT("DOEPCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4428 + addr=&core_if->dev_if->out_ep_regs[i]->doepfn;
4429 + DWC_PRINT("DOEPFN @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4430 + addr=&core_if->dev_if->out_ep_regs[i]->doepint;
4431 + DWC_PRINT("DOEPINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4432 + addr=&core_if->dev_if->out_ep_regs[i]->doeptsiz;
4433 + DWC_PRINT("DOETSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4434 + addr=&core_if->dev_if->out_ep_regs[i]->doepdma;
4435 + DWC_PRINT("DOEPDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4436 +
4437 + //reading depdmab in non desc dma mode would halt the ahb bus...
4438 + if(core_if->dma_desc_enable){
4439 + addr=&core_if->dev_if->out_ep_regs[i]->doepdmab;
4440 + DWC_PRINT("DOEPDMAB @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4441 + }
4442 +
4443 + }
4444 +
4445 +
4446 +
4447 + return;
4448 +}
4449 +
4450 +/**
4451 + * This functions reads the SPRAM and prints its content
4452 + *
4453 + * @param core_if Programming view of DWC_otg controller.
4454 + */
4455 +void dwc_otg_dump_spram(dwc_otg_core_if_t *core_if)
4456 +{
4457 + volatile uint8_t *addr, *start_addr, *end_addr;
4458 +
4459 + DWC_PRINT("SPRAM Data:\n");
4460 + start_addr = (void*)core_if->core_global_regs;
4461 + DWC_PRINT("Base Address: 0x%8X\n", (uint32_t)start_addr);
4462 + start_addr += 0x00028000;
4463 + end_addr=(void*)core_if->core_global_regs;
4464 + end_addr += 0x000280e0;
4465 +
4466 + for(addr = start_addr; addr < end_addr; addr+=16)
4467 + {
4468 + DWC_PRINT("0x%8X:\t%2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X %2X\n", (uint32_t)addr,
4469 + addr[0],
4470 + addr[1],
4471 + addr[2],
4472 + addr[3],
4473 + addr[4],
4474 + addr[5],
4475 + addr[6],
4476 + addr[7],
4477 + addr[8],
4478 + addr[9],
4479 + addr[10],
4480 + addr[11],
4481 + addr[12],
4482 + addr[13],
4483 + addr[14],
4484 + addr[15]
4485 + );
4486 + }
4487 +
4488 + return;
4489 +}
4490 +/**
4491 + * This function reads the host registers and prints them
4492 + *
4493 + * @param core_if Programming view of DWC_otg controller.
4494 + */
4495 +void dwc_otg_dump_host_registers(dwc_otg_core_if_t *core_if)
4496 +{
4497 + int i;
4498 + volatile uint32_t *addr;
4499 +
4500 + DWC_PRINT("Host Global Registers\n");
4501 + addr=&core_if->host_if->host_global_regs->hcfg;
4502 + DWC_PRINT("HCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4503 + addr=&core_if->host_if->host_global_regs->hfir;
4504 + DWC_PRINT("HFIR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4505 + addr=&core_if->host_if->host_global_regs->hfnum;
4506 + DWC_PRINT("HFNUM @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4507 + addr=&core_if->host_if->host_global_regs->hptxsts;
4508 + DWC_PRINT("HPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4509 + addr=&core_if->host_if->host_global_regs->haint;
4510 + DWC_PRINT("HAINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4511 + addr=&core_if->host_if->host_global_regs->haintmsk;
4512 + DWC_PRINT("HAINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4513 + addr=core_if->host_if->hprt0;
4514 + DWC_PRINT("HPRT0 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4515 +
4516 + for (i=0; i<core_if->core_params->host_channels; i++)
4517 + {
4518 + DWC_PRINT("Host Channel %d Specific Registers\n", i);
4519 + addr=&core_if->host_if->hc_regs[i]->hcchar;
4520 + DWC_PRINT("HCCHAR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4521 + addr=&core_if->host_if->hc_regs[i]->hcsplt;
4522 + DWC_PRINT("HCSPLT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4523 + addr=&core_if->host_if->hc_regs[i]->hcint;
4524 + DWC_PRINT("HCINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4525 + addr=&core_if->host_if->hc_regs[i]->hcintmsk;
4526 + DWC_PRINT("HCINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4527 + addr=&core_if->host_if->hc_regs[i]->hctsiz;
4528 + DWC_PRINT("HCTSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4529 + addr=&core_if->host_if->hc_regs[i]->hcdma;
4530 + DWC_PRINT("HCDMA @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4531 + }
4532 + return;
4533 +}
4534 +
4535 +/**
4536 + * This function reads the core global registers and prints them
4537 + *
4538 + * @param core_if Programming view of DWC_otg controller.
4539 + */
4540 +void dwc_otg_dump_global_registers(dwc_otg_core_if_t *core_if)
4541 +{
4542 + int i,size;
4543 + char* str;
4544 + volatile uint32_t *addr;
4545 +
4546 + DWC_PRINT("Core Global Registers\n");
4547 + addr=&core_if->core_global_regs->gotgctl;
4548 + DWC_PRINT("GOTGCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4549 + addr=&core_if->core_global_regs->gotgint;
4550 + DWC_PRINT("GOTGINT @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4551 + addr=&core_if->core_global_regs->gahbcfg;
4552 + DWC_PRINT("GAHBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4553 + addr=&core_if->core_global_regs->gusbcfg;
4554 + DWC_PRINT("GUSBCFG @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4555 + addr=&core_if->core_global_regs->grstctl;
4556 + DWC_PRINT("GRSTCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4557 + addr=&core_if->core_global_regs->gintsts;
4558 + DWC_PRINT("GINTSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4559 + addr=&core_if->core_global_regs->gintmsk;
4560 + DWC_PRINT("GINTMSK @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4561 + addr=&core_if->core_global_regs->grxstsr;
4562 + DWC_PRINT("GRXSTSR @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4563 + //addr=&core_if->core_global_regs->grxstsp;
4564 + //DWC_PRINT("GRXSTSP @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4565 + addr=&core_if->core_global_regs->grxfsiz;
4566 + DWC_PRINT("GRXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4567 + addr=&core_if->core_global_regs->gnptxfsiz;
4568 + DWC_PRINT("GNPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4569 + addr=&core_if->core_global_regs->gnptxsts;
4570 + DWC_PRINT("GNPTXSTS @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4571 + addr=&core_if->core_global_regs->gi2cctl;
4572 + DWC_PRINT("GI2CCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4573 + addr=&core_if->core_global_regs->gpvndctl;
4574 + DWC_PRINT("GPVNDCTL @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4575 + addr=&core_if->core_global_regs->ggpio;
4576 + DWC_PRINT("GGPIO @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4577 + addr=&core_if->core_global_regs->guid;
4578 + DWC_PRINT("GUID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4579 + addr=&core_if->core_global_regs->gsnpsid;
4580 + DWC_PRINT("GSNPSID @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4581 + addr=&core_if->core_global_regs->ghwcfg1;
4582 + DWC_PRINT("GHWCFG1 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4583 + addr=&core_if->core_global_regs->ghwcfg2;
4584 + DWC_PRINT("GHWCFG2 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4585 + addr=&core_if->core_global_regs->ghwcfg3;
4586 + DWC_PRINT("GHWCFG3 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4587 + addr=&core_if->core_global_regs->ghwcfg4;
4588 + DWC_PRINT("GHWCFG4 @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4589 + addr=&core_if->core_global_regs->hptxfsiz;
4590 + DWC_PRINT("HPTXFSIZ @0x%08X : 0x%08X\n",(uint32_t)addr,dwc_read_reg32(addr));
4591 +
4592 + size=(core_if->hwcfg4.b.ded_fifo_en)?
4593 + core_if->hwcfg4.b.num_in_eps:core_if->hwcfg4.b.num_dev_perio_in_ep;
4594 + str=(core_if->hwcfg4.b.ded_fifo_en)?"DIEPTXF":"DPTXFSIZ";
4595 + for (i=0; i<size; i++)
4596 + {
4597 + addr=&core_if->core_global_regs->dptxfsiz_dieptxf[i];
4598 + DWC_PRINT("%s[%d] @0x%08X : 0x%08X\n",str,i,(uint32_t)addr,dwc_read_reg32(addr));
4599 + }
4600 +}
4601 +
4602 +/**
4603 + * Flush a Tx FIFO.
4604 + *
4605 + * @param core_if Programming view of DWC_otg controller.
4606 + * @param num Tx FIFO to flush.
4607 + */
4608 +void dwc_otg_flush_tx_fifo(dwc_otg_core_if_t *core_if,
4609 + const int num)
4610 +{
4611 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
4612 + volatile grstctl_t greset = { .d32 = 0};
4613 + int count = 0;
4614 +
4615 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "Flush Tx FIFO %d\n", num);
4616 +
4617 + greset.b.txfflsh = 1;
4618 + greset.b.txfnum = num;
4619 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
4620 +
4621 + do {
4622 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4623 + if (++count > 10000) {
4624 + DWC_WARN("%s() HANG! GRSTCTL=%0x GNPTXSTS=0x%08x\n",
4625 + __func__, greset.d32,
4626 + dwc_read_reg32(&global_regs->gnptxsts));
4627 + break;
4628 + }
4629 + }
4630 + while (greset.b.txfflsh == 1);
4631 +
4632 + /* Wait for 3 PHY Clocks*/
4633 + UDELAY(1);
4634 +}
4635 +
4636 +/**
4637 + * Flush Rx FIFO.
4638 + *
4639 + * @param core_if Programming view of DWC_otg controller.
4640 + */
4641 +void dwc_otg_flush_rx_fifo(dwc_otg_core_if_t *core_if)
4642 +{
4643 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
4644 + volatile grstctl_t greset = { .d32 = 0};
4645 + int count = 0;
4646 +
4647 + DWC_DEBUGPL((DBG_CIL|DBG_PCDV), "%s\n", __func__);
4648 + /*
4649 + *
4650 + */
4651 + greset.b.rxfflsh = 1;
4652 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
4653 +
4654 + do {
4655 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4656 + if (++count > 10000) {
4657 + DWC_WARN("%s() HANG! GRSTCTL=%0x\n", __func__,
4658 + greset.d32);
4659 + break;
4660 + }
4661 + }
4662 + while (greset.b.rxfflsh == 1);
4663 +
4664 + /* Wait for 3 PHY Clocks*/
4665 + UDELAY(1);
4666 +}
4667 +
4668 +/**
4669 + * Do core a soft reset of the core. Be careful with this because it
4670 + * resets all the internal state machines of the core.
4671 + */
4672 +void dwc_otg_core_reset(dwc_otg_core_if_t *core_if)
4673 +{
4674 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
4675 + volatile grstctl_t greset = { .d32 = 0};
4676 + int count = 0;
4677 +
4678 + DWC_DEBUGPL(DBG_CILV, "%s\n", __func__);
4679 + /* Wait for AHB master IDLE state. */
4680 + do {
4681 + UDELAY(10);
4682 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4683 + if (++count > 100000) {
4684 + DWC_WARN("%s() HANG! AHB Idle GRSTCTL=%0x\n", __func__,
4685 + greset.d32);
4686 + return;
4687 + }
4688 + }
4689 + while (greset.b.ahbidle == 0);
4690 +
4691 + /* Core Soft Reset */
4692 + count = 0;
4693 + greset.b.csftrst = 1;
4694 + dwc_write_reg32(&global_regs->grstctl, greset.d32);
4695 + do {
4696 + greset.d32 = dwc_read_reg32(&global_regs->grstctl);
4697 + if (++count > 10000) {
4698 + DWC_WARN("%s() HANG! Soft Reset GRSTCTL=%0x\n", __func__,
4699 + greset.d32);
4700 + break;
4701 + }
4702 + }
4703 + while (greset.b.csftrst == 1);
4704 +
4705 + /* Wait for 3 PHY Clocks*/
4706 + MDELAY(100);
4707 +
4708 + DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
4709 + DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
4710 + DWC_DEBUGPL(DBG_CILV, "GINTSTS=%.8x\n", dwc_read_reg32(&global_regs->gintsts));
4711 +
4712 +}
4713 +
4714 +
4715 +
4716 +/**
4717 + * Register HCD callbacks. The callbacks are used to start and stop
4718 + * the HCD for interrupt processing.
4719 + *
4720 + * @param core_if Programming view of DWC_otg controller.
4721 + * @param cb the HCD callback structure.
4722 + * @param p pointer to be passed to callback function (usb_hcd*).
4723 + */
4724 +void dwc_otg_cil_register_hcd_callbacks(dwc_otg_core_if_t *core_if,
4725 + dwc_otg_cil_callbacks_t *cb,
4726 + void *p)
4727 +{
4728 + core_if->hcd_cb = cb;
4729 + cb->p = p;
4730 +}
4731 +
4732 +/**
4733 + * Register PCD callbacks. The callbacks are used to start and stop
4734 + * the PCD for interrupt processing.
4735 + *
4736 + * @param core_if Programming view of DWC_otg controller.
4737 + * @param cb the PCD callback structure.
4738 + * @param p pointer to be passed to callback function (pcd*).
4739 + */
4740 +void dwc_otg_cil_register_pcd_callbacks(dwc_otg_core_if_t *core_if,
4741 + dwc_otg_cil_callbacks_t *cb,
4742 + void *p)
4743 +{
4744 + core_if->pcd_cb = cb;
4745 + cb->p = p;
4746 +}
4747 +
4748 +#ifdef DWC_EN_ISOC
4749 +
4750 +/**
4751 + * This function writes isoc data per 1 (micro)frame into tx fifo
4752 + *
4753 + * @param core_if Programming view of DWC_otg controller.
4754 + * @param ep The EP to start the transfer on.
4755 + *
4756 + */
4757 +void write_isoc_frame_data(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4758 +{
4759 + dwc_otg_dev_in_ep_regs_t *ep_regs;
4760 + dtxfsts_data_t txstatus = {.d32 = 0};
4761 + uint32_t len = 0;
4762 + uint32_t dwords;
4763 +
4764 + ep->xfer_len = ep->data_per_frame;
4765 + ep->xfer_count = 0;
4766 +
4767 + ep_regs = core_if->dev_if->in_ep_regs[ep->num];
4768 +
4769 + len = ep->xfer_len - ep->xfer_count;
4770 +
4771 + if (len > ep->maxpacket) {
4772 + len = ep->maxpacket;
4773 + }
4774 +
4775 + dwords = (len + 3)/4;
4776 +
4777 + /* While there is space in the queue and space in the FIFO and
4778 + * More data to tranfer, Write packets to the Tx FIFO */
4779 + txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
4780 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",ep->num,txstatus.d32);
4781 +
4782 + while (txstatus.b.txfspcavail > dwords &&
4783 + ep->xfer_count < ep->xfer_len &&
4784 + ep->xfer_len != 0) {
4785 + /* Write the FIFO */
4786 + dwc_otg_ep_write_packet(core_if, ep, 0);
4787 +
4788 + len = ep->xfer_len - ep->xfer_count;
4789 + if (len > ep->maxpacket) {
4790 + len = ep->maxpacket;
4791 + }
4792 +
4793 + dwords = (len + 3)/4;
4794 + txstatus.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dtxfsts);
4795 + DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", ep->num, txstatus.d32);
4796 + }
4797 +}
4798 +
4799 +
4800 +/**
4801 + * This function initializes a descriptor chain for Isochronous transfer
4802 + *
4803 + * @param core_if Programming view of DWC_otg controller.
4804 + * @param ep The EP to start the transfer on.
4805 + *
4806 + */
4807 +void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
4808 +{
4809 + deptsiz_data_t deptsiz = { .d32 = 0 };
4810 + depctl_data_t depctl = { .d32 = 0 };
4811 + dsts_data_t dsts = { .d32 = 0 };
4812 + volatile uint32_t *addr;
4813 +
4814 + if(ep->is_in) {
4815 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
4816 + } else {
4817 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
4818 + }
4819 +
4820 + ep->xfer_len = ep->data_per_frame;
4821 + ep->xfer_count = 0;
4822 + ep->xfer_buff = ep->cur_pkt_addr;
4823 + ep->dma_addr = ep->cur_pkt_dma_addr;
4824 +
4825 + if(ep->is_in) {
4826 + /* Program the transfer size and packet count
4827 + * as follows: xfersize = N * maxpacket +
4828 + * short_packet pktcnt = N + (short_packet
4829 + * exist ? 1 : 0)
4830 + */
4831 + deptsiz.b.xfersize = ep->xfer_len;
4832 + deptsiz.b.pktcnt =
4833 + (ep->xfer_len - 1 + ep->maxpacket) /
4834 + ep->maxpacket;
4835 + deptsiz.b.mc = deptsiz.b.pktcnt;
4836 + dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
4837 +
4838 + /* Write the DMA register */
4839 + if (core_if->dma_enable) {
4840 + dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
4841 + }
4842 + } else {
4843 + deptsiz.b.pktcnt =
4844 + (ep->xfer_len + (ep->maxpacket - 1)) /
4845 + ep->maxpacket;
4846 + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
4847 +
4848 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
4849 +
4850 + if (core_if->dma_enable) {
4851 + dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma),
4852 + (uint32_t)ep->dma_addr);
4853 + }
4854 + }
4855 +
4856 +
4857 + /** Enable endpoint, clear nak */
4858 +
4859 + depctl.d32 = 0;
4860 + if(ep->bInterval == 1) {
4861 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
4862 + ep->next_frame = dsts.b.soffn + ep->bInterval;
4863 +
4864 + if(ep->next_frame & 0x1) {
4865 + depctl.b.setd1pid = 1;
4866 + } else {
4867 + depctl.b.setd0pid = 1;
4868 + }
4869 + } else {
4870 + ep->next_frame += ep->bInterval;
4871 +
4872 + if(ep->next_frame & 0x1) {
4873 + depctl.b.setd1pid = 1;
4874 + } else {
4875 + depctl.b.setd0pid = 1;
4876 + }
4877 + }
4878 + depctl.b.epena = 1;
4879 + depctl.b.cnak = 1;
4880 +
4881 + dwc_modify_reg32(addr, 0, depctl.d32);
4882 + depctl.d32 = dwc_read_reg32(addr);
4883 +
4884 + if(ep->is_in && core_if->dma_enable == 0) {
4885 + write_isoc_frame_data(core_if, ep);
4886 + }
4887 +
4888 +}
4889 +
4890 +#endif //DWC_EN_ISOC
4891 --- /dev/null
4892 +++ b/drivers/usb/dwc/otg_cil.h
4893 @@ -0,0 +1,1106 @@
4894 +/* ==========================================================================
4895 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil.h $
4896 + * $Revision: #91 $
4897 + * $Date: 2008/09/19 $
4898 + * $Change: 1099526 $
4899 + *
4900 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
4901 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
4902 + * otherwise expressly agreed to in writing between Synopsys and you.
4903 + *
4904 + * The Software IS NOT an item of Licensed Software or Licensed Product under
4905 + * any End User Software License Agreement or Agreement for Licensed Product
4906 + * with Synopsys or any supplement thereto. You are permitted to use and
4907 + * redistribute this Software in source and binary forms, with or without
4908 + * modification, provided that redistributions of source code must retain this
4909 + * notice. You may not view, use, disclose, copy or distribute this file or
4910 + * any information contained herein except pursuant to this license grant from
4911 + * Synopsys. If you do not agree with this notice, including the disclaimer
4912 + * below, then you are not authorized to use the Software.
4913 + *
4914 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
4915 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
4916 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
4917 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
4918 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
4919 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
4920 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
4921 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
4922 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
4923 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
4924 + * DAMAGE.
4925 + * ========================================================================== */
4926 +
4927 +#if !defined(__DWC_CIL_H__)
4928 +#define __DWC_CIL_H__
4929 +
4930 +#include <linux/workqueue.h>
4931 +#include <linux/version.h>
4932 +#include <asm/param.h>
4933 +//#include <asm/arch/regs-irq.h>
4934 +
4935 +#include "otg_plat.h"
4936 +#include "otg_regs.h"
4937 +#ifdef DEBUG
4938 +#include "linux/timer.h"
4939 +#endif
4940 +
4941 +/**
4942 + * @file
4943 + * This file contains the interface to the Core Interface Layer.
4944 + */
4945 +
4946 +
4947 +/** Macros defined for DWC OTG HW Release verison */
4948 +#define OTG_CORE_REV_2_00 0x4F542000
4949 +#define OTG_CORE_REV_2_60a 0x4F54260A
4950 +#define OTG_CORE_REV_2_71a 0x4F54271A
4951 +#define OTG_CORE_REV_2_72a 0x4F54272A
4952 +
4953 +/**
4954 +*/
4955 +typedef struct iso_pkt_info
4956 +{
4957 + uint32_t offset;
4958 + uint32_t length;
4959 + int32_t status;
4960 +} iso_pkt_info_t;
4961 +/**
4962 + * The <code>dwc_ep</code> structure represents the state of a single
4963 + * endpoint when acting in device mode. It contains the data items
4964 + * needed for an endpoint to be activated and transfer packets.
4965 + */
4966 +typedef struct dwc_ep
4967 +{
4968 + /** EP number used for register address lookup */
4969 + uint8_t num;
4970 + /** EP direction 0 = OUT */
4971 + unsigned is_in : 1;
4972 + /** EP active. */
4973 + unsigned active : 1;
4974 +
4975 + /** Periodic Tx FIFO # for IN EPs For INTR EP set to 0 to use non-periodic Tx FIFO
4976 + If dedicated Tx FIFOs are enabled for all IN Eps - Tx FIFO # FOR IN EPs*/
4977 + unsigned tx_fifo_num : 4;
4978 + /** EP type: 0 - Control, 1 - ISOC, 2 - BULK, 3 - INTR */
4979 + unsigned type : 2;
4980 +#define DWC_OTG_EP_TYPE_CONTROL 0
4981 +#define DWC_OTG_EP_TYPE_ISOC 1
4982 +#define DWC_OTG_EP_TYPE_BULK 2
4983 +#define DWC_OTG_EP_TYPE_INTR 3
4984 +
4985 + /** DATA start PID for INTR and BULK EP */
4986 + unsigned data_pid_start : 1;
4987 + /** Frame (even/odd) for ISOC EP */
4988 + unsigned even_odd_frame : 1;
4989 + /** Max Packet bytes */
4990 + unsigned maxpacket : 11;
4991 +
4992 + /** Max Transfer size */
4993 + unsigned maxxfer : 16;
4994 +
4995 + /** @name Transfer state */
4996 + /** @{ */
4997 +
4998 + /**
4999 + * Pointer to the beginning of the transfer buffer -- do not modify
5000 + * during transfer.
5001 + */
5002 +
5003 + uint32_t dma_addr;
5004 +
5005 + uint32_t dma_desc_addr;
5006 + dwc_otg_dma_desc_t* desc_addr;
5007 +
5008 +
5009 + uint8_t *start_xfer_buff;
5010 + /** pointer to the transfer buffer */
5011 + uint8_t *xfer_buff;
5012 + /** Number of bytes to transfer */
5013 + unsigned xfer_len : 19;
5014 + /** Number of bytes transferred. */
5015 + unsigned xfer_count : 19;
5016 + /** Sent ZLP */
5017 + unsigned sent_zlp : 1;
5018 + /** Total len for control transfer */
5019 + unsigned total_len : 19;
5020 +
5021 + /** stall clear flag */
5022 + unsigned stall_clear_flag : 1;
5023 +
5024 + /** Allocated DMA Desc count */
5025 + uint32_t desc_cnt;
5026 +
5027 + uint32_t aligned_dma_addr;
5028 + uint32_t aligned_buf_size;
5029 + uint8_t *aligned_buf;
5030 +
5031 +
5032 +#ifdef DWC_EN_ISOC
5033 + /**
5034 + * Variables specific for ISOC EPs
5035 + *
5036 + */
5037 + /** DMA addresses of ISOC buffers */
5038 + uint32_t dma_addr0;
5039 + uint32_t dma_addr1;
5040 +
5041 + uint32_t iso_dma_desc_addr;
5042 + dwc_otg_dma_desc_t* iso_desc_addr;
5043 +
5044 + /** pointer to the transfer buffers */
5045 + uint8_t *xfer_buff0;
5046 + uint8_t *xfer_buff1;
5047 +
5048 + /** number of ISOC Buffer is processing */
5049 + uint32_t proc_buf_num;
5050 + /** Interval of ISOC Buffer processing */
5051 + uint32_t buf_proc_intrvl;
5052 + /** Data size for regular frame */
5053 + uint32_t data_per_frame;
5054 +
5055 + /* todo - pattern data support is to be implemented in the future */
5056 + /** Data size for pattern frame */
5057 + uint32_t data_pattern_frame;
5058 + /** Frame number of pattern data */
5059 + uint32_t sync_frame;
5060 +
5061 + /** bInterval */
5062 + uint32_t bInterval;
5063 + /** ISO Packet number per frame */
5064 + uint32_t pkt_per_frm;
5065 + /** Next frame num for which will be setup DMA Desc */
5066 + uint32_t next_frame;
5067 + /** Number of packets per buffer processing */
5068 + uint32_t pkt_cnt;
5069 + /** Info for all isoc packets */
5070 + iso_pkt_info_t *pkt_info;
5071 + /** current pkt number */
5072 + uint32_t cur_pkt;
5073 + /** current pkt number */
5074 + uint8_t *cur_pkt_addr;
5075 + /** current pkt number */
5076 + uint32_t cur_pkt_dma_addr;
5077 +#endif //DWC_EN_ISOC
5078 +/** @} */
5079 +} dwc_ep_t;
5080 +
5081 +/*
5082 + * Reasons for halting a host channel.
5083 + */
5084 +typedef enum dwc_otg_halt_status
5085 +{
5086 + DWC_OTG_HC_XFER_NO_HALT_STATUS,
5087 + DWC_OTG_HC_XFER_COMPLETE,
5088 + DWC_OTG_HC_XFER_URB_COMPLETE,
5089 + DWC_OTG_HC_XFER_ACK,
5090 + DWC_OTG_HC_XFER_NAK,
5091 + DWC_OTG_HC_XFER_NYET,
5092 + DWC_OTG_HC_XFER_STALL,
5093 + DWC_OTG_HC_XFER_XACT_ERR,
5094 + DWC_OTG_HC_XFER_FRAME_OVERRUN,
5095 + DWC_OTG_HC_XFER_BABBLE_ERR,
5096 + DWC_OTG_HC_XFER_DATA_TOGGLE_ERR,
5097 + DWC_OTG_HC_XFER_AHB_ERR,
5098 + DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE,
5099 + DWC_OTG_HC_XFER_URB_DEQUEUE
5100 +} dwc_otg_halt_status_e;
5101 +
5102 +/**
5103 + * Host channel descriptor. This structure represents the state of a single
5104 + * host channel when acting in host mode. It contains the data items needed to
5105 + * transfer packets to an endpoint via a host channel.
5106 + */
5107 +typedef struct dwc_hc
5108 +{
5109 + /** Host channel number used for register address lookup */
5110 + uint8_t hc_num;
5111 +
5112 + /** Device to access */
5113 + unsigned dev_addr : 7;
5114 +
5115 + /** EP to access */
5116 + unsigned ep_num : 4;
5117 +
5118 + /** EP direction. 0: OUT, 1: IN */
5119 + unsigned ep_is_in : 1;
5120 +
5121 + /**
5122 + * EP speed.
5123 + * One of the following values:
5124 + * - DWC_OTG_EP_SPEED_LOW
5125 + * - DWC_OTG_EP_SPEED_FULL
5126 + * - DWC_OTG_EP_SPEED_HIGH
5127 + */
5128 + unsigned speed : 2;
5129 +#define DWC_OTG_EP_SPEED_LOW 0
5130 +#define DWC_OTG_EP_SPEED_FULL 1
5131 +#define DWC_OTG_EP_SPEED_HIGH 2
5132 +
5133 + /**
5134 + * Endpoint type.
5135 + * One of the following values:
5136 + * - DWC_OTG_EP_TYPE_CONTROL: 0
5137 + * - DWC_OTG_EP_TYPE_ISOC: 1
5138 + * - DWC_OTG_EP_TYPE_BULK: 2
5139 + * - DWC_OTG_EP_TYPE_INTR: 3
5140 + */
5141 + unsigned ep_type : 2;
5142 +
5143 + /** Max packet size in bytes */
5144 + unsigned max_packet : 11;
5145 +
5146 + /**
5147 + * PID for initial transaction.
5148 + * 0: DATA0,<br>
5149 + * 1: DATA2,<br>
5150 + * 2: DATA1,<br>
5151 + * 3: MDATA (non-Control EP),
5152 + * SETUP (Control EP)
5153 + */
5154 + unsigned data_pid_start : 2;
5155 +#define DWC_OTG_HC_PID_DATA0 0
5156 +#define DWC_OTG_HC_PID_DATA2 1
5157 +#define DWC_OTG_HC_PID_DATA1 2
5158 +#define DWC_OTG_HC_PID_MDATA 3
5159 +#define DWC_OTG_HC_PID_SETUP 3
5160 +
5161 + /** Number of periodic transactions per (micro)frame */
5162 + unsigned multi_count: 2;
5163 +
5164 + /** @name Transfer State */
5165 + /** @{ */
5166 +
5167 + /** Pointer to the current transfer buffer position. */
5168 + uint8_t *xfer_buff;
5169 + /** Total number of bytes to transfer. */
5170 + uint32_t xfer_len;
5171 + /** Number of bytes transferred so far. */
5172 + uint32_t xfer_count;
5173 + /** Packet count at start of transfer.*/
5174 + uint16_t start_pkt_count;
5175 +
5176 + /**
5177 + * Flag to indicate whether the transfer has been started. Set to 1 if
5178 + * it has been started, 0 otherwise.
5179 + */
5180 + uint8_t xfer_started;
5181 +
5182 + /**
5183 + * Set to 1 to indicate that a PING request should be issued on this
5184 + * channel. If 0, process normally.
5185 + */
5186 + uint8_t do_ping;
5187 +
5188 + /**
5189 + * Set to 1 to indicate that the error count for this transaction is
5190 + * non-zero. Set to 0 if the error count is 0.
5191 + */
5192 + uint8_t error_state;
5193 +
5194 + /**
5195 + * Set to 1 to indicate that this channel should be halted the next
5196 + * time a request is queued for the channel. This is necessary in
5197 + * slave mode if no request queue space is available when an attempt
5198 + * is made to halt the channel.
5199 + */
5200 + uint8_t halt_on_queue;
5201 +
5202 + /**
5203 + * Set to 1 if the host channel has been halted, but the core is not
5204 + * finished flushing queued requests. Otherwise 0.
5205 + */
5206 + uint8_t halt_pending;
5207 +
5208 + /**
5209 + * Reason for halting the host channel.
5210 + */
5211 + dwc_otg_halt_status_e halt_status;
5212 +
5213 + /*
5214 + * Split settings for the host channel
5215 + */
5216 + uint8_t do_split; /**< Enable split for the channel */
5217 + uint8_t complete_split; /**< Enable complete split */
5218 + uint8_t hub_addr; /**< Address of high speed hub */
5219 +
5220 + uint8_t port_addr; /**< Port of the low/full speed device */
5221 + /** Split transaction position
5222 + * One of the following values:
5223 + * - DWC_HCSPLIT_XACTPOS_MID
5224 + * - DWC_HCSPLIT_XACTPOS_BEGIN
5225 + * - DWC_HCSPLIT_XACTPOS_END
5226 + * - DWC_HCSPLIT_XACTPOS_ALL */
5227 + uint8_t xact_pos;
5228 +
5229 + /** Set when the host channel does a short read. */
5230 + uint8_t short_read;
5231 +
5232 + /**
5233 + * Number of requests issued for this channel since it was assigned to
5234 + * the current transfer (not counting PINGs).
5235 + */
5236 + uint8_t requests;
5237 +
5238 + /**
5239 + * Queue Head for the transfer being processed by this channel.
5240 + */
5241 + struct dwc_otg_qh *qh;
5242 +
5243 + /** @} */
5244 +
5245 + /** Entry in list of host channels. */
5246 + struct list_head hc_list_entry;
5247 +} dwc_hc_t;
5248 +
5249 +/**
5250 + * The following parameters may be specified when starting the module. These
5251 + * parameters define how the DWC_otg controller should be configured.
5252 + * Parameter values are passed to the CIL initialization function
5253 + * dwc_otg_cil_init.
5254 + */
5255 +typedef struct dwc_otg_core_params
5256 +{
5257 + int32_t opt;
5258 +#define dwc_param_opt_default 1
5259 +
5260 + /**
5261 + * Specifies the OTG capabilities. The driver will automatically
5262 + * detect the value for this parameter if none is specified.
5263 + * 0 - HNP and SRP capable (default)
5264 + * 1 - SRP Only capable
5265 + * 2 - No HNP/SRP capable
5266 + */
5267 + int32_t otg_cap;
5268 +#define DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE 0
5269 +#define DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE 1
5270 +#define DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE 2
5271 +//#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE
5272 +#define dwc_param_otg_cap_default DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE
5273 +
5274 + /**
5275 + * Specifies whether to use slave or DMA mode for accessing the data
5276 + * FIFOs. The driver will automatically detect the value for this
5277 + * parameter if none is specified.
5278 + * 0 - Slave
5279 + * 1 - DMA (default, if available)
5280 + */
5281 + int32_t dma_enable;
5282 +#define dwc_param_dma_enable_default 1
5283 +
5284 + /**
5285 + * When DMA mode is enabled specifies whether to use address DMA or DMA Descritor mode for accessing the data
5286 + * FIFOs in device mode. The driver will automatically detect the value for this
5287 + * parameter if none is specified.
5288 + * 0 - address DMA
5289 + * 1 - DMA Descriptor(default, if available)
5290 + */
5291 + int32_t dma_desc_enable;
5292 +#define dwc_param_dma_desc_enable_default 0
5293 + /** The DMA Burst size (applicable only for External DMA
5294 + * Mode). 1, 4, 8 16, 32, 64, 128, 256 (default 32)
5295 + */
5296 + int32_t dma_burst_size; /* Translate this to GAHBCFG values */
5297 +//#define dwc_param_dma_burst_size_default 32
5298 +#define dwc_param_dma_burst_size_default 1
5299 +
5300 + /**
5301 + * Specifies the maximum speed of operation in host and device mode.
5302 + * The actual speed depends on the speed of the attached device and
5303 + * the value of phy_type. The actual speed depends on the speed of the
5304 + * attached device.
5305 + * 0 - High Speed (default)
5306 + * 1 - Full Speed
5307 + */
5308 + int32_t speed;
5309 +#define dwc_param_speed_default 0
5310 +#define DWC_SPEED_PARAM_HIGH 0
5311 +#define DWC_SPEED_PARAM_FULL 1
5312 +
5313 + /** Specifies whether low power mode is supported when attached
5314 + * to a Full Speed or Low Speed device in host mode.
5315 + * 0 - Don't support low power mode (default)
5316 + * 1 - Support low power mode
5317 + */
5318 + int32_t host_support_fs_ls_low_power;
5319 +#define dwc_param_host_support_fs_ls_low_power_default 0
5320 +
5321 + /** Specifies the PHY clock rate in low power mode when connected to a
5322 + * Low Speed device in host mode. This parameter is applicable only if
5323 + * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
5324 + * then defaults to 6 MHZ otherwise 48 MHZ.
5325 + *
5326 + * 0 - 48 MHz
5327 + * 1 - 6 MHz
5328 + */
5329 + int32_t host_ls_low_power_phy_clk;
5330 +#define dwc_param_host_ls_low_power_phy_clk_default 0
5331 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ 0
5332 +#define DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ 1
5333 +
5334 + /**
5335 + * 0 - Use cC FIFO size parameters
5336 + * 1 - Allow dynamic FIFO sizing (default)
5337 + */
5338 + int32_t enable_dynamic_fifo;
5339 +#define dwc_param_enable_dynamic_fifo_default 1
5340 +
5341 + /** Total number of 4-byte words in the data FIFO memory. This
5342 + * memory includes the Rx FIFO, non-periodic Tx FIFO, and periodic
5343 + * Tx FIFOs.
5344 + * 32 to 32768 (default 8192)
5345 + * Note: The total FIFO memory depth in the FPGA configuration is 8192.
5346 + */
5347 + int32_t data_fifo_size;
5348 +#define dwc_param_data_fifo_size_default 8192
5349 +
5350 + /** Number of 4-byte words in the Rx FIFO in device mode when dynamic
5351 + * FIFO sizing is enabled.
5352 + * 16 to 32768 (default 1064)
5353 + */
5354 + int32_t dev_rx_fifo_size;
5355 +//#define dwc_param_dev_rx_fifo_size_default 1064
5356 +#define dwc_param_dev_rx_fifo_size_default 0x100
5357 +
5358 + /**
5359 + * Specifies whether dedicated transmit FIFOs are
5360 + * enabled for non periodic IN endpoints in device mode
5361 + * 0 - No
5362 + * 1 - Yes
5363 + */
5364 + int32_t en_multiple_tx_fifo;
5365 +#define dwc_param_en_multiple_tx_fifo_default 1
5366 +
5367 + /** Number of 4-byte words in each of the Tx FIFOs in device
5368 + * mode when dynamic FIFO sizing is enabled.
5369 + * 4 to 768 (default 256)
5370 + */
5371 + uint32_t dev_tx_fifo_size[MAX_TX_FIFOS];
5372 +//#define dwc_param_dev_tx_fifo_size_default 256
5373 +#define dwc_param_dev_tx_fifo_size_default 0x80
5374 +
5375 + /** Number of 4-byte words in the non-periodic Tx FIFO in device mode
5376 + * when dynamic FIFO sizing is enabled.
5377 + * 16 to 32768 (default 1024)
5378 + */
5379 + int32_t dev_nperio_tx_fifo_size;
5380 +//#define dwc_param_dev_nperio_tx_fifo_size_default 1024
5381 +#define dwc_param_dev_nperio_tx_fifo_size_default 0x80
5382 +
5383 + /** Number of 4-byte words in each of the periodic Tx FIFOs in device
5384 + * mode when dynamic FIFO sizing is enabled.
5385 + * 4 to 768 (default 256)
5386 + */
5387 + uint32_t dev_perio_tx_fifo_size[MAX_PERIO_FIFOS];
5388 +//#define dwc_param_dev_perio_tx_fifo_size_default 256
5389 +#define dwc_param_dev_perio_tx_fifo_size_default 0x80
5390 +
5391 + /** Number of 4-byte words in the Rx FIFO in host mode when dynamic
5392 + * FIFO sizing is enabled.
5393 + * 16 to 32768 (default 1024)
5394 + */
5395 + int32_t host_rx_fifo_size;
5396 +//#define dwc_param_host_rx_fifo_size_default 1024
5397 +#define dwc_param_host_rx_fifo_size_default 0x292
5398 +
5399 + /** Number of 4-byte words in the non-periodic Tx FIFO in host mode
5400 + * when Dynamic FIFO sizing is enabled in the core.
5401 + * 16 to 32768 (default 1024)
5402 + */
5403 + int32_t host_nperio_tx_fifo_size;
5404 +//#define dwc_param_host_nperio_tx_fifo_size_default 1024
5405 +//#define dwc_param_host_nperio_tx_fifo_size_default 0x292
5406 +#define dwc_param_host_nperio_tx_fifo_size_default 0x80
5407 +
5408 + /** Number of 4-byte words in the host periodic Tx FIFO when dynamic
5409 + * FIFO sizing is enabled.
5410 + * 16 to 32768 (default 1024)
5411 + */
5412 + int32_t host_perio_tx_fifo_size;
5413 +//#define dwc_param_host_perio_tx_fifo_size_default 1024
5414 +#define dwc_param_host_perio_tx_fifo_size_default 0x292
5415 +
5416 + /** The maximum transfer size supported in bytes.
5417 + * 2047 to 65,535 (default 65,535)
5418 + */
5419 + int32_t max_transfer_size;
5420 +#define dwc_param_max_transfer_size_default 65535
5421 +
5422 + /** The maximum number of packets in a transfer.
5423 + * 15 to 511 (default 511)
5424 + */
5425 + int32_t max_packet_count;
5426 +#define dwc_param_max_packet_count_default 511
5427 +
5428 + /** The number of host channel registers to use.
5429 + * 1 to 16 (default 12)
5430 + * Note: The FPGA configuration supports a maximum of 12 host channels.
5431 + */
5432 + int32_t host_channels;
5433 +//#define dwc_param_host_channels_default 12
5434 +#define dwc_param_host_channels_default 16
5435 +
5436 + /** The number of endpoints in addition to EP0 available for device
5437 + * mode operations.
5438 + * 1 to 15 (default 6 IN and OUT)
5439 + * Note: The FPGA configuration supports a maximum of 6 IN and OUT
5440 + * endpoints in addition to EP0.
5441 + */
5442 + int32_t dev_endpoints;
5443 +//#define dwc_param_dev_endpoints_default 6
5444 +#define dwc_param_dev_endpoints_default 8
5445 +
5446 + /**
5447 + * Specifies the type of PHY interface to use. By default, the driver
5448 + * will automatically detect the phy_type.
5449 + *
5450 + * 0 - Full Speed PHY
5451 + * 1 - UTMI+ (default)
5452 + * 2 - ULPI
5453 + */
5454 + int32_t phy_type;
5455 +#define DWC_PHY_TYPE_PARAM_FS 0
5456 +#define DWC_PHY_TYPE_PARAM_UTMI 1
5457 +#define DWC_PHY_TYPE_PARAM_ULPI 2
5458 +#define dwc_param_phy_type_default DWC_PHY_TYPE_PARAM_UTMI
5459 +
5460 + /**
5461 + * Specifies the UTMI+ Data Width. This parameter is
5462 + * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
5463 + * PHY_TYPE, this parameter indicates the data width between
5464 + * the MAC and the ULPI Wrapper.) Also, this parameter is
5465 + * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
5466 + * to "8 and 16 bits", meaning that the core has been
5467 + * configured to work at either data path width.
5468 + *
5469 + * 8 or 16 bits (default 16)
5470 + */
5471 + int32_t phy_utmi_width;
5472 +#define dwc_param_phy_utmi_width_default 16
5473 +
5474 + /**
5475 + * Specifies whether the ULPI operates at double or single
5476 + * data rate. This parameter is only applicable if PHY_TYPE is
5477 + * ULPI.
5478 + *
5479 + * 0 - single data rate ULPI interface with 8 bit wide data
5480 + * bus (default)
5481 + * 1 - double data rate ULPI interface with 4 bit wide data
5482 + * bus
5483 + */
5484 + int32_t phy_ulpi_ddr;
5485 +#define dwc_param_phy_ulpi_ddr_default 0
5486 +
5487 + /**
5488 + * Specifies whether to use the internal or external supply to
5489 + * drive the vbus with a ULPI phy.
5490 + */
5491 + int32_t phy_ulpi_ext_vbus;
5492 +#define DWC_PHY_ULPI_INTERNAL_VBUS 0
5493 +#define DWC_PHY_ULPI_EXTERNAL_VBUS 1
5494 +#define dwc_param_phy_ulpi_ext_vbus_default DWC_PHY_ULPI_INTERNAL_VBUS
5495 +
5496 + /**
5497 + * Specifies whether to use the I2Cinterface for full speed PHY. This
5498 + * parameter is only applicable if PHY_TYPE is FS.
5499 + * 0 - No (default)
5500 + * 1 - Yes
5501 + */
5502 + int32_t i2c_enable;
5503 +#define dwc_param_i2c_enable_default 0
5504 +
5505 + int32_t ulpi_fs_ls;
5506 +#define dwc_param_ulpi_fs_ls_default 0
5507 +
5508 + int32_t ts_dline;
5509 +#define dwc_param_ts_dline_default 0
5510 +
5511 + /** Thresholding enable flag-
5512 + * bit 0 - enable non-ISO Tx thresholding
5513 + * bit 1 - enable ISO Tx thresholding
5514 + * bit 2 - enable Rx thresholding
5515 + */
5516 + uint32_t thr_ctl;
5517 +#define dwc_param_thr_ctl_default 0
5518 +
5519 + /** Thresholding length for Tx
5520 + * FIFOs in 32 bit DWORDs
5521 + */
5522 + uint32_t tx_thr_length;
5523 +#define dwc_param_tx_thr_length_default 64
5524 +
5525 + /** Thresholding length for Rx
5526 + * FIFOs in 32 bit DWORDs
5527 + */
5528 + uint32_t rx_thr_length;
5529 +#define dwc_param_rx_thr_length_default 64
5530 +
5531 + /** Per Transfer Interrupt
5532 + * mode enable flag
5533 + * 1 - Enabled
5534 + * 0 - Disabled
5535 + */
5536 + uint32_t pti_enable;
5537 +#define dwc_param_pti_enable_default 0
5538 +
5539 + /** Molti Processor Interrupt
5540 + * mode enable flag
5541 + * 1 - Enabled
5542 + * 0 - Disabled
5543 + */
5544 + uint32_t mpi_enable;
5545 +#define dwc_param_mpi_enable_default 0
5546 +
5547 +} dwc_otg_core_params_t;
5548 +
5549 +#ifdef DEBUG
5550 +struct dwc_otg_core_if;
5551 +typedef struct hc_xfer_info
5552 +{
5553 + struct dwc_otg_core_if *core_if;
5554 + dwc_hc_t *hc;
5555 +} hc_xfer_info_t;
5556 +#endif
5557 +
5558 +/**
5559 + * The <code>dwc_otg_core_if</code> structure contains information needed to manage
5560 + * the DWC_otg controller acting in either host or device mode. It
5561 + * represents the programming view of the controller as a whole.
5562 + */
5563 +typedef struct dwc_otg_core_if
5564 +{
5565 + /** Parameters that define how the core should be configured.*/
5566 + dwc_otg_core_params_t *core_params;
5567 +
5568 + /** Core Global registers starting at offset 000h. */
5569 + dwc_otg_core_global_regs_t *core_global_regs;
5570 +
5571 + /** Device-specific information */
5572 + dwc_otg_dev_if_t *dev_if;
5573 + /** Host-specific information */
5574 + dwc_otg_host_if_t *host_if;
5575 +
5576 + /** Value from SNPSID register */
5577 + uint32_t snpsid;
5578 +
5579 + /*
5580 + * Set to 1 if the core PHY interface bits in USBCFG have been
5581 + * initialized.
5582 + */
5583 + uint8_t phy_init_done;
5584 +
5585 + /*
5586 + * SRP Success flag, set by srp success interrupt in FS I2C mode
5587 + */
5588 + uint8_t srp_success;
5589 + uint8_t srp_timer_started;
5590 +
5591 + /* Common configuration information */
5592 + /** Power and Clock Gating Control Register */
5593 + volatile uint32_t *pcgcctl;
5594 +#define DWC_OTG_PCGCCTL_OFFSET 0xE00
5595 +
5596 + /** Push/pop addresses for endpoints or host channels.*/
5597 + uint32_t *data_fifo[MAX_EPS_CHANNELS];
5598 +#define DWC_OTG_DATA_FIFO_OFFSET 0x1000
5599 +#define DWC_OTG_DATA_FIFO_SIZE 0x1000
5600 +
5601 + /** Total RAM for FIFOs (Bytes) */
5602 + uint16_t total_fifo_size;
5603 + /** Size of Rx FIFO (Bytes) */
5604 + uint16_t rx_fifo_size;
5605 + /** Size of Non-periodic Tx FIFO (Bytes) */
5606 + uint16_t nperio_tx_fifo_size;
5607 +
5608 +
5609 + /** 1 if DMA is enabled, 0 otherwise. */
5610 + uint8_t dma_enable;
5611 +
5612 + /** 1 if Descriptor DMA mode is enabled, 0 otherwise. */
5613 + uint8_t dma_desc_enable;
5614 +
5615 + /** 1 if PTI Enhancement mode is enabled, 0 otherwise. */
5616 + uint8_t pti_enh_enable;
5617 +
5618 + /** 1 if MPI Enhancement mode is enabled, 0 otherwise. */
5619 + uint8_t multiproc_int_enable;
5620 +
5621 + /** 1 if dedicated Tx FIFOs are enabled, 0 otherwise. */
5622 + uint8_t en_multiple_tx_fifo;
5623 +
5624 + /** Set to 1 if multiple packets of a high-bandwidth transfer is in
5625 + * process of being queued */
5626 + uint8_t queuing_high_bandwidth;
5627 +
5628 + /** Hardware Configuration -- stored here for convenience.*/
5629 + hwcfg1_data_t hwcfg1;
5630 + hwcfg2_data_t hwcfg2;
5631 + hwcfg3_data_t hwcfg3;
5632 + hwcfg4_data_t hwcfg4;
5633 +
5634 + /** Host and Device Configuration -- stored here for convenience.*/
5635 + hcfg_data_t hcfg;
5636 + dcfg_data_t dcfg;
5637 +
5638 + /** The operational State, during transations
5639 + * (a_host>>a_peripherial and b_device=>b_host) this may not
5640 + * match the core but allows the software to determine
5641 + * transitions.
5642 + */
5643 + uint8_t op_state;
5644 +
5645 + /**
5646 + * Set to 1 if the HCD needs to be restarted on a session request
5647 + * interrupt. This is required if no connector ID status change has
5648 + * occurred since the HCD was last disconnected.
5649 + */
5650 + uint8_t restart_hcd_on_session_req;
5651 +
5652 + /** HCD callbacks */
5653 + /** A-Device is a_host */
5654 +#define A_HOST (1)
5655 + /** A-Device is a_suspend */
5656 +#define A_SUSPEND (2)
5657 + /** A-Device is a_peripherial */
5658 +#define A_PERIPHERAL (3)
5659 + /** B-Device is operating as a Peripheral. */
5660 +#define B_PERIPHERAL (4)
5661 + /** B-Device is operating as a Host. */
5662 +#define B_HOST (5)
5663 +
5664 + /** HCD callbacks */
5665 + struct dwc_otg_cil_callbacks *hcd_cb;
5666 + /** PCD callbacks */
5667 + struct dwc_otg_cil_callbacks *pcd_cb;
5668 +
5669 + /** Device mode Periodic Tx FIFO Mask */
5670 + uint32_t p_tx_msk;
5671 + /** Device mode Periodic Tx FIFO Mask */
5672 + uint32_t tx_msk;
5673 +
5674 + /** Workqueue object used for handling several interrupts */
5675 + struct workqueue_struct *wq_otg;
5676 +
5677 + /** Work object used for handling "Connector ID Status Change" Interrupt */
5678 + struct work_struct w_conn_id;
5679 +
5680 + /** Work object used for handling "Wakeup Detected" Interrupt */
5681 + struct delayed_work w_wkp;
5682 +
5683 +#ifdef DEBUG
5684 + uint32_t start_hcchar_val[MAX_EPS_CHANNELS];
5685 +
5686 + hc_xfer_info_t hc_xfer_info[MAX_EPS_CHANNELS];
5687 + struct timer_list hc_xfer_timer[MAX_EPS_CHANNELS];
5688 +
5689 + uint32_t hfnum_7_samples;
5690 + uint64_t hfnum_7_frrem_accum;
5691 + uint32_t hfnum_0_samples;
5692 + uint64_t hfnum_0_frrem_accum;
5693 + uint32_t hfnum_other_samples;
5694 + uint64_t hfnum_other_frrem_accum;
5695 +#endif
5696 +
5697 +
5698 +} dwc_otg_core_if_t;
5699 +
5700 +/*We must clear S3C24XX_EINTPEND external interrupt register
5701 + * because after clearing in this register trigerred IRQ from
5702 + * H/W core in kernel interrupt can be occured again before OTG
5703 + * handlers clear all IRQ sources of Core registers because of
5704 + * timing latencies and Low Level IRQ Type.
5705 + */
5706 +
5707 +#ifdef CONFIG_MACH_IPMATE
5708 +#define S3C2410X_CLEAR_EINTPEND() \
5709 +do { \
5710 + if (!dwc_otg_read_core_intr(core_if)) { \
5711 + __raw_writel(1UL << 11,S3C24XX_EINTPEND); \
5712 + } \
5713 +} while (0)
5714 +#else
5715 +#define S3C2410X_CLEAR_EINTPEND() do { } while (0)
5716 +#endif
5717 +
5718 +/*
5719 + * The following functions are functions for works
5720 + * using during handling some interrupts
5721 + */
5722 +extern void w_conn_id_status_change(struct work_struct *p);
5723 +extern void w_wakeup_detected(struct work_struct *p);
5724 +
5725 +
5726 +/*
5727 + * The following functions support initialization of the CIL driver component
5728 + * and the DWC_otg controller.
5729 + */
5730 +extern dwc_otg_core_if_t *dwc_otg_cil_init(const uint32_t *_reg_base_addr,
5731 + dwc_otg_core_params_t *_core_params);
5732 +extern void dwc_otg_cil_remove(dwc_otg_core_if_t *_core_if);
5733 +extern void dwc_otg_core_init(dwc_otg_core_if_t *_core_if);
5734 +extern void dwc_otg_core_host_init(dwc_otg_core_if_t *_core_if);
5735 +extern void dwc_otg_core_dev_init(dwc_otg_core_if_t *_core_if);
5736 +extern void dwc_otg_enable_global_interrupts( dwc_otg_core_if_t *_core_if );
5737 +extern void dwc_otg_disable_global_interrupts( dwc_otg_core_if_t *_core_if );
5738 +
5739 +/** @name Device CIL Functions
5740 + * The following functions support managing the DWC_otg controller in device
5741 + * mode.
5742 + */
5743 +/**@{*/
5744 +extern void dwc_otg_wakeup(dwc_otg_core_if_t *_core_if);
5745 +extern void dwc_otg_read_setup_packet (dwc_otg_core_if_t *_core_if, uint32_t *_dest);
5746 +extern uint32_t dwc_otg_get_frame_number(dwc_otg_core_if_t *_core_if);
5747 +extern void dwc_otg_ep0_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5748 +extern void dwc_otg_ep_activate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5749 +extern void dwc_otg_ep_deactivate(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5750 +extern void dwc_otg_ep_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5751 +extern void dwc_otg_ep_start_zl_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5752 +extern void dwc_otg_ep0_start_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5753 +extern void dwc_otg_ep0_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5754 +extern void dwc_otg_ep_write_packet(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep, int _dma);
5755 +extern void dwc_otg_ep_set_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5756 +extern void dwc_otg_ep_clear_stall(dwc_otg_core_if_t *_core_if, dwc_ep_t *_ep);
5757 +extern void dwc_otg_enable_device_interrupts(dwc_otg_core_if_t *_core_if);
5758 +extern void dwc_otg_dump_dev_registers(dwc_otg_core_if_t *_core_if);
5759 +extern void dwc_otg_dump_spram(dwc_otg_core_if_t *_core_if);
5760 +#ifdef DWC_EN_ISOC
5761 +extern void dwc_otg_iso_ep_start_frm_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
5762 +extern void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep);
5763 +#endif //DWC_EN_ISOC
5764 +/**@}*/
5765 +
5766 +/** @name Host CIL Functions
5767 + * The following functions support managing the DWC_otg controller in host
5768 + * mode.
5769 + */
5770 +/**@{*/
5771 +extern void dwc_otg_hc_init(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5772 +extern void dwc_otg_hc_halt(dwc_otg_core_if_t *_core_if,
5773 + dwc_hc_t *_hc,
5774 + dwc_otg_halt_status_e _halt_status);
5775 +extern void dwc_otg_hc_cleanup(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5776 +extern void dwc_otg_hc_start_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5777 +extern int dwc_otg_hc_continue_transfer(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5778 +extern void dwc_otg_hc_do_ping(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5779 +extern void dwc_otg_hc_write_packet(dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc);
5780 +extern void dwc_otg_enable_host_interrupts(dwc_otg_core_if_t *_core_if);
5781 +extern void dwc_otg_disable_host_interrupts(dwc_otg_core_if_t *_core_if);
5782 +
5783 +/**
5784 + * This function Reads HPRT0 in preparation to modify. It keeps the
5785 + * WC bits 0 so that if they are read as 1, they won't clear when you
5786 + * write it back
5787 + */
5788 +static inline uint32_t dwc_otg_read_hprt0(dwc_otg_core_if_t *_core_if)
5789 +{
5790 + hprt0_data_t hprt0;
5791 + hprt0.d32 = dwc_read_reg32(_core_if->host_if->hprt0);
5792 + hprt0.b.prtena = 0;
5793 + hprt0.b.prtconndet = 0;
5794 + hprt0.b.prtenchng = 0;
5795 + hprt0.b.prtovrcurrchng = 0;
5796 + return hprt0.d32;
5797 +}
5798 +
5799 +extern void dwc_otg_dump_host_registers(dwc_otg_core_if_t *_core_if);
5800 +/**@}*/
5801 +
5802 +/** @name Common CIL Functions
5803 + * The following functions support managing the DWC_otg controller in either
5804 + * device or host mode.
5805 + */
5806 +/**@{*/
5807 +
5808 +extern void dwc_otg_read_packet(dwc_otg_core_if_t *core_if,
5809 + uint8_t *dest,
5810 + uint16_t bytes);
5811 +
5812 +extern void dwc_otg_dump_global_registers(dwc_otg_core_if_t *_core_if);
5813 +
5814 +extern void dwc_otg_flush_tx_fifo( dwc_otg_core_if_t *_core_if,
5815 + const int _num );
5816 +extern void dwc_otg_flush_rx_fifo( dwc_otg_core_if_t *_core_if );
5817 +extern void dwc_otg_core_reset( dwc_otg_core_if_t *_core_if );
5818 +
5819 +extern dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count);
5820 +extern void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count);
5821 +
5822 +/**
5823 + * This function returns the Core Interrupt register.
5824 + */
5825 +static inline uint32_t dwc_otg_read_core_intr(dwc_otg_core_if_t *_core_if)
5826 +{
5827 + return (dwc_read_reg32(&_core_if->core_global_regs->gintsts) &
5828 + dwc_read_reg32(&_core_if->core_global_regs->gintmsk));
5829 +}
5830 +
5831 +/**
5832 + * This function returns the OTG Interrupt register.
5833 + */
5834 +static inline uint32_t dwc_otg_read_otg_intr (dwc_otg_core_if_t *_core_if)
5835 +{
5836 + return (dwc_read_reg32 (&_core_if->core_global_regs->gotgint));
5837 +}
5838 +
5839 +/**
5840 + * This function reads the Device All Endpoints Interrupt register and
5841 + * returns the IN endpoint interrupt bits.
5842 + */
5843 +static inline uint32_t dwc_otg_read_dev_all_in_ep_intr(dwc_otg_core_if_t *core_if)
5844 +{
5845 + uint32_t v;
5846 +
5847 + if(core_if->multiproc_int_enable) {
5848 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
5849 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
5850 + } else {
5851 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
5852 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
5853 + }
5854 + return (v & 0xffff);
5855 +
5856 +}
5857 +
5858 +/**
5859 + * This function reads the Device All Endpoints Interrupt register and
5860 + * returns the OUT endpoint interrupt bits.
5861 + */
5862 +static inline uint32_t dwc_otg_read_dev_all_out_ep_intr(dwc_otg_core_if_t *core_if)
5863 +{
5864 + uint32_t v;
5865 +
5866 + if(core_if->multiproc_int_enable) {
5867 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachint) &
5868 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->deachintmsk);
5869 + } else {
5870 + v = dwc_read_reg32(&core_if->dev_if->dev_global_regs->daint) &
5871 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->daintmsk);
5872 + }
5873 +
5874 + return ((v & 0xffff0000) >> 16);
5875 +}
5876 +
5877 +/**
5878 + * This function returns the Device IN EP Interrupt register
5879 + */
5880 +static inline uint32_t dwc_otg_read_dev_in_ep_intr(dwc_otg_core_if_t *core_if,
5881 + dwc_ep_t *ep)
5882 +{
5883 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
5884 + uint32_t v, msk, emp;
5885 +
5886 + if(core_if->multiproc_int_enable) {
5887 + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepeachintmsk[ep->num]);
5888 + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
5889 + msk |= ((emp >> ep->num) & 0x1) << 7;
5890 + v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
5891 + } else {
5892 + msk = dwc_read_reg32(&dev_if->dev_global_regs->diepmsk);
5893 + emp = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
5894 + msk |= ((emp >> ep->num) & 0x1) << 7;
5895 + v = dwc_read_reg32(&dev_if->in_ep_regs[ep->num]->diepint) & msk;
5896 + }
5897 +
5898 +
5899 + return v;
5900 +}
5901 +/**
5902 + * This function returns the Device OUT EP Interrupt register
5903 + */
5904 +static inline uint32_t dwc_otg_read_dev_out_ep_intr(dwc_otg_core_if_t *_core_if,
5905 + dwc_ep_t *_ep)
5906 +{
5907 + dwc_otg_dev_if_t *dev_if = _core_if->dev_if;
5908 + uint32_t v;
5909 + doepmsk_data_t msk = { .d32 = 0 };
5910 +
5911 + if(_core_if->multiproc_int_enable) {
5912 + msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepeachintmsk[_ep->num]);
5913 + if(_core_if->pti_enh_enable) {
5914 + msk.b.pktdrpsts = 1;
5915 + }
5916 + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
5917 + } else {
5918 + msk.d32 = dwc_read_reg32(&dev_if->dev_global_regs->doepmsk);
5919 + if(_core_if->pti_enh_enable) {
5920 + msk.b.pktdrpsts = 1;
5921 + }
5922 + v = dwc_read_reg32( &dev_if->out_ep_regs[_ep->num]->doepint) & msk.d32;
5923 + }
5924 + return v;
5925 +}
5926 +
5927 +/**
5928 + * This function returns the Host All Channel Interrupt register
5929 + */
5930 +static inline uint32_t dwc_otg_read_host_all_channels_intr (dwc_otg_core_if_t *_core_if)
5931 +{
5932 + return (dwc_read_reg32 (&_core_if->host_if->host_global_regs->haint));
5933 +}
5934 +
5935 +static inline uint32_t dwc_otg_read_host_channel_intr (dwc_otg_core_if_t *_core_if, dwc_hc_t *_hc)
5936 +{
5937 + return (dwc_read_reg32 (&_core_if->host_if->hc_regs[_hc->hc_num]->hcint));
5938 +}
5939 +
5940 +
5941 +/**
5942 + * This function returns the mode of the operation, host or device.
5943 + *
5944 + * @return 0 - Device Mode, 1 - Host Mode
5945 + */
5946 +static inline uint32_t dwc_otg_mode(dwc_otg_core_if_t *_core_if)
5947 +{
5948 + return (dwc_read_reg32( &_core_if->core_global_regs->gintsts ) & 0x1);
5949 +}
5950 +
5951 +static inline uint8_t dwc_otg_is_device_mode(dwc_otg_core_if_t *_core_if)
5952 +{
5953 + return (dwc_otg_mode(_core_if) != DWC_HOST_MODE);
5954 +}
5955 +static inline uint8_t dwc_otg_is_host_mode(dwc_otg_core_if_t *_core_if)
5956 +{
5957 + return (dwc_otg_mode(_core_if) == DWC_HOST_MODE);
5958 +}
5959 +
5960 +extern int32_t dwc_otg_handle_common_intr( dwc_otg_core_if_t *_core_if );
5961 +
5962 +
5963 +/**@}*/
5964 +
5965 +/**
5966 + * DWC_otg CIL callback structure. This structure allows the HCD and
5967 + * PCD to register functions used for starting and stopping the PCD
5968 + * and HCD for role change on for a DRD.
5969 + */
5970 +typedef struct dwc_otg_cil_callbacks
5971 +{
5972 + /** Start function for role change */
5973 + int (*start) (void *_p);
5974 + /** Stop Function for role change */
5975 + int (*stop) (void *_p);
5976 + /** Disconnect Function for role change */
5977 + int (*disconnect) (void *_p);
5978 + /** Resume/Remote wakeup Function */
5979 + int (*resume_wakeup) (void *_p);
5980 + /** Suspend function */
5981 + int (*suspend) (void *_p);
5982 + /** Session Start (SRP) */
5983 + int (*session_start) (void *_p);
5984 + /** Pointer passed to start() and stop() */
5985 + void *p;
5986 +} dwc_otg_cil_callbacks_t;
5987 +
5988 +extern void dwc_otg_cil_register_pcd_callbacks( dwc_otg_core_if_t *_core_if,
5989 + dwc_otg_cil_callbacks_t *_cb,
5990 + void *_p);
5991 +extern void dwc_otg_cil_register_hcd_callbacks( dwc_otg_core_if_t *_core_if,
5992 + dwc_otg_cil_callbacks_t *_cb,
5993 + void *_p);
5994 +#ifndef warn
5995 +#define warn printk
5996 +#endif
5997 +
5998 +#endif
5999 +
6000 --- /dev/null
6001 +++ b/drivers/usb/dwc/otg_cil_intr.c
6002 @@ -0,0 +1,852 @@
6003 +/* ==========================================================================
6004 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_cil_intr.c $
6005 + * $Revision: #10 $
6006 + * $Date: 2008/07/16 $
6007 + * $Change: 1065567 $
6008 + *
6009 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6010 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6011 + * otherwise expressly agreed to in writing between Synopsys and you.
6012 + *
6013 + * The Software IS NOT an item of Licensed Software or Licensed Product under
6014 + * any End User Software License Agreement or Agreement for Licensed Product
6015 + * with Synopsys or any supplement thereto. You are permitted to use and
6016 + * redistribute this Software in source and binary forms, with or without
6017 + * modification, provided that redistributions of source code must retain this
6018 + * notice. You may not view, use, disclose, copy or distribute this file or
6019 + * any information contained herein except pursuant to this license grant from
6020 + * Synopsys. If you do not agree with this notice, including the disclaimer
6021 + * below, then you are not authorized to use the Software.
6022 + *
6023 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6024 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6025 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6026 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6027 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6028 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6029 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6030 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6031 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6032 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6033 + * DAMAGE.
6034 + * ========================================================================== */
6035 +
6036 +/** @file
6037 + *
6038 + * The Core Interface Layer provides basic services for accessing and
6039 + * managing the DWC_otg hardware. These services are used by both the
6040 + * Host Controller Driver and the Peripheral Controller Driver.
6041 + *
6042 + * This file contains the Common Interrupt handlers.
6043 + */
6044 +#include "otg_plat.h"
6045 +#include "otg_regs.h"
6046 +#include "otg_cil.h"
6047 +#include "otg_pcd.h"
6048 +
6049 +#ifdef DEBUG
6050 +inline const char *op_state_str(dwc_otg_core_if_t *core_if)
6051 +{
6052 + return (core_if->op_state==A_HOST?"a_host":
6053 + (core_if->op_state==A_SUSPEND?"a_suspend":
6054 + (core_if->op_state==A_PERIPHERAL?"a_peripheral":
6055 + (core_if->op_state==B_PERIPHERAL?"b_peripheral":
6056 + (core_if->op_state==B_HOST?"b_host":
6057 + "unknown")))));
6058 +}
6059 +#endif
6060 +
6061 +/** This function will log a debug message
6062 + *
6063 + * @param core_if Programming view of DWC_otg controller.
6064 + */
6065 +int32_t dwc_otg_handle_mode_mismatch_intr (dwc_otg_core_if_t *core_if)
6066 +{
6067 + gintsts_data_t gintsts;
6068 + DWC_WARN("Mode Mismatch Interrupt: currently in %s mode\n",
6069 + dwc_otg_mode(core_if) ? "Host" : "Device");
6070 +
6071 + /* Clear interrupt */
6072 + gintsts.d32 = 0;
6073 + gintsts.b.modemismatch = 1;
6074 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6075 + return 1;
6076 +}
6077 +
6078 +/** Start the HCD. Helper function for using the HCD callbacks.
6079 + *
6080 + * @param core_if Programming view of DWC_otg controller.
6081 + */
6082 +static inline void hcd_start(dwc_otg_core_if_t *core_if)
6083 +{
6084 + if (core_if->hcd_cb && core_if->hcd_cb->start) {
6085 + core_if->hcd_cb->start(core_if->hcd_cb->p);
6086 + }
6087 +}
6088 +/** Stop the HCD. Helper function for using the HCD callbacks.
6089 + *
6090 + * @param core_if Programming view of DWC_otg controller.
6091 + */
6092 +static inline void hcd_stop(dwc_otg_core_if_t *core_if)
6093 +{
6094 + if (core_if->hcd_cb && core_if->hcd_cb->stop) {
6095 + core_if->hcd_cb->stop(core_if->hcd_cb->p);
6096 + }
6097 +}
6098 +/** Disconnect the HCD. Helper function for using the HCD callbacks.
6099 + *
6100 + * @param core_if Programming view of DWC_otg controller.
6101 + */
6102 +static inline void hcd_disconnect(dwc_otg_core_if_t *core_if)
6103 +{
6104 + if (core_if->hcd_cb && core_if->hcd_cb->disconnect) {
6105 + core_if->hcd_cb->disconnect(core_if->hcd_cb->p);
6106 + }
6107 +}
6108 +/** Inform the HCD the a New Session has begun. Helper function for
6109 + * using the HCD callbacks.
6110 + *
6111 + * @param core_if Programming view of DWC_otg controller.
6112 + */
6113 +static inline void hcd_session_start(dwc_otg_core_if_t *core_if)
6114 +{
6115 + if (core_if->hcd_cb && core_if->hcd_cb->session_start) {
6116 + core_if->hcd_cb->session_start(core_if->hcd_cb->p);
6117 + }
6118 +}
6119 +
6120 +/** Start the PCD. Helper function for using the PCD callbacks.
6121 + *
6122 + * @param core_if Programming view of DWC_otg controller.
6123 + */
6124 +static inline void pcd_start(dwc_otg_core_if_t *core_if)
6125 +{
6126 + if (core_if->pcd_cb && core_if->pcd_cb->start) {
6127 + core_if->pcd_cb->start(core_if->pcd_cb->p);
6128 + }
6129 +}
6130 +/** Stop the PCD. Helper function for using the PCD callbacks.
6131 + *
6132 + * @param core_if Programming view of DWC_otg controller.
6133 + */
6134 +static inline void pcd_stop(dwc_otg_core_if_t *core_if)
6135 +{
6136 + if (core_if->pcd_cb && core_if->pcd_cb->stop) {
6137 + core_if->pcd_cb->stop(core_if->pcd_cb->p);
6138 + }
6139 +}
6140 +/** Suspend the PCD. Helper function for using the PCD callbacks.
6141 + *
6142 + * @param core_if Programming view of DWC_otg controller.
6143 + */
6144 +static inline void pcd_suspend(dwc_otg_core_if_t *core_if)
6145 +{
6146 + if (core_if->pcd_cb && core_if->pcd_cb->suspend) {
6147 + core_if->pcd_cb->suspend(core_if->pcd_cb->p);
6148 + }
6149 +}
6150 +/** Resume the PCD. Helper function for using the PCD callbacks.
6151 + *
6152 + * @param core_if Programming view of DWC_otg controller.
6153 + */
6154 +static inline void pcd_resume(dwc_otg_core_if_t *core_if)
6155 +{
6156 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
6157 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
6158 + }
6159 +}
6160 +
6161 +/**
6162 + * This function handles the OTG Interrupts. It reads the OTG
6163 + * Interrupt Register (GOTGINT) to determine what interrupt has
6164 + * occurred.
6165 + *
6166 + * @param core_if Programming view of DWC_otg controller.
6167 + */
6168 +int32_t dwc_otg_handle_otg_intr(dwc_otg_core_if_t *core_if)
6169 +{
6170 + dwc_otg_core_global_regs_t *global_regs =
6171 + core_if->core_global_regs;
6172 + gotgint_data_t gotgint;
6173 + gotgctl_data_t gotgctl;
6174 + gintmsk_data_t gintmsk;
6175 + gotgint.d32 = dwc_read_reg32(&global_regs->gotgint);
6176 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6177 + DWC_DEBUGPL(DBG_CIL, "++OTG Interrupt gotgint=%0x [%s]\n", gotgint.d32,
6178 + op_state_str(core_if));
6179 + //DWC_DEBUGPL(DBG_CIL, "gotgctl=%08x\n", gotgctl.d32);
6180 +
6181 + if (gotgint.b.sesenddet) {
6182 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6183 + "Session End Detected++ (%s)\n",
6184 + op_state_str(core_if));
6185 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6186 +
6187 + if (core_if->op_state == B_HOST) {
6188 +
6189 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)core_if->pcd_cb->p;
6190 + if(unlikely(!pcd)) {
6191 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6192 + BUG();
6193 + }
6194 + SPIN_LOCK(&pcd->lock);
6195 +
6196 + pcd_start(core_if);
6197 +
6198 + SPIN_UNLOCK(&pcd->lock);
6199 + core_if->op_state = B_PERIPHERAL;
6200 + } else {
6201 + dwc_otg_pcd_t *pcd;
6202 +
6203 + /* If not B_HOST and Device HNP still set. HNP
6204 + * Did not succeed!*/
6205 + if (gotgctl.b.devhnpen) {
6206 + DWC_DEBUGPL(DBG_ANY, "Session End Detected\n");
6207 + DWC_ERROR("Device Not Connected/Responding!\n");
6208 + }
6209 +
6210 + /* If Session End Detected the B-Cable has
6211 + * been disconnected. */
6212 + /* Reset PCD and Gadget driver to a
6213 + * clean state. */
6214 +
6215 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6216 + if(unlikely(!pcd)) {
6217 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6218 + BUG();
6219 + }
6220 + SPIN_LOCK(&pcd->lock);
6221 +
6222 + pcd_stop(core_if);
6223 +
6224 + SPIN_UNLOCK(&pcd->lock);
6225 + }
6226 + gotgctl.d32 = 0;
6227 + gotgctl.b.devhnpen = 1;
6228 + dwc_modify_reg32(&global_regs->gotgctl,
6229 + gotgctl.d32, 0);
6230 + }
6231 + if (gotgint.b.sesreqsucstschng) {
6232 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6233 + "Session Reqeust Success Status Change++\n");
6234 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6235 + if (gotgctl.b.sesreqscs) {
6236 + if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
6237 + (core_if->core_params->i2c_enable)) {
6238 + core_if->srp_success = 1;
6239 + }
6240 + else {
6241 + dwc_otg_pcd_t *pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6242 + if(unlikely(!pcd)) {
6243 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6244 + BUG();
6245 + }
6246 + SPIN_LOCK(&pcd->lock);
6247 +
6248 + pcd_resume(core_if);
6249 +
6250 + SPIN_UNLOCK(&pcd->lock);
6251 + /* Clear Session Request */
6252 + gotgctl.d32 = 0;
6253 + gotgctl.b.sesreq = 1;
6254 + dwc_modify_reg32(&global_regs->gotgctl,
6255 + gotgctl.d32, 0);
6256 + }
6257 + }
6258 + }
6259 + if (gotgint.b.hstnegsucstschng) {
6260 + /* Print statements during the HNP interrupt handling
6261 + * can cause it to fail.*/
6262 + gotgctl.d32 = dwc_read_reg32(&global_regs->gotgctl);
6263 + if (gotgctl.b.hstnegscs) {
6264 + if (dwc_otg_is_host_mode(core_if)) {
6265 + dwc_otg_pcd_t *pcd;
6266 +
6267 + core_if->op_state = B_HOST;
6268 + /*
6269 + * Need to disable SOF interrupt immediately.
6270 + * When switching from device to host, the PCD
6271 + * interrupt handler won't handle the
6272 + * interrupt if host mode is already set. The
6273 + * HCD interrupt handler won't get called if
6274 + * the HCD state is HALT. This means that the
6275 + * interrupt does not get handled and Linux
6276 + * complains loudly.
6277 + */
6278 + gintmsk.d32 = 0;
6279 + gintmsk.b.sofintr = 1;
6280 + dwc_modify_reg32(&global_regs->gintmsk,
6281 + gintmsk.d32, 0);
6282 +
6283 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6284 + if(unlikely(!pcd)) {
6285 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6286 + BUG();
6287 + }
6288 + SPIN_LOCK(&pcd->lock);
6289 +
6290 + pcd_stop(core_if);
6291 +
6292 + SPIN_UNLOCK(&pcd->lock);
6293 + /*
6294 + * Initialize the Core for Host mode.
6295 + */
6296 + hcd_start(core_if);
6297 + core_if->op_state = B_HOST;
6298 + }
6299 + } else {
6300 + gotgctl.d32 = 0;
6301 + gotgctl.b.hnpreq = 1;
6302 + gotgctl.b.devhnpen = 1;
6303 + dwc_modify_reg32(&global_regs->gotgctl,
6304 + gotgctl.d32, 0);
6305 + DWC_DEBUGPL(DBG_ANY, "HNP Failed\n");
6306 + DWC_ERROR("Device Not Connected/Responding\n");
6307 + }
6308 + }
6309 + if (gotgint.b.hstnegdet) {
6310 + /* The disconnect interrupt is set at the same time as
6311 + * Host Negotiation Detected. During the mode
6312 + * switch all interrupts are cleared so the disconnect
6313 + * interrupt handler will not get executed.
6314 + */
6315 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6316 + "Host Negotiation Detected++ (%s)\n",
6317 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
6318 + if (dwc_otg_is_device_mode(core_if)){
6319 + dwc_otg_pcd_t *pcd;
6320 +
6321 + DWC_DEBUGPL(DBG_ANY, "a_suspend->a_peripheral (%d)\n", core_if->op_state);
6322 + hcd_disconnect(core_if);
6323 +
6324 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6325 + if(unlikely(!pcd)) {
6326 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6327 + BUG();
6328 + }
6329 + SPIN_LOCK(&pcd->lock);
6330 +
6331 + pcd_start(core_if);
6332 +
6333 + SPIN_UNLOCK(&pcd->lock);
6334 + core_if->op_state = A_PERIPHERAL;
6335 + } else {
6336 + dwc_otg_pcd_t *pcd;
6337 +
6338 + /*
6339 + * Need to disable SOF interrupt immediately. When
6340 + * switching from device to host, the PCD interrupt
6341 + * handler won't handle the interrupt if host mode is
6342 + * already set. The HCD interrupt handler won't get
6343 + * called if the HCD state is HALT. This means that
6344 + * the interrupt does not get handled and Linux
6345 + * complains loudly.
6346 + */
6347 + gintmsk.d32 = 0;
6348 + gintmsk.b.sofintr = 1;
6349 + dwc_modify_reg32(&global_regs->gintmsk,
6350 + gintmsk.d32, 0);
6351 +
6352 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6353 + if(unlikely(!pcd)) {
6354 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6355 + BUG();
6356 + }
6357 + SPIN_LOCK(&pcd->lock);
6358 +
6359 + pcd_stop(core_if);
6360 +
6361 + SPIN_UNLOCK(&pcd->lock);
6362 + hcd_start(core_if);
6363 + core_if->op_state = A_HOST;
6364 + }
6365 + }
6366 + if (gotgint.b.adevtoutchng) {
6367 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6368 + "A-Device Timeout Change++\n");
6369 + }
6370 + if (gotgint.b.debdone) {
6371 + DWC_DEBUGPL(DBG_ANY, " ++OTG Interrupt: "
6372 + "Debounce Done++\n");
6373 + }
6374 +
6375 + /* Clear GOTGINT */
6376 + dwc_write_reg32 (&core_if->core_global_regs->gotgint, gotgint.d32);
6377 +
6378 + return 1;
6379 +}
6380 +
6381 +
6382 +void w_conn_id_status_change(struct work_struct *p)
6383 +{
6384 + dwc_otg_core_if_t *core_if = container_of(p, dwc_otg_core_if_t, w_conn_id);
6385 +
6386 + uint32_t count = 0;
6387 + gotgctl_data_t gotgctl = { .d32 = 0 };
6388 +
6389 + gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
6390 + DWC_DEBUGPL(DBG_CIL, "gotgctl=%0x\n", gotgctl.d32);
6391 + DWC_DEBUGPL(DBG_CIL, "gotgctl.b.conidsts=%d\n", gotgctl.b.conidsts);
6392 +
6393 + /* B-Device connector (Device Mode) */
6394 + if (gotgctl.b.conidsts) {
6395 + dwc_otg_pcd_t *pcd;
6396 +
6397 + /* Wait for switch to device mode. */
6398 + while (!dwc_otg_is_device_mode(core_if)){
6399 + DWC_PRINT("Waiting for Peripheral Mode, Mode=%s\n",
6400 + (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
6401 + MDELAY(100);
6402 + if (++count > 10000) *(uint32_t*)NULL=0;
6403 + }
6404 + core_if->op_state = B_PERIPHERAL;
6405 + dwc_otg_core_init(core_if);
6406 + dwc_otg_enable_global_interrupts(core_if);
6407 +
6408 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6409 + if(unlikely(!pcd)) {
6410 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6411 + BUG();
6412 + }
6413 + SPIN_LOCK(&pcd->lock);
6414 +
6415 + pcd_start(core_if);
6416 +
6417 + SPIN_UNLOCK(&pcd->lock);
6418 + } else {
6419 + /* A-Device connector (Host Mode) */
6420 + while (!dwc_otg_is_host_mode(core_if)) {
6421 + DWC_PRINT("Waiting for Host Mode, Mode=%s\n",
6422 + (dwc_otg_is_host_mode(core_if)?"Host":"Peripheral"));
6423 + MDELAY(100);
6424 + if (++count > 10000) *(uint32_t*)NULL=0;
6425 + }
6426 + core_if->op_state = A_HOST;
6427 + /*
6428 + * Initialize the Core for Host mode.
6429 + */
6430 + dwc_otg_core_init(core_if);
6431 + dwc_otg_enable_global_interrupts(core_if);
6432 + hcd_start(core_if);
6433 + }
6434 +}
6435 +
6436 +
6437 +/**
6438 + * This function handles the Connector ID Status Change Interrupt. It
6439 + * reads the OTG Interrupt Register (GOTCTL) to determine whether this
6440 + * is a Device to Host Mode transition or a Host Mode to Device
6441 + * Transition.
6442 + *
6443 + * This only occurs when the cable is connected/removed from the PHY
6444 + * connector.
6445 + *
6446 + * @param core_if Programming view of DWC_otg controller.
6447 + */
6448 +int32_t dwc_otg_handle_conn_id_status_change_intr(dwc_otg_core_if_t *core_if)
6449 +{
6450 +
6451 + /*
6452 + * Need to disable SOF interrupt immediately. If switching from device
6453 + * to host, the PCD interrupt handler won't handle the interrupt if
6454 + * host mode is already set. The HCD interrupt handler won't get
6455 + * called if the HCD state is HALT. This means that the interrupt does
6456 + * not get handled and Linux complains loudly.
6457 + */
6458 + gintmsk_data_t gintmsk = { .d32 = 0 };
6459 + gintsts_data_t gintsts = { .d32 = 0 };
6460 +
6461 + gintmsk.b.sofintr = 1;
6462 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, gintmsk.d32, 0);
6463 +
6464 + DWC_DEBUGPL(DBG_CIL, " ++Connector ID Status Change Interrupt++ (%s)\n",
6465 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"));
6466 +
6467 + /*
6468 + * Need to schedule a work, as there are possible DELAY function calls
6469 + */
6470 + queue_work(core_if->wq_otg, &core_if->w_conn_id);
6471 +
6472 + /* Set flag and clear interrupt */
6473 + gintsts.b.conidstschng = 1;
6474 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6475 +
6476 + return 1;
6477 +}
6478 +
6479 +/**
6480 + * This interrupt indicates that a device is initiating the Session
6481 + * Request Protocol to request the host to turn on bus power so a new
6482 + * session can begin. The handler responds by turning on bus power. If
6483 + * the DWC_otg controller is in low power mode, the handler brings the
6484 + * controller out of low power mode before turning on bus power.
6485 + *
6486 + * @param core_if Programming view of DWC_otg controller.
6487 + */
6488 +int32_t dwc_otg_handle_session_req_intr(dwc_otg_core_if_t *core_if)
6489 +{
6490 + hprt0_data_t hprt0;
6491 + gintsts_data_t gintsts;
6492 +
6493 +#ifndef DWC_HOST_ONLY
6494 + DWC_DEBUGPL(DBG_ANY, "++Session Request Interrupt++\n");
6495 +
6496 + if (dwc_otg_is_device_mode(core_if)) {
6497 + DWC_PRINT("SRP: Device mode\n");
6498 + } else {
6499 + DWC_PRINT("SRP: Host mode\n");
6500 +
6501 + /* Turn on the port power bit. */
6502 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
6503 + hprt0.b.prtpwr = 1;
6504 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
6505 +
6506 + /* Start the Connection timer. So a message can be displayed
6507 + * if connect does not occur within 10 seconds. */
6508 + hcd_session_start(core_if);
6509 + }
6510 +#endif
6511 +
6512 + /* Clear interrupt */
6513 + gintsts.d32 = 0;
6514 + gintsts.b.sessreqintr = 1;
6515 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6516 +
6517 + return 1;
6518 +}
6519 +
6520 +
6521 +void w_wakeup_detected(struct work_struct *p)
6522 +{
6523 + struct delayed_work *dw = container_of(p, struct delayed_work, work);
6524 + dwc_otg_core_if_t *core_if = container_of(dw, dwc_otg_core_if_t, w_wkp);
6525 +
6526 + /*
6527 + * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
6528 + * so that OPT tests pass with all PHYs).
6529 + */
6530 + hprt0_data_t hprt0 = {.d32=0};
6531 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
6532 + DWC_DEBUGPL(DBG_ANY,"Resume: HPRT0=%0x\n", hprt0.d32);
6533 +// MDELAY(70);
6534 + hprt0.b.prtres = 0; /* Resume */
6535 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
6536 + DWC_DEBUGPL(DBG_ANY,"Clear Resume: HPRT0=%0x\n", dwc_read_reg32(core_if->host_if->hprt0));
6537 +}
6538 +/**
6539 + * This interrupt indicates that the DWC_otg controller has detected a
6540 + * resume or remote wakeup sequence. If the DWC_otg controller is in
6541 + * low power mode, the handler must brings the controller out of low
6542 + * power mode. The controller automatically begins resume
6543 + * signaling. The handler schedules a time to stop resume signaling.
6544 + */
6545 +int32_t dwc_otg_handle_wakeup_detected_intr(dwc_otg_core_if_t *core_if)
6546 +{
6547 + gintsts_data_t gintsts;
6548 +
6549 + DWC_DEBUGPL(DBG_ANY, "++Resume and Remote Wakeup Detected Interrupt++\n");
6550 +
6551 + if (dwc_otg_is_device_mode(core_if)) {
6552 + dctl_data_t dctl = {.d32=0};
6553 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n",
6554 + dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts));
6555 +#ifdef PARTIAL_POWER_DOWN
6556 + if (core_if->hwcfg4.b.power_optimiz) {
6557 + pcgcctl_data_t power = {.d32=0};
6558 +
6559 + power.d32 = dwc_read_reg32(core_if->pcgcctl);
6560 + DWC_DEBUGPL(DBG_CIL, "PCGCCTL=%0x\n", power.d32);
6561 +
6562 + power.b.stoppclk = 0;
6563 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6564 +
6565 + power.b.pwrclmp = 0;
6566 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6567 +
6568 + power.b.rstpdwnmodule = 0;
6569 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6570 + }
6571 +#endif
6572 + /* Clear the Remote Wakeup Signalling */
6573 + dctl.b.rmtwkupsig = 1;
6574 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
6575 + dctl.d32, 0);
6576 +
6577 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
6578 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
6579 + }
6580 +
6581 + } else {
6582 + pcgcctl_data_t pcgcctl = {.d32=0};
6583 +
6584 + /* Restart the Phy Clock */
6585 + pcgcctl.b.stoppclk = 1;
6586 + dwc_modify_reg32(core_if->pcgcctl, pcgcctl.d32, 0);
6587 +
6588 + queue_delayed_work(core_if->wq_otg, &core_if->w_wkp, ((70 * HZ / 1000) + 1));
6589 + }
6590 +
6591 + /* Clear interrupt */
6592 + gintsts.d32 = 0;
6593 + gintsts.b.wkupintr = 1;
6594 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6595 +
6596 + return 1;
6597 +}
6598 +
6599 +/**
6600 + * This interrupt indicates that a device has been disconnected from
6601 + * the root port.
6602 + */
6603 +int32_t dwc_otg_handle_disconnect_intr(dwc_otg_core_if_t *core_if)
6604 +{
6605 + gintsts_data_t gintsts;
6606 +
6607 + DWC_DEBUGPL(DBG_ANY, "++Disconnect Detected Interrupt++ (%s) %s\n",
6608 + (dwc_otg_is_host_mode(core_if)?"Host":"Device"),
6609 + op_state_str(core_if));
6610 +
6611 +/** @todo Consolidate this if statement. */
6612 +#ifndef DWC_HOST_ONLY
6613 + if (core_if->op_state == B_HOST) {
6614 + dwc_otg_pcd_t *pcd;
6615 +
6616 + /* If in device mode Disconnect and stop the HCD, then
6617 + * start the PCD. */
6618 + hcd_disconnect(core_if);
6619 +
6620 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6621 + if(unlikely(!pcd)) {
6622 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6623 + BUG();
6624 + }
6625 + SPIN_LOCK(&pcd->lock);
6626 +
6627 + pcd_start(core_if);
6628 +
6629 + SPIN_UNLOCK(&pcd->lock);
6630 + core_if->op_state = B_PERIPHERAL;
6631 + } else if (dwc_otg_is_device_mode(core_if)) {
6632 + gotgctl_data_t gotgctl = { .d32 = 0 };
6633 + gotgctl.d32 = dwc_read_reg32(&core_if->core_global_regs->gotgctl);
6634 + if (gotgctl.b.hstsethnpen==1) {
6635 + /* Do nothing, if HNP in process the OTG
6636 + * interrupt "Host Negotiation Detected"
6637 + * interrupt will do the mode switch.
6638 + */
6639 + } else if (gotgctl.b.devhnpen == 0) {
6640 + dwc_otg_pcd_t *pcd;
6641 +
6642 + /* If in device mode Disconnect and stop the HCD, then
6643 + * start the PCD. */
6644 + hcd_disconnect(core_if);
6645 +
6646 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6647 + if(unlikely(!pcd)) {
6648 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6649 + BUG();
6650 + }
6651 + SPIN_LOCK(&pcd->lock);
6652 +
6653 + pcd_start(core_if);
6654 +
6655 + SPIN_UNLOCK(&pcd->lock);
6656 +
6657 + core_if->op_state = B_PERIPHERAL;
6658 + } else {
6659 + DWC_DEBUGPL(DBG_ANY,"!a_peripheral && !devhnpen\n");
6660 + }
6661 + } else {
6662 + if (core_if->op_state == A_HOST) {
6663 + /* A-Cable still connected but device disconnected. */
6664 + hcd_disconnect(core_if);
6665 + }
6666 + }
6667 +#endif
6668 +
6669 + gintsts.d32 = 0;
6670 + gintsts.b.disconnect = 1;
6671 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
6672 + return 1;
6673 +}
6674 +/**
6675 + * This interrupt indicates that SUSPEND state has been detected on
6676 + * the USB.
6677 + *
6678 + * For HNP the USB Suspend interrupt signals the change from
6679 + * "a_peripheral" to "a_host".
6680 + *
6681 + * When power management is enabled the core will be put in low power
6682 + * mode.
6683 + */
6684 +int32_t dwc_otg_handle_usb_suspend_intr(dwc_otg_core_if_t *core_if)
6685 +{
6686 + dsts_data_t dsts;
6687 + gintsts_data_t gintsts;
6688 +
6689 + DWC_DEBUGPL(DBG_ANY,"USB SUSPEND\n");
6690 +
6691 + if (dwc_otg_is_device_mode(core_if)) {
6692 + dwc_otg_pcd_t *pcd;
6693 +
6694 + /* Check the Device status register to determine if the Suspend
6695 + * state is active. */
6696 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
6697 + DWC_DEBUGPL(DBG_PCD, "DSTS=0x%0x\n", dsts.d32);
6698 + DWC_DEBUGPL(DBG_PCD, "DSTS.Suspend Status=%d "
6699 + "HWCFG4.power Optimize=%d\n",
6700 + dsts.b.suspsts, core_if->hwcfg4.b.power_optimiz);
6701 +
6702 +
6703 +#ifdef PARTIAL_POWER_DOWN
6704 +/** @todo Add a module parameter for power management. */
6705 + if (dsts.b.suspsts && core_if->hwcfg4.b.power_optimiz) {
6706 + pcgcctl_data_t power = {.d32=0};
6707 + DWC_DEBUGPL(DBG_CIL, "suspend\n");
6708 +
6709 + power.b.pwrclmp = 1;
6710 + dwc_write_reg32(core_if->pcgcctl, power.d32);
6711 +
6712 + power.b.rstpdwnmodule = 1;
6713 + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
6714 +
6715 + power.b.stoppclk = 1;
6716 + dwc_modify_reg32(core_if->pcgcctl, 0, power.d32);
6717 + } else {
6718 + DWC_DEBUGPL(DBG_ANY,"disconnect?\n");
6719 + }
6720 +#endif
6721 + /* PCD callback for suspend. */
6722 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6723 + if(unlikely(!pcd)) {
6724 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6725 + BUG();
6726 + }
6727 + SPIN_LOCK(&pcd->lock);
6728 +
6729 + pcd_suspend(core_if);
6730 +
6731 + SPIN_UNLOCK(&pcd->lock);
6732 + } else {
6733 + if (core_if->op_state == A_PERIPHERAL) {
6734 + dwc_otg_pcd_t *pcd;
6735 +
6736 + DWC_DEBUGPL(DBG_ANY,"a_peripheral->a_host\n");
6737 + /* Clear the a_peripheral flag, back to a_host. */
6738 +
6739 + pcd=(dwc_otg_pcd_t *)core_if->pcd_cb->p;
6740 + if(unlikely(!pcd)) {
6741 + DWC_ERROR("%s: data structure not initialized properly, core_if->pcd_cb->p = NULL!!!",__func__);
6742 + BUG();
6743 + }
6744 + SPIN_LOCK(&pcd->lock);
6745 +
6746 + pcd_stop(core_if);
6747 +
6748 + SPIN_UNLOCK(&pcd->lock);
6749 +
6750 + hcd_start(core_if);
6751 + core_if->op_state = A_HOST;
6752 + }
6753 + }
6754 +
6755 + /* Clear interrupt */
6756 + gintsts.d32 = 0;
6757 + gintsts.b.usbsuspend = 1;
6758 + dwc_write_reg32(&core_if->core_global_regs->gintsts, gintsts.d32);
6759 +
6760 + return 1;
6761 +}
6762 +
6763 +
6764 +/**
6765 + * This function returns the Core Interrupt register.
6766 + */
6767 +static inline uint32_t dwc_otg_read_common_intr(dwc_otg_core_if_t *core_if)
6768 +{
6769 + gintsts_data_t gintsts;
6770 + gintmsk_data_t gintmsk;
6771 + gintmsk_data_t gintmsk_common = {.d32=0};
6772 + gintmsk_common.b.wkupintr = 1;
6773 + gintmsk_common.b.sessreqintr = 1;
6774 + gintmsk_common.b.conidstschng = 1;
6775 + gintmsk_common.b.otgintr = 1;
6776 + gintmsk_common.b.modemismatch = 1;
6777 + gintmsk_common.b.disconnect = 1;
6778 + gintmsk_common.b.usbsuspend = 1;
6779 + /** @todo: The port interrupt occurs while in device
6780 + * mode. Added code to CIL to clear the interrupt for now!
6781 + */
6782 + gintmsk_common.b.portintr = 1;
6783 +
6784 + gintsts.d32 = dwc_read_reg32(&core_if->core_global_regs->gintsts);
6785 + gintmsk.d32 = dwc_read_reg32(&core_if->core_global_regs->gintmsk);
6786 +#ifdef DEBUG
6787 + /* if any common interrupts set */
6788 + if (gintsts.d32 & gintmsk_common.d32) {
6789 + DWC_DEBUGPL(DBG_ANY, "gintsts=%08x gintmsk=%08x\n",
6790 + gintsts.d32, gintmsk.d32);
6791 + }
6792 +#endif
6793 +
6794 + return ((gintsts.d32 & gintmsk.d32) & gintmsk_common.d32);
6795 +
6796 +}
6797 +
6798 +/**
6799 + * Common interrupt handler.
6800 + *
6801 + * The common interrupts are those that occur in both Host and Device mode.
6802 + * This handler handles the following interrupts:
6803 + * - Mode Mismatch Interrupt
6804 + * - Disconnect Interrupt
6805 + * - OTG Interrupt
6806 + * - Connector ID Status Change Interrupt
6807 + * - Session Request Interrupt.
6808 + * - Resume / Remote Wakeup Detected Interrupt.
6809 + *
6810 + */
6811 +int32_t dwc_otg_handle_common_intr(dwc_otg_core_if_t *core_if)
6812 +{
6813 + int retval = 0;
6814 + gintsts_data_t gintsts;
6815 +
6816 + gintsts.d32 = dwc_otg_read_common_intr(core_if);
6817 +
6818 + if (gintsts.b.modemismatch) {
6819 + retval |= dwc_otg_handle_mode_mismatch_intr(core_if);
6820 + }
6821 + if (gintsts.b.otgintr) {
6822 + retval |= dwc_otg_handle_otg_intr(core_if);
6823 + }
6824 + if (gintsts.b.conidstschng) {
6825 + retval |= dwc_otg_handle_conn_id_status_change_intr(core_if);
6826 + }
6827 + if (gintsts.b.disconnect) {
6828 + retval |= dwc_otg_handle_disconnect_intr(core_if);
6829 + }
6830 + if (gintsts.b.sessreqintr) {
6831 + retval |= dwc_otg_handle_session_req_intr(core_if);
6832 + }
6833 + if (gintsts.b.wkupintr) {
6834 + retval |= dwc_otg_handle_wakeup_detected_intr(core_if);
6835 + }
6836 + if (gintsts.b.usbsuspend) {
6837 + retval |= dwc_otg_handle_usb_suspend_intr(core_if);
6838 + }
6839 + if (gintsts.b.portintr && dwc_otg_is_device_mode(core_if)) {
6840 + /* The port interrupt occurs while in device mode with HPRT0
6841 + * Port Enable/Disable.
6842 + */
6843 + gintsts.d32 = 0;
6844 + gintsts.b.portintr = 1;
6845 + dwc_write_reg32(&core_if->core_global_regs->gintsts,
6846 + gintsts.d32);
6847 + retval |= 1;
6848 +
6849 + }
6850 +
6851 + S3C2410X_CLEAR_EINTPEND();
6852 +
6853 + return retval;
6854 +}
6855 --- /dev/null
6856 +++ b/drivers/usb/dwc/otg_driver.c
6857 @@ -0,0 +1,965 @@
6858 +/* ==========================================================================
6859 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.c $
6860 + * $Revision: #63 $
6861 + * $Date: 2008/09/24 $
6862 + * $Change: 1101777 $
6863 + *
6864 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
6865 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
6866 + * otherwise expressly agreed to in writing between Synopsys and you.
6867 + *
6868 + * The Software IS NOT an item of Licensed Software or Licensed Product under
6869 + * any End User Software License Agreement or Agreement for Licensed Product
6870 + * with Synopsys or any supplement thereto. You are permitted to use and
6871 + * redistribute this Software in source and binary forms, with or without
6872 + * modification, provided that redistributions of source code must retain this
6873 + * notice. You may not view, use, disclose, copy or distribute this file or
6874 + * any information contained herein except pursuant to this license grant from
6875 + * Synopsys. If you do not agree with this notice, including the disclaimer
6876 + * below, then you are not authorized to use the Software.
6877 + *
6878 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
6879 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
6880 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
6881 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
6882 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
6883 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
6884 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
6885 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
6886 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
6887 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
6888 + * DAMAGE.
6889 + * ========================================================================== */
6890 +
6891 +/** @file
6892 + * The dwc_otg_driver module provides the initialization and cleanup entry
6893 + * points for the DWC_otg driver. This module will be dynamically installed
6894 + * after Linux is booted using the insmod command. When the module is
6895 + * installed, the dwc_otg_driver_init function is called. When the module is
6896 + * removed (using rmmod), the dwc_otg_driver_cleanup function is called.
6897 + *
6898 + * This module also defines a data structure for the dwc_otg_driver, which is
6899 + * used in conjunction with the standard ARM lm_device structure. These
6900 + * structures allow the OTG driver to comply with the standard Linux driver
6901 + * model in which devices and drivers are registered with a bus driver. This
6902 + * has the benefit that Linux can expose attributes of the driver and device
6903 + * in its special sysfs file system. Users can then read or write files in
6904 + * this file system to perform diagnostics on the driver components or the
6905 + * device.
6906 + */
6907 +
6908 +#include <linux/kernel.h>
6909 +#include <linux/module.h>
6910 +#include <linux/moduleparam.h>
6911 +#include <linux/init.h>
6912 +#include <linux/device.h>
6913 +#include <linux/errno.h>
6914 +#include <linux/types.h>
6915 +#include <linux/stat.h> /* permission constants */
6916 +#include <linux/version.h>
6917 +#include <linux/platform_device.h>
6918 +#include <linux/io.h>
6919 +#include <linux/irq.h>
6920 +#include <asm/io.h>
6921 +
6922 +#include <asm/sizes.h>
6923 +#include <mach/pm.h>
6924 +
6925 +#include "otg_plat.h"
6926 +#include "otg_attr.h"
6927 +#include "otg_driver.h"
6928 +#include "otg_cil.h"
6929 +#include "otg_pcd.h"
6930 +#include "otg_hcd.h"
6931 +
6932 +#define DWC_DRIVER_VERSION "2.72a 24-JUN-2008"
6933 +#define DWC_DRIVER_DESC "HS OTG USB Controller driver"
6934 +
6935 +static const char dwc_driver_name[] = "dwc_otg";
6936 +
6937 +/*-------------------------------------------------------------------------*/
6938 +/* Encapsulate the module parameter settings */
6939 +
6940 +static dwc_otg_core_params_t dwc_otg_module_params = {
6941 + .opt = -1,
6942 + .otg_cap = -1,
6943 + .dma_enable = -1,
6944 + .dma_desc_enable = -1,
6945 + .dma_burst_size = -1,
6946 + .speed = -1,
6947 + .host_support_fs_ls_low_power = -1,
6948 + .host_ls_low_power_phy_clk = -1,
6949 + .enable_dynamic_fifo = -1,
6950 + .data_fifo_size = -1,
6951 + .dev_rx_fifo_size = -1,
6952 + .dev_nperio_tx_fifo_size = -1,
6953 + .dev_perio_tx_fifo_size = {
6954 + /* dev_perio_tx_fifo_size_1 */
6955 + -1,
6956 + -1,
6957 + -1,
6958 + -1,
6959 + -1,
6960 + -1,
6961 + -1,
6962 + -1,
6963 + -1,
6964 + -1,
6965 + -1,
6966 + -1,
6967 + -1,
6968 + -1,
6969 + -1
6970 + /* 15 */
6971 + },
6972 + .host_rx_fifo_size = -1,
6973 + .host_nperio_tx_fifo_size = -1,
6974 + .host_perio_tx_fifo_size = -1,
6975 + .max_transfer_size = -1,
6976 + .max_packet_count = -1,
6977 + .host_channels = -1,
6978 + .dev_endpoints = -1,
6979 + .phy_type = -1,
6980 + .phy_utmi_width = -1,
6981 + .phy_ulpi_ddr = -1,
6982 + .phy_ulpi_ext_vbus = -1,
6983 + .i2c_enable = -1,
6984 + .ulpi_fs_ls = -1,
6985 + .ts_dline = -1,
6986 + .en_multiple_tx_fifo = -1,
6987 + .dev_tx_fifo_size = {
6988 + /* dev_tx_fifo_size */
6989 + -1,
6990 + -1,
6991 + -1,
6992 + -1,
6993 + -1,
6994 + -1,
6995 + -1,
6996 + -1,
6997 + -1,
6998 + -1,
6999 + -1,
7000 + -1,
7001 + -1,
7002 + -1,
7003 + -1
7004 + /* 15 */
7005 + },
7006 + .thr_ctl = -1,
7007 + .tx_thr_length = -1,
7008 + .rx_thr_length = -1,
7009 + .pti_enable = -1,
7010 + .mpi_enable = -1,
7011 +};
7012 +
7013 +/**
7014 + * Global Debug Level Mask.
7015 + */
7016 +uint32_t g_dbg_lvl = 0; /* OFF */
7017 +
7018 +/**
7019 + * This function is called during module intialization to verify that
7020 + * the module parameters are in a valid state.
7021 + */
7022 +static int check_parameters(dwc_otg_core_if_t *core_if)
7023 +{
7024 + int i;
7025 + int retval = 0;
7026 +
7027 +/* Checks if the parameter is outside of its valid range of values */
7028 +#define DWC_OTG_PARAM_TEST(_param_, _low_, _high_) \
7029 + ((dwc_otg_module_params._param_ < (_low_)) || \
7030 + (dwc_otg_module_params._param_ > (_high_)))
7031 +
7032 +/* If the parameter has been set by the user, check that the parameter value is
7033 + * within the value range of values. If not, report a module error. */
7034 +#define DWC_OTG_PARAM_ERR(_param_, _low_, _high_, _string_) \
7035 + do { \
7036 + if (dwc_otg_module_params._param_ != -1) { \
7037 + if (DWC_OTG_PARAM_TEST(_param_, (_low_), (_high_))) { \
7038 + DWC_ERROR("`%d' invalid for parameter `%s'\n", \
7039 + dwc_otg_module_params._param_, _string_); \
7040 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
7041 + retval++; \
7042 + } \
7043 + } \
7044 + } while (0)
7045 +
7046 + DWC_OTG_PARAM_ERR(opt,0,1,"opt");
7047 + DWC_OTG_PARAM_ERR(otg_cap,0,2,"otg_cap");
7048 + DWC_OTG_PARAM_ERR(dma_enable,0,1,"dma_enable");
7049 + DWC_OTG_PARAM_ERR(dma_desc_enable,0,1,"dma_desc_enable");
7050 + DWC_OTG_PARAM_ERR(speed,0,1,"speed");
7051 + DWC_OTG_PARAM_ERR(host_support_fs_ls_low_power,0,1,"host_support_fs_ls_low_power");
7052 + DWC_OTG_PARAM_ERR(host_ls_low_power_phy_clk,0,1,"host_ls_low_power_phy_clk");
7053 + DWC_OTG_PARAM_ERR(enable_dynamic_fifo,0,1,"enable_dynamic_fifo");
7054 + DWC_OTG_PARAM_ERR(data_fifo_size,32,32768,"data_fifo_size");
7055 + DWC_OTG_PARAM_ERR(dev_rx_fifo_size,16,32768,"dev_rx_fifo_size");
7056 + DWC_OTG_PARAM_ERR(dev_nperio_tx_fifo_size,16,32768,"dev_nperio_tx_fifo_size");
7057 + DWC_OTG_PARAM_ERR(host_rx_fifo_size,16,32768,"host_rx_fifo_size");
7058 + DWC_OTG_PARAM_ERR(host_nperio_tx_fifo_size,16,32768,"host_nperio_tx_fifo_size");
7059 + DWC_OTG_PARAM_ERR(host_perio_tx_fifo_size,16,32768,"host_perio_tx_fifo_size");
7060 + DWC_OTG_PARAM_ERR(max_transfer_size,2047,524288,"max_transfer_size");
7061 + DWC_OTG_PARAM_ERR(max_packet_count,15,511,"max_packet_count");
7062 + DWC_OTG_PARAM_ERR(host_channels,1,16,"host_channels");
7063 + DWC_OTG_PARAM_ERR(dev_endpoints,1,15,"dev_endpoints");
7064 + DWC_OTG_PARAM_ERR(phy_type,0,2,"phy_type");
7065 + DWC_OTG_PARAM_ERR(phy_ulpi_ddr,0,1,"phy_ulpi_ddr");
7066 + DWC_OTG_PARAM_ERR(phy_ulpi_ext_vbus,0,1,"phy_ulpi_ext_vbus");
7067 + DWC_OTG_PARAM_ERR(i2c_enable,0,1,"i2c_enable");
7068 + DWC_OTG_PARAM_ERR(ulpi_fs_ls,0,1,"ulpi_fs_ls");
7069 + DWC_OTG_PARAM_ERR(ts_dline,0,1,"ts_dline");
7070 +
7071 + if (dwc_otg_module_params.dma_burst_size != -1) {
7072 + if (DWC_OTG_PARAM_TEST(dma_burst_size,1,1) &&
7073 + DWC_OTG_PARAM_TEST(dma_burst_size,4,4) &&
7074 + DWC_OTG_PARAM_TEST(dma_burst_size,8,8) &&
7075 + DWC_OTG_PARAM_TEST(dma_burst_size,16,16) &&
7076 + DWC_OTG_PARAM_TEST(dma_burst_size,32,32) &&
7077 + DWC_OTG_PARAM_TEST(dma_burst_size,64,64) &&
7078 + DWC_OTG_PARAM_TEST(dma_burst_size,128,128) &&
7079 + DWC_OTG_PARAM_TEST(dma_burst_size,256,256)) {
7080 + DWC_ERROR("`%d' invalid for parameter `dma_burst_size'\n",
7081 + dwc_otg_module_params.dma_burst_size);
7082 + dwc_otg_module_params.dma_burst_size = 32;
7083 + retval++;
7084 + }
7085 +
7086 + {
7087 + uint8_t brst_sz = 0;
7088 + while(dwc_otg_module_params.dma_burst_size > 1) {
7089 + brst_sz ++;
7090 + dwc_otg_module_params.dma_burst_size >>= 1;
7091 + }
7092 + dwc_otg_module_params.dma_burst_size = brst_sz;
7093 + }
7094 + }
7095 +
7096 + if (dwc_otg_module_params.phy_utmi_width != -1) {
7097 + if (DWC_OTG_PARAM_TEST(phy_utmi_width, 8, 8) &&
7098 + DWC_OTG_PARAM_TEST(phy_utmi_width, 16, 16)) {
7099 + DWC_ERROR("`%d' invalid for parameter `phy_utmi_width'\n",
7100 + dwc_otg_module_params.phy_utmi_width);
7101 + dwc_otg_module_params.phy_utmi_width = 16;
7102 + retval++;
7103 + }
7104 + }
7105 +
7106 + for (i = 0; i < 15; i++) {
7107 + /** @todo should be like above */
7108 + //DWC_OTG_PARAM_ERR(dev_perio_tx_fifo_size[i], 4, 768, "dev_perio_tx_fifo_size");
7109 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] != -1) {
7110 + if (DWC_OTG_PARAM_TEST(dev_perio_tx_fifo_size[i], 4, 768)) {
7111 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
7112 + dwc_otg_module_params.dev_perio_tx_fifo_size[i], "dev_perio_tx_fifo_size", i);
7113 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
7114 + retval++;
7115 + }
7116 + }
7117 + }
7118 +
7119 + DWC_OTG_PARAM_ERR(en_multiple_tx_fifo, 0, 1, "en_multiple_tx_fifo");
7120 +
7121 + for (i = 0; i < 15; i++) {
7122 + /** @todo should be like above */
7123 + //DWC_OTG_PARAM_ERR(dev_tx_fifo_size[i], 4, 768, "dev_tx_fifo_size");
7124 + if (dwc_otg_module_params.dev_tx_fifo_size[i] != -1) {
7125 + if (DWC_OTG_PARAM_TEST(dev_tx_fifo_size[i], 4, 768)) {
7126 + DWC_ERROR("`%d' invalid for parameter `%s_%d'\n",
7127 + dwc_otg_module_params.dev_tx_fifo_size[i], "dev_tx_fifo_size", i);
7128 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
7129 + retval++;
7130 + }
7131 + }
7132 + }
7133 +
7134 + DWC_OTG_PARAM_ERR(thr_ctl, 0, 7, "thr_ctl");
7135 + DWC_OTG_PARAM_ERR(tx_thr_length, 8, 128, "tx_thr_length");
7136 + DWC_OTG_PARAM_ERR(rx_thr_length, 8, 128, "rx_thr_length");
7137 +
7138 + DWC_OTG_PARAM_ERR(pti_enable,0,1,"pti_enable");
7139 + DWC_OTG_PARAM_ERR(mpi_enable,0,1,"mpi_enable");
7140 +
7141 + /* At this point, all module parameters that have been set by the user
7142 + * are valid, and those that have not are left unset. Now set their
7143 + * default values and/or check the parameters against the hardware
7144 + * configurations of the OTG core. */
7145 +
7146 +/* This sets the parameter to the default value if it has not been set by the
7147 + * user */
7148 +#define DWC_OTG_PARAM_SET_DEFAULT(_param_) \
7149 + ({ \
7150 + int changed = 1; \
7151 + if (dwc_otg_module_params._param_ == -1) { \
7152 + changed = 0; \
7153 + dwc_otg_module_params._param_ = dwc_param_##_param_##_default; \
7154 + } \
7155 + changed; \
7156 + })
7157 +
7158 +/* This checks the macro agains the hardware configuration to see if it is
7159 + * valid. It is possible that the default value could be invalid. In this
7160 + * case, it will report a module error if the user touched the parameter.
7161 + * Otherwise it will adjust the value without any error. */
7162 +#define DWC_OTG_PARAM_CHECK_VALID(_param_, _str_, _is_valid_, _set_valid_) \
7163 + ({ \
7164 + int changed = DWC_OTG_PARAM_SET_DEFAULT(_param_); \
7165 + int error = 0; \
7166 + if (!(_is_valid_)) { \
7167 + if (changed) { \
7168 + DWC_ERROR("`%d' invalid for parameter `%s'. Check HW configuration.\n", dwc_otg_module_params._param_, _str_); \
7169 + error = 1; \
7170 + } \
7171 + dwc_otg_module_params._param_ = (_set_valid_); \
7172 + } \
7173 + error; \
7174 + })
7175 +
7176 + /* OTG Cap */
7177 + retval += DWC_OTG_PARAM_CHECK_VALID(otg_cap, "otg_cap",
7178 + ({
7179 + int valid;
7180 + valid = 1;
7181 + switch (dwc_otg_module_params.otg_cap) {
7182 + case DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE:
7183 + if (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG)
7184 + valid = 0;
7185 + break;
7186 + case DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE:
7187 + if ((core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) &&
7188 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) &&
7189 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) &&
7190 + (core_if->hwcfg2.b.op_mode != DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
7191 + valid = 0;
7192 + }
7193 + break;
7194 + case DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE:
7195 + /* always valid */
7196 + break;
7197 + }
7198 + valid;
7199 + }),
7200 + (((core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG) ||
7201 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG) ||
7202 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
7203 + (core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) ?
7204 + DWC_OTG_CAP_PARAM_SRP_ONLY_CAPABLE :
7205 + DWC_OTG_CAP_PARAM_NO_HNP_SRP_CAPABLE));
7206 +
7207 + retval += DWC_OTG_PARAM_CHECK_VALID(dma_enable, "dma_enable",
7208 + ((dwc_otg_module_params.dma_enable == 1) && (core_if->hwcfg2.b.architecture == 0)) ? 0 : 1,
7209 + 0);
7210 +
7211 + retval += DWC_OTG_PARAM_CHECK_VALID(dma_desc_enable, "dma_desc_enable",
7212 + ((dwc_otg_module_params.dma_desc_enable == 1) &&
7213 + ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.desc_dma == 0))) ? 0 : 1,
7214 + 0);
7215 +
7216 + retval += DWC_OTG_PARAM_CHECK_VALID(opt, "opt", 1, 0);
7217 +
7218 + DWC_OTG_PARAM_SET_DEFAULT(dma_burst_size);
7219 +
7220 + retval += DWC_OTG_PARAM_CHECK_VALID(host_support_fs_ls_low_power,
7221 + "host_support_fs_ls_low_power",
7222 + 1, 0);
7223 +
7224 + retval += DWC_OTG_PARAM_CHECK_VALID(enable_dynamic_fifo,
7225 + "enable_dynamic_fifo",
7226 + ((dwc_otg_module_params.enable_dynamic_fifo == 0) ||
7227 + (core_if->hwcfg2.b.dynamic_fifo == 1)), 0);
7228 +
7229 + retval += DWC_OTG_PARAM_CHECK_VALID(data_fifo_size,
7230 + "data_fifo_size",
7231 + (dwc_otg_module_params.data_fifo_size <= core_if->hwcfg3.b.dfifo_depth),
7232 + core_if->hwcfg3.b.dfifo_depth);
7233 +
7234 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_rx_fifo_size,
7235 + "dev_rx_fifo_size",
7236 + (dwc_otg_module_params.dev_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
7237 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
7238 +
7239 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_nperio_tx_fifo_size,
7240 + "dev_nperio_tx_fifo_size",
7241 + (dwc_otg_module_params.dev_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
7242 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
7243 +
7244 + retval += DWC_OTG_PARAM_CHECK_VALID(host_rx_fifo_size,
7245 + "host_rx_fifo_size",
7246 + (dwc_otg_module_params.host_rx_fifo_size <= dwc_read_reg32(&core_if->core_global_regs->grxfsiz)),
7247 + dwc_read_reg32(&core_if->core_global_regs->grxfsiz));
7248 +
7249 + retval += DWC_OTG_PARAM_CHECK_VALID(host_nperio_tx_fifo_size,
7250 + "host_nperio_tx_fifo_size",
7251 + (dwc_otg_module_params.host_nperio_tx_fifo_size <= (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16)),
7252 + (dwc_read_reg32(&core_if->core_global_regs->gnptxfsiz) >> 16));
7253 +
7254 + retval += DWC_OTG_PARAM_CHECK_VALID(host_perio_tx_fifo_size,
7255 + "host_perio_tx_fifo_size",
7256 + (dwc_otg_module_params.host_perio_tx_fifo_size <= ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16))),
7257 + ((dwc_read_reg32(&core_if->core_global_regs->hptxfsiz) >> 16)));
7258 +
7259 + retval += DWC_OTG_PARAM_CHECK_VALID(max_transfer_size,
7260 + "max_transfer_size",
7261 + (dwc_otg_module_params.max_transfer_size < (1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11))),
7262 + ((1 << (core_if->hwcfg3.b.xfer_size_cntr_width + 11)) - 1));
7263 +
7264 + retval += DWC_OTG_PARAM_CHECK_VALID(max_packet_count,
7265 + "max_packet_count",
7266 + (dwc_otg_module_params.max_packet_count < (1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4))),
7267 + ((1 << (core_if->hwcfg3.b.packet_size_cntr_width + 4)) - 1));
7268 +
7269 + retval += DWC_OTG_PARAM_CHECK_VALID(host_channels,
7270 + "host_channels",
7271 + (dwc_otg_module_params.host_channels <= (core_if->hwcfg2.b.num_host_chan + 1)),
7272 + (core_if->hwcfg2.b.num_host_chan + 1));
7273 +
7274 + retval += DWC_OTG_PARAM_CHECK_VALID(dev_endpoints,
7275 + "dev_endpoints",
7276 + (dwc_otg_module_params.dev_endpoints <= (core_if->hwcfg2.b.num_dev_ep)),
7277 + core_if->hwcfg2.b.num_dev_ep);
7278 +
7279 +/*
7280 + * Define the following to disable the FS PHY Hardware checking. This is for
7281 + * internal testing only.
7282 + *
7283 + * #define NO_FS_PHY_HW_CHECKS
7284 + */
7285 +
7286 +#ifdef NO_FS_PHY_HW_CHECKS
7287 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
7288 + "phy_type", 1, 0);
7289 +#else
7290 + retval += DWC_OTG_PARAM_CHECK_VALID(phy_type,
7291 + "phy_type",
7292 + ({
7293 + int valid = 0;
7294 + if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_UTMI) &&
7295 + ((core_if->hwcfg2.b.hs_phy_type == 1) ||
7296 + (core_if->hwcfg2.b.hs_phy_type == 3))) {
7297 + valid = 1;
7298 + }
7299 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_ULPI) &&
7300 + ((core_if->hwcfg2.b.hs_phy_type == 2) ||
7301 + (core_if->hwcfg2.b.hs_phy_type == 3))) {
7302 + valid = 1;
7303 + }
7304 + else if ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) &&
7305 + (core_if->hwcfg2.b.fs_phy_type == 1)) {
7306 + valid = 1;
7307 + }
7308 + valid;
7309 + }),
7310 + ({
7311 + int set = DWC_PHY_TYPE_PARAM_FS;
7312 + if (core_if->hwcfg2.b.hs_phy_type) {
7313 + if ((core_if->hwcfg2.b.hs_phy_type == 3) ||
7314 + (core_if->hwcfg2.b.hs_phy_type == 1)) {
7315 + set = DWC_PHY_TYPE_PARAM_UTMI;
7316 + }
7317 + else {
7318 + set = DWC_PHY_TYPE_PARAM_ULPI;
7319 + }
7320 + }
7321 + set;
7322 + }));
7323 +#endif
7324 +
7325 + retval += DWC_OTG_PARAM_CHECK_VALID(speed, "speed",
7326 + (dwc_otg_module_params.speed == 0) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1,
7327 + dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS ? 1 : 0);
7328 +
7329 + retval += DWC_OTG_PARAM_CHECK_VALID(host_ls_low_power_phy_clk,
7330 + "host_ls_low_power_phy_clk",
7331 + ((dwc_otg_module_params.host_ls_low_power_phy_clk == DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ) && (dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? 0 : 1),
7332 + ((dwc_otg_module_params.phy_type == DWC_PHY_TYPE_PARAM_FS) ? DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ : DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ));
7333 +
7334 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ddr);
7335 + DWC_OTG_PARAM_SET_DEFAULT(phy_ulpi_ext_vbus);
7336 + DWC_OTG_PARAM_SET_DEFAULT(phy_utmi_width);
7337 + DWC_OTG_PARAM_SET_DEFAULT(ulpi_fs_ls);
7338 + DWC_OTG_PARAM_SET_DEFAULT(ts_dline);
7339 +
7340 +#ifdef NO_FS_PHY_HW_CHECKS
7341 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable, "i2c_enable", 1, 0);
7342 +#else
7343 + retval += DWC_OTG_PARAM_CHECK_VALID(i2c_enable,
7344 + "i2c_enable",
7345 + (dwc_otg_module_params.i2c_enable == 1) && (core_if->hwcfg3.b.i2c == 0) ? 0 : 1,
7346 + 0);
7347 +#endif
7348 +
7349 + for (i = 0; i < 15; i++) {
7350 + int changed = 1;
7351 + int error = 0;
7352 +
7353 + if (dwc_otg_module_params.dev_perio_tx_fifo_size[i] == -1) {
7354 + changed = 0;
7355 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_param_dev_perio_tx_fifo_size_default;
7356 + }
7357 + if (!(dwc_otg_module_params.dev_perio_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
7358 + if (changed) {
7359 + DWC_ERROR("`%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_perio_tx_fifo_size[i], i);
7360 + error = 1;
7361 + }
7362 + dwc_otg_module_params.dev_perio_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
7363 + }
7364 + retval += error;
7365 + }
7366 +
7367 + retval += DWC_OTG_PARAM_CHECK_VALID(en_multiple_tx_fifo, "en_multiple_tx_fifo",
7368 + ((dwc_otg_module_params.en_multiple_tx_fifo == 1) && (core_if->hwcfg4.b.ded_fifo_en == 0)) ? 0 : 1,
7369 + 0);
7370 +
7371 + for (i = 0; i < 15; i++) {
7372 + int changed = 1;
7373 + int error = 0;
7374 +
7375 + if (dwc_otg_module_params.dev_tx_fifo_size[i] == -1) {
7376 + changed = 0;
7377 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_param_dev_tx_fifo_size_default;
7378 + }
7379 + if (!(dwc_otg_module_params.dev_tx_fifo_size[i] <= (dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i])))) {
7380 + if (changed) {
7381 + DWC_ERROR("%d' invalid for parameter `dev_perio_fifo_size_%d'. Check HW configuration.\n", dwc_otg_module_params.dev_tx_fifo_size[i], i);
7382 + error = 1;
7383 + }
7384 + dwc_otg_module_params.dev_tx_fifo_size[i] = dwc_read_reg32(&core_if->core_global_regs->dptxfsiz_dieptxf[i]);
7385 + }
7386 + retval += error;
7387 + }
7388 +
7389 + retval += DWC_OTG_PARAM_CHECK_VALID(thr_ctl, "thr_ctl",
7390 + ((dwc_otg_module_params.thr_ctl != 0) && ((dwc_otg_module_params.dma_enable == 0) || (core_if->hwcfg4.b.ded_fifo_en == 0))) ? 0 : 1,
7391 + 0);
7392 +
7393 + DWC_OTG_PARAM_SET_DEFAULT(tx_thr_length);
7394 + DWC_OTG_PARAM_SET_DEFAULT(rx_thr_length);
7395 +
7396 + retval += DWC_OTG_PARAM_CHECK_VALID(pti_enable, "pti_enable",
7397 + ((dwc_otg_module_params.pti_enable == 0) || ((dwc_otg_module_params.pti_enable == 1) && (core_if->snpsid >= 0x4F54272A))) ? 1 : 0,
7398 + 0);
7399 +
7400 + retval += DWC_OTG_PARAM_CHECK_VALID(mpi_enable, "mpi_enable",
7401 + ((dwc_otg_module_params.mpi_enable == 0) || ((dwc_otg_module_params.mpi_enable == 1) && (core_if->hwcfg2.b.multi_proc_int == 1))) ? 1 : 0,
7402 + 0);
7403 + return retval;
7404 +}
7405 +
7406 +/**
7407 + * This function is the top level interrupt handler for the Common
7408 + * (Device and host modes) interrupts.
7409 + */
7410 +static irqreturn_t dwc_otg_common_irq(int irq, void *dev)
7411 +{
7412 + dwc_otg_device_t *otg_dev = dev;
7413 + int32_t retval = IRQ_NONE;
7414 +
7415 + retval = dwc_otg_handle_common_intr(otg_dev->core_if);
7416 + return IRQ_RETVAL(retval);
7417 +}
7418 +
7419 +/**
7420 + * This function is called when a lm_device is unregistered with the
7421 + * dwc_otg_driver. This happens, for example, when the rmmod command is
7422 + * executed. The device may or may not be electrically present. If it is
7423 + * present, the driver stops device processing. Any resources used on behalf
7424 + * of this device are freed.
7425 + *
7426 + * @param[in] lmdev
7427 + */
7428 +static int dwc_otg_driver_cleanup(struct platform_device *pdev)
7429 +{
7430 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
7431 + DWC_DEBUGPL(DBG_ANY, "%s(%p)\n", __func__, pdev);
7432 +
7433 + if (!otg_dev) {
7434 + /* Memory allocation for the dwc_otg_device failed. */
7435 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
7436 + return 0;
7437 + }
7438 +
7439 + /*
7440 + * Free the IRQ
7441 + */
7442 + if (otg_dev->common_irq_installed) {
7443 + free_irq(otg_dev->irq, otg_dev);
7444 + }
7445 +
7446 +#ifndef DWC_DEVICE_ONLY
7447 + if (otg_dev->hcd) {
7448 + dwc_otg_hcd_remove(pdev);
7449 + } else {
7450 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
7451 + return 0;
7452 + }
7453 +#endif
7454 +
7455 +#ifndef DWC_HOST_ONLY
7456 + if (otg_dev->pcd) {
7457 + dwc_otg_pcd_remove(pdev);
7458 + }
7459 +#endif
7460 + if (otg_dev->core_if) {
7461 + dwc_otg_cil_remove(otg_dev->core_if);
7462 + }
7463 +
7464 + /*
7465 + * Remove the device attributes
7466 + */
7467 + dwc_otg_attr_remove(pdev);
7468 +
7469 + /*
7470 + * Return the memory.
7471 + */
7472 + if (otg_dev->base) {
7473 + iounmap(otg_dev->base);
7474 + }
7475 + kfree(otg_dev);
7476 +
7477 + /*
7478 + * Clear the drvdata pointer.
7479 + */
7480 + platform_set_drvdata(pdev, 0);
7481 +
7482 + return 0;
7483 +}
7484 +
7485 +/**
7486 + * This function is called when an lm_device is bound to a
7487 + * dwc_otg_driver. It creates the driver components required to
7488 + * control the device (CIL, HCD, and PCD) and it initializes the
7489 + * device. The driver components are stored in a dwc_otg_device
7490 + * structure. A reference to the dwc_otg_device is saved in the
7491 + * lm_device. This allows the driver to access the dwc_otg_device
7492 + * structure on subsequent calls to driver methods for this device.
7493 + *
7494 + * @param[in] lmdev lm_device definition
7495 + */
7496 +static int __devinit dwc_otg_driver_probe(struct platform_device *pdev)
7497 +{
7498 + struct device *dev = &pdev->dev;
7499 + int retval = 0;
7500 + uint32_t snpsid;
7501 + dwc_otg_device_t *dwc_otg_device;
7502 + struct resource *res;
7503 +
7504 + dev_dbg(dev, "dwc_otg_driver_probe(%p)\n", pdev);
7505 +
7506 + dwc_otg_device = kmalloc(sizeof(dwc_otg_device_t), GFP_KERNEL);
7507 +
7508 + if (!dwc_otg_device) {
7509 + dev_err(dev, "kmalloc of dwc_otg_device failed\n");
7510 + retval = -ENOMEM;
7511 + goto fail;
7512 + }
7513 +
7514 + memset(dwc_otg_device, 0, sizeof(*dwc_otg_device));
7515 + dwc_otg_device->reg_offset = 0xFFFFFFFF;
7516 +
7517 + res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
7518 + if (!res) {
7519 + dev_err(dev, "Found OTG with no register addr.\n");
7520 + retval = -ENODEV;
7521 + goto fail;
7522 + }
7523 + dwc_otg_device->rsrc_start = res->start;
7524 + dwc_otg_device->rsrc_len = res->end - res->start + 1;
7525 +
7526 + dwc_otg_device->base = ioremap(dwc_otg_device->rsrc_start, dwc_otg_device->rsrc_len);
7527 +
7528 + if (!dwc_otg_device->base) {
7529 + dev_err(dev, "ioremap() failed\n");
7530 + retval = -ENOMEM;
7531 + goto fail;
7532 + }
7533 + dev_dbg(dev, "base=0x%08x\n", (unsigned)dwc_otg_device->base);
7534 +
7535 + /*
7536 + * Attempt to ensure this device is really a DWC_otg Controller.
7537 + * Read and verify the SNPSID register contents. The value should be
7538 + * 0x45F42XXX, which corresponds to "OT2", as in "OTG version 2.XX".
7539 + */
7540 + snpsid = dwc_read_reg32((uint32_t *)((uint8_t *)dwc_otg_device->base + 0x40));
7541 +
7542 + if ((snpsid & 0xFFFFF000) != OTG_CORE_REV_2_00) {
7543 + dev_err(dev, "Bad value for SNPSID: 0x%08x\n", snpsid);
7544 + retval = -EINVAL;
7545 + goto fail;
7546 + }
7547 +
7548 + DWC_PRINT("Core Release: %x.%x%x%x\n",
7549 + (snpsid >> 12 & 0xF),
7550 + (snpsid >> 8 & 0xF),
7551 + (snpsid >> 4 & 0xF),
7552 + (snpsid & 0xF));
7553 +
7554 + /*
7555 + * Initialize driver data to point to the global DWC_otg
7556 + * Device structure.
7557 + */
7558 + platform_set_drvdata(pdev, dwc_otg_device);
7559 +
7560 + dev_dbg(dev, "dwc_otg_device=0x%p\n", dwc_otg_device);
7561 +
7562 + dwc_otg_device->core_if = dwc_otg_cil_init(dwc_otg_device->base,
7563 + &dwc_otg_module_params);
7564 +
7565 + dwc_otg_device->core_if->snpsid = snpsid;
7566 +
7567 + if (!dwc_otg_device->core_if) {
7568 + dev_err(dev, "CIL initialization failed!\n");
7569 + retval = -ENOMEM;
7570 + goto fail;
7571 + }
7572 +
7573 + /*
7574 + * Validate parameter values.
7575 + */
7576 + if (check_parameters(dwc_otg_device->core_if)) {
7577 + retval = -EINVAL;
7578 + goto fail;
7579 + }
7580 +
7581 + /*
7582 + * Create Device Attributes in sysfs
7583 + */
7584 + dwc_otg_attr_create(pdev);
7585 +
7586 + /*
7587 + * Disable the global interrupt until all the interrupt
7588 + * handlers are installed.
7589 + */
7590 + dwc_otg_disable_global_interrupts(dwc_otg_device->core_if);
7591 +
7592 + /*
7593 + * Install the interrupt handler for the common interrupts before
7594 + * enabling common interrupts in core_init below.
7595 + */
7596 + res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
7597 + if (!res) {
7598 + dev_err(dev, "Fount OTG with to IRQ.\n");
7599 + retval = -ENODEV;
7600 + goto fail;
7601 + }
7602 + dwc_otg_device->irq = res->start;
7603 +
7604 + retval = request_irq(res->start, dwc_otg_common_irq,
7605 + IRQF_SHARED, "dwc_otg", dwc_otg_device);
7606 + if (retval) {
7607 + DWC_ERROR("request of irq%d failed\n", res->start);
7608 + retval = -EBUSY;
7609 + goto fail;
7610 + } else {
7611 + dwc_otg_device->common_irq_installed = 1;
7612 + }
7613 +
7614 + /*
7615 + * Initialize the DWC_otg core.
7616 + */
7617 + dwc_otg_core_init(dwc_otg_device->core_if);
7618 +
7619 +#ifndef DWC_HOST_ONLY
7620 + /*
7621 + * Initialize the PCD
7622 + */
7623 + retval = dwc_otg_pcd_init(pdev);
7624 + if (retval != 0) {
7625 + DWC_ERROR("dwc_otg_pcd_init failed\n");
7626 + dwc_otg_device->pcd = NULL;
7627 + goto fail;
7628 + }
7629 +#endif
7630 +#ifndef DWC_DEVICE_ONLY
7631 + /*
7632 + * Initialize the HCD
7633 + */
7634 + retval = dwc_otg_hcd_init(pdev);
7635 + if (retval != 0) {
7636 + DWC_ERROR("dwc_otg_hcd_init failed\n");
7637 + dwc_otg_device->hcd = NULL;
7638 + goto fail;
7639 + }
7640 +#endif
7641 +
7642 + /*
7643 + * Enable the global interrupt after all the interrupt
7644 + * handlers are installed.
7645 + */
7646 + dwc_otg_enable_global_interrupts(dwc_otg_device->core_if);
7647 +
7648 + return 0;
7649 +
7650 + fail:
7651 + dwc_otg_driver_cleanup(pdev);
7652 + return retval;
7653 +}
7654 +
7655 +static int __devexit dwc_otg_driver_remove(struct platform_device *pdev)
7656 +{
7657 + return dwc_otg_driver_cleanup(pdev);
7658 +}
7659 +
7660 +static struct platform_driver dwc_otg_platform_driver = {
7661 + .driver.name = "dwc_otg",
7662 + .probe = dwc_otg_driver_probe,
7663 + .remove = __devexit_p(dwc_otg_driver_remove),
7664 +};
7665 +
7666 +static int __init dwc_otg_init_module(void)
7667 +{
7668 + return platform_driver_register(&dwc_otg_platform_driver);
7669 +}
7670 +
7671 +static void __exit dwc_otg_cleanup_module(void)
7672 +{
7673 + platform_driver_unregister(&dwc_otg_platform_driver);
7674 +}
7675 +
7676 +module_init(dwc_otg_init_module);
7677 +module_exit(dwc_otg_cleanup_module);
7678 +
7679 +/**
7680 + * This function is called when the driver is removed from the kernel
7681 + * with the rmmod command. The driver unregisters itself with its bus
7682 + * driver.
7683 + *
7684 + */
7685 +
7686 +MODULE_DESCRIPTION(DWC_DRIVER_DESC);
7687 +MODULE_AUTHOR("Synopsys Inc.");
7688 +MODULE_LICENSE("GPL");
7689 +
7690 +module_param_named(otg_cap, dwc_otg_module_params.otg_cap, int, 0444);
7691 +MODULE_PARM_DESC(otg_cap, "OTG Capabilities 0=HNP&SRP 1=SRP Only 2=None");
7692 +module_param_named(opt, dwc_otg_module_params.opt, int, 0444);
7693 +MODULE_PARM_DESC(opt, "OPT Mode");
7694 +module_param_named(dma_enable, dwc_otg_module_params.dma_enable, int, 0444);
7695 +MODULE_PARM_DESC(dma_enable, "DMA Mode 0=Slave 1=DMA enabled");
7696 +
7697 +module_param_named(dma_desc_enable, dwc_otg_module_params.dma_desc_enable, int, 0444);
7698 +MODULE_PARM_DESC(dma_desc_enable, "DMA Desc Mode 0=Address DMA 1=DMA Descriptor enabled");
7699 +
7700 +module_param_named(dma_burst_size, dwc_otg_module_params.dma_burst_size, int, 0444);
7701 +MODULE_PARM_DESC(dma_burst_size, "DMA Burst Size 1, 4, 8, 16, 32, 64, 128, 256");
7702 +module_param_named(speed, dwc_otg_module_params.speed, int, 0444);
7703 +MODULE_PARM_DESC(speed, "Speed 0=High Speed 1=Full Speed");
7704 +module_param_named(host_support_fs_ls_low_power, dwc_otg_module_params.host_support_fs_ls_low_power, int, 0444);
7705 +MODULE_PARM_DESC(host_support_fs_ls_low_power, "Support Low Power w/FS or LS 0=Support 1=Don't Support");
7706 +module_param_named(host_ls_low_power_phy_clk, dwc_otg_module_params.host_ls_low_power_phy_clk, int, 0444);
7707 +MODULE_PARM_DESC(host_ls_low_power_phy_clk, "Low Speed Low Power Clock 0=48Mhz 1=6Mhz");
7708 +module_param_named(enable_dynamic_fifo, dwc_otg_module_params.enable_dynamic_fifo, int, 0444);
7709 +MODULE_PARM_DESC(enable_dynamic_fifo, "0=cC Setting 1=Allow Dynamic Sizing");
7710 +module_param_named(data_fifo_size, dwc_otg_module_params.data_fifo_size, int, 0444);
7711 +MODULE_PARM_DESC(data_fifo_size, "Total number of words in the data FIFO memory 32-32768");
7712 +module_param_named(dev_rx_fifo_size, dwc_otg_module_params.dev_rx_fifo_size, int, 0444);
7713 +MODULE_PARM_DESC(dev_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
7714 +module_param_named(dev_nperio_tx_fifo_size, dwc_otg_module_params.dev_nperio_tx_fifo_size, int, 0444);
7715 +MODULE_PARM_DESC(dev_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
7716 +module_param_named(dev_perio_tx_fifo_size_1, dwc_otg_module_params.dev_perio_tx_fifo_size[0], int, 0444);
7717 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_1, "Number of words in the periodic Tx FIFO 4-768");
7718 +module_param_named(dev_perio_tx_fifo_size_2, dwc_otg_module_params.dev_perio_tx_fifo_size[1], int, 0444);
7719 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_2, "Number of words in the periodic Tx FIFO 4-768");
7720 +module_param_named(dev_perio_tx_fifo_size_3, dwc_otg_module_params.dev_perio_tx_fifo_size[2], int, 0444);
7721 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_3, "Number of words in the periodic Tx FIFO 4-768");
7722 +module_param_named(dev_perio_tx_fifo_size_4, dwc_otg_module_params.dev_perio_tx_fifo_size[3], int, 0444);
7723 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_4, "Number of words in the periodic Tx FIFO 4-768");
7724 +module_param_named(dev_perio_tx_fifo_size_5, dwc_otg_module_params.dev_perio_tx_fifo_size[4], int, 0444);
7725 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_5, "Number of words in the periodic Tx FIFO 4-768");
7726 +module_param_named(dev_perio_tx_fifo_size_6, dwc_otg_module_params.dev_perio_tx_fifo_size[5], int, 0444);
7727 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_6, "Number of words in the periodic Tx FIFO 4-768");
7728 +module_param_named(dev_perio_tx_fifo_size_7, dwc_otg_module_params.dev_perio_tx_fifo_size[6], int, 0444);
7729 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_7, "Number of words in the periodic Tx FIFO 4-768");
7730 +module_param_named(dev_perio_tx_fifo_size_8, dwc_otg_module_params.dev_perio_tx_fifo_size[7], int, 0444);
7731 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_8, "Number of words in the periodic Tx FIFO 4-768");
7732 +module_param_named(dev_perio_tx_fifo_size_9, dwc_otg_module_params.dev_perio_tx_fifo_size[8], int, 0444);
7733 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_9, "Number of words in the periodic Tx FIFO 4-768");
7734 +module_param_named(dev_perio_tx_fifo_size_10, dwc_otg_module_params.dev_perio_tx_fifo_size[9], int, 0444);
7735 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_10, "Number of words in the periodic Tx FIFO 4-768");
7736 +module_param_named(dev_perio_tx_fifo_size_11, dwc_otg_module_params.dev_perio_tx_fifo_size[10], int, 0444);
7737 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_11, "Number of words in the periodic Tx FIFO 4-768");
7738 +module_param_named(dev_perio_tx_fifo_size_12, dwc_otg_module_params.dev_perio_tx_fifo_size[11], int, 0444);
7739 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_12, "Number of words in the periodic Tx FIFO 4-768");
7740 +module_param_named(dev_perio_tx_fifo_size_13, dwc_otg_module_params.dev_perio_tx_fifo_size[12], int, 0444);
7741 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_13, "Number of words in the periodic Tx FIFO 4-768");
7742 +module_param_named(dev_perio_tx_fifo_size_14, dwc_otg_module_params.dev_perio_tx_fifo_size[13], int, 0444);
7743 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_14, "Number of words in the periodic Tx FIFO 4-768");
7744 +module_param_named(dev_perio_tx_fifo_size_15, dwc_otg_module_params.dev_perio_tx_fifo_size[14], int, 0444);
7745 +MODULE_PARM_DESC(dev_perio_tx_fifo_size_15, "Number of words in the periodic Tx FIFO 4-768");
7746 +module_param_named(host_rx_fifo_size, dwc_otg_module_params.host_rx_fifo_size, int, 0444);
7747 +MODULE_PARM_DESC(host_rx_fifo_size, "Number of words in the Rx FIFO 16-32768");
7748 +module_param_named(host_nperio_tx_fifo_size, dwc_otg_module_params.host_nperio_tx_fifo_size, int, 0444);
7749 +MODULE_PARM_DESC(host_nperio_tx_fifo_size, "Number of words in the non-periodic Tx FIFO 16-32768");
7750 +module_param_named(host_perio_tx_fifo_size, dwc_otg_module_params.host_perio_tx_fifo_size, int, 0444);
7751 +MODULE_PARM_DESC(host_perio_tx_fifo_size, "Number of words in the host periodic Tx FIFO 16-32768");
7752 +module_param_named(max_transfer_size, dwc_otg_module_params.max_transfer_size, int, 0444);
7753 +/** @todo Set the max to 512K, modify checks */
7754 +MODULE_PARM_DESC(max_transfer_size, "The maximum transfer size supported in bytes 2047-65535");
7755 +module_param_named(max_packet_count, dwc_otg_module_params.max_packet_count, int, 0444);
7756 +MODULE_PARM_DESC(max_packet_count, "The maximum number of packets in a transfer 15-511");
7757 +module_param_named(host_channels, dwc_otg_module_params.host_channels, int, 0444);
7758 +MODULE_PARM_DESC(host_channels, "The number of host channel registers to use 1-16");
7759 +module_param_named(dev_endpoints, dwc_otg_module_params.dev_endpoints, int, 0444);
7760 +MODULE_PARM_DESC(dev_endpoints, "The number of endpoints in addition to EP0 available for device mode 1-15");
7761 +module_param_named(phy_type, dwc_otg_module_params.phy_type, int, 0444);
7762 +MODULE_PARM_DESC(phy_type, "0=Reserved 1=UTMI+ 2=ULPI");
7763 +module_param_named(phy_utmi_width, dwc_otg_module_params.phy_utmi_width, int, 0444);
7764 +MODULE_PARM_DESC(phy_utmi_width, "Specifies the UTMI+ Data Width 8 or 16 bits");
7765 +module_param_named(phy_ulpi_ddr, dwc_otg_module_params.phy_ulpi_ddr, int, 0444);
7766 +MODULE_PARM_DESC(phy_ulpi_ddr, "ULPI at double or single data rate 0=Single 1=Double");
7767 +module_param_named(phy_ulpi_ext_vbus, dwc_otg_module_params.phy_ulpi_ext_vbus, int, 0444);
7768 +MODULE_PARM_DESC(phy_ulpi_ext_vbus, "ULPI PHY using internal or external vbus 0=Internal");
7769 +module_param_named(i2c_enable, dwc_otg_module_params.i2c_enable, int, 0444);
7770 +MODULE_PARM_DESC(i2c_enable, "FS PHY Interface");
7771 +module_param_named(ulpi_fs_ls, dwc_otg_module_params.ulpi_fs_ls, int, 0444);
7772 +MODULE_PARM_DESC(ulpi_fs_ls, "ULPI PHY FS/LS mode only");
7773 +module_param_named(ts_dline, dwc_otg_module_params.ts_dline, int, 0444);
7774 +MODULE_PARM_DESC(ts_dline, "Term select Dline pulsing for all PHYs");
7775 +module_param_named(debug, g_dbg_lvl, int, 0444);
7776 +MODULE_PARM_DESC(debug, "");
7777 +
7778 +module_param_named(en_multiple_tx_fifo, dwc_otg_module_params.en_multiple_tx_fifo, int, 0444);
7779 +MODULE_PARM_DESC(en_multiple_tx_fifo, "Dedicated Non Periodic Tx FIFOs 0=disabled 1=enabled");
7780 +module_param_named(dev_tx_fifo_size_1, dwc_otg_module_params.dev_tx_fifo_size[0], int, 0444);
7781 +MODULE_PARM_DESC(dev_tx_fifo_size_1, "Number of words in the Tx FIFO 4-768");
7782 +module_param_named(dev_tx_fifo_size_2, dwc_otg_module_params.dev_tx_fifo_size[1], int, 0444);
7783 +MODULE_PARM_DESC(dev_tx_fifo_size_2, "Number of words in the Tx FIFO 4-768");
7784 +module_param_named(dev_tx_fifo_size_3, dwc_otg_module_params.dev_tx_fifo_size[2], int, 0444);
7785 +MODULE_PARM_DESC(dev_tx_fifo_size_3, "Number of words in the Tx FIFO 4-768");
7786 +module_param_named(dev_tx_fifo_size_4, dwc_otg_module_params.dev_tx_fifo_size[3], int, 0444);
7787 +MODULE_PARM_DESC(dev_tx_fifo_size_4, "Number of words in the Tx FIFO 4-768");
7788 +module_param_named(dev_tx_fifo_size_5, dwc_otg_module_params.dev_tx_fifo_size[4], int, 0444);
7789 +MODULE_PARM_DESC(dev_tx_fifo_size_5, "Number of words in the Tx FIFO 4-768");
7790 +module_param_named(dev_tx_fifo_size_6, dwc_otg_module_params.dev_tx_fifo_size[5], int, 0444);
7791 +MODULE_PARM_DESC(dev_tx_fifo_size_6, "Number of words in the Tx FIFO 4-768");
7792 +module_param_named(dev_tx_fifo_size_7, dwc_otg_module_params.dev_tx_fifo_size[6], int, 0444);
7793 +MODULE_PARM_DESC(dev_tx_fifo_size_7, "Number of words in the Tx FIFO 4-768");
7794 +module_param_named(dev_tx_fifo_size_8, dwc_otg_module_params.dev_tx_fifo_size[7], int, 0444);
7795 +MODULE_PARM_DESC(dev_tx_fifo_size_8, "Number of words in the Tx FIFO 4-768");
7796 +module_param_named(dev_tx_fifo_size_9, dwc_otg_module_params.dev_tx_fifo_size[8], int, 0444);
7797 +MODULE_PARM_DESC(dev_tx_fifo_size_9, "Number of words in the Tx FIFO 4-768");
7798 +module_param_named(dev_tx_fifo_size_10, dwc_otg_module_params.dev_tx_fifo_size[9], int, 0444);
7799 +MODULE_PARM_DESC(dev_tx_fifo_size_10, "Number of words in the Tx FIFO 4-768");
7800 +module_param_named(dev_tx_fifo_size_11, dwc_otg_module_params.dev_tx_fifo_size[10], int, 0444);
7801 +MODULE_PARM_DESC(dev_tx_fifo_size_11, "Number of words in the Tx FIFO 4-768");
7802 +module_param_named(dev_tx_fifo_size_12, dwc_otg_module_params.dev_tx_fifo_size[11], int, 0444);
7803 +MODULE_PARM_DESC(dev_tx_fifo_size_12, "Number of words in the Tx FIFO 4-768");
7804 +module_param_named(dev_tx_fifo_size_13, dwc_otg_module_params.dev_tx_fifo_size[12], int, 0444);
7805 +MODULE_PARM_DESC(dev_tx_fifo_size_13, "Number of words in the Tx FIFO 4-768");
7806 +module_param_named(dev_tx_fifo_size_14, dwc_otg_module_params.dev_tx_fifo_size[13], int, 0444);
7807 +MODULE_PARM_DESC(dev_tx_fifo_size_14, "Number of words in the Tx FIFO 4-768");
7808 +module_param_named(dev_tx_fifo_size_15, dwc_otg_module_params.dev_tx_fifo_size[14], int, 0444);
7809 +MODULE_PARM_DESC(dev_tx_fifo_size_15, "Number of words in the Tx FIFO 4-768");
7810 +
7811 +module_param_named(thr_ctl, dwc_otg_module_params.thr_ctl, int, 0444);
7812 +MODULE_PARM_DESC(thr_ctl, "Thresholding enable flag bit 0 - non ISO Tx thr., 1 - ISO Tx thr., 2 - Rx thr.- bit 0=disabled 1=enabled");
7813 +module_param_named(tx_thr_length, dwc_otg_module_params.tx_thr_length, int, 0444);
7814 +MODULE_PARM_DESC(tx_thr_length, "Tx Threshold length in 32 bit DWORDs");
7815 +module_param_named(rx_thr_length, dwc_otg_module_params.rx_thr_length, int, 0444);
7816 +MODULE_PARM_DESC(rx_thr_length, "Rx Threshold length in 32 bit DWORDs");
7817 +
7818 +module_param_named(pti_enable, dwc_otg_module_params.pti_enable, int, 0444);
7819 +MODULE_PARM_DESC(pti_enable, "Per Transfer Interrupt mode 0=disabled 1=enabled");
7820 +
7821 +module_param_named(mpi_enable, dwc_otg_module_params.mpi_enable, int, 0444);
7822 +MODULE_PARM_DESC(mpi_enable, "Multiprocessor Interrupt mode 0=disabled 1=enabled");
7823 --- /dev/null
7824 +++ b/drivers/usb/dwc/otg_driver.h
7825 @@ -0,0 +1,62 @@
7826 +/* ==========================================================================
7827 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_driver.h $
7828 + * $Revision: #12 $
7829 + * $Date: 2008/07/15 $
7830 + * $Change: 1064918 $
7831 + *
7832 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7833 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7834 + * otherwise expressly agreed to in writing between Synopsys and you.
7835 + *
7836 + * The Software IS NOT an item of Licensed Software or Licensed Product under
7837 + * any End User Software License Agreement or Agreement for Licensed Product
7838 + * with Synopsys or any supplement thereto. You are permitted to use and
7839 + * redistribute this Software in source and binary forms, with or without
7840 + * modification, provided that redistributions of source code must retain this
7841 + * notice. You may not view, use, disclose, copy or distribute this file or
7842 + * any information contained herein except pursuant to this license grant from
7843 + * Synopsys. If you do not agree with this notice, including the disclaimer
7844 + * below, then you are not authorized to use the Software.
7845 + *
7846 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7847 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7848 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7849 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7850 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7851 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7852 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7853 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7854 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7855 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7856 + * DAMAGE.
7857 + * ========================================================================== */
7858 +
7859 +#ifndef __DWC_OTG_DRIVER_H__
7860 +#define __DWC_OTG_DRIVER_H__
7861 +
7862 +/** @file
7863 + * This file contains the interface to the Linux driver.
7864 + */
7865 +#include "otg_cil.h"
7866 +
7867 +/* Type declarations */
7868 +struct dwc_otg_pcd;
7869 +struct dwc_otg_hcd;
7870 +
7871 +/**
7872 + * This structure is a wrapper that encapsulates the driver components used to
7873 + * manage a single DWC_otg controller.
7874 + */
7875 +typedef struct dwc_otg_device {
7876 + void *base;
7877 + dwc_otg_core_if_t *core_if;
7878 + uint32_t reg_offset;
7879 + struct dwc_otg_pcd *pcd;
7880 + struct dwc_otg_hcd *hcd;
7881 + uint8_t common_irq_installed;
7882 + int irq;
7883 + uint32_t rsrc_start;
7884 + uint32_t rsrc_len;
7885 +} dwc_otg_device_t;
7886 +
7887 +#endif
7888 --- /dev/null
7889 +++ b/drivers/usb/dwc/otg_hcd.c
7890 @@ -0,0 +1,2752 @@
7891 +/* ==========================================================================
7892 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.c $
7893 + * $Revision: #75 $
7894 + * $Date: 2008/07/15 $
7895 + * $Change: 1064940 $
7896 + *
7897 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
7898 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
7899 + * otherwise expressly agreed to in writing between Synopsys and you.
7900 + *
7901 + * The Software IS NOT an item of Licensed Software or Licensed Product under
7902 + * any End User Software License Agreement or Agreement for Licensed Product
7903 + * with Synopsys or any supplement thereto. You are permitted to use and
7904 + * redistribute this Software in source and binary forms, with or without
7905 + * modification, provided that redistributions of source code must retain this
7906 + * notice. You may not view, use, disclose, copy or distribute this file or
7907 + * any information contained herein except pursuant to this license grant from
7908 + * Synopsys. If you do not agree with this notice, including the disclaimer
7909 + * below, then you are not authorized to use the Software.
7910 + *
7911 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
7912 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
7913 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
7914 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
7915 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
7916 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
7917 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
7918 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
7919 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
7920 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
7921 + * DAMAGE.
7922 + * ========================================================================== */
7923 +#ifndef DWC_DEVICE_ONLY
7924 +
7925 +/**
7926 + * @file
7927 + *
7928 + * This file contains the implementation of the HCD. In Linux, the HCD
7929 + * implements the hc_driver API.
7930 + */
7931 +#include <linux/kernel.h>
7932 +#include <linux/module.h>
7933 +#include <linux/moduleparam.h>
7934 +#include <linux/init.h>
7935 +#include <linux/device.h>
7936 +#include <linux/platform_device.h>
7937 +#include <linux/errno.h>
7938 +#include <linux/list.h>
7939 +#include <linux/interrupt.h>
7940 +#include <linux/string.h>
7941 +#include <linux/dma-mapping.h>
7942 +#include <linux/version.h>
7943 +
7944 +#include <mach/irqs.h>
7945 +
7946 +#include "otg_driver.h"
7947 +#include "otg_hcd.h"
7948 +#include "otg_regs.h"
7949 +
7950 +static const char dwc_otg_hcd_name[] = "dwc_otg_hcd";
7951 +
7952 +static const struct hc_driver dwc_otg_hc_driver = {
7953 +
7954 + .description = dwc_otg_hcd_name,
7955 + .product_desc = "DWC OTG Controller",
7956 + .hcd_priv_size = sizeof(dwc_otg_hcd_t),
7957 + .irq = dwc_otg_hcd_irq,
7958 + .flags = HCD_MEMORY | HCD_USB2,
7959 + .start = dwc_otg_hcd_start,
7960 + .stop = dwc_otg_hcd_stop,
7961 + .urb_enqueue = dwc_otg_hcd_urb_enqueue,
7962 + .urb_dequeue = dwc_otg_hcd_urb_dequeue,
7963 + .endpoint_disable = dwc_otg_hcd_endpoint_disable,
7964 + .get_frame_number = dwc_otg_hcd_get_frame_number,
7965 + .hub_status_data = dwc_otg_hcd_hub_status_data,
7966 + .hub_control = dwc_otg_hcd_hub_control,
7967 +};
7968 +
7969 +/**
7970 + * Work queue function for starting the HCD when A-Cable is connected.
7971 + * The dwc_otg_hcd_start() must be called in a process context.
7972 + */
7973 +static void hcd_start_func(struct work_struct *_work)
7974 +{
7975 + struct delayed_work *dw = container_of(_work, struct delayed_work, work);
7976 + struct dwc_otg_hcd *otg_hcd = container_of(dw, struct dwc_otg_hcd, start_work);
7977 + struct usb_hcd *usb_hcd = container_of((void *)otg_hcd, struct usb_hcd, hcd_priv);
7978 + DWC_DEBUGPL(DBG_HCDV, "%s() %p\n", __func__, usb_hcd);
7979 + if (usb_hcd) {
7980 + dwc_otg_hcd_start(usb_hcd);
7981 + }
7982 +}
7983 +
7984 +/**
7985 + * HCD Callback function for starting the HCD when A-Cable is
7986 + * connected.
7987 + *
7988 + * @param p void pointer to the <code>struct usb_hcd</code>
7989 + */
7990 +static int32_t dwc_otg_hcd_start_cb(void *p)
7991 +{
7992 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
7993 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
7994 + hprt0_data_t hprt0;
7995 +
7996 + if (core_if->op_state == B_HOST) {
7997 + /*
7998 + * Reset the port. During a HNP mode switch the reset
7999 + * needs to occur within 1ms and have a duration of at
8000 + * least 50ms.
8001 + */
8002 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
8003 + hprt0.b.prtrst = 1;
8004 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8005 + ((struct usb_hcd *)p)->self.is_b_host = 1;
8006 + } else {
8007 + ((struct usb_hcd *)p)->self.is_b_host = 0;
8008 + }
8009 +
8010 + /* Need to start the HCD in a non-interrupt context. */
8011 +// INIT_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
8012 + INIT_DELAYED_WORK(&dwc_otg_hcd->start_work, hcd_start_func);
8013 +// schedule_work(&dwc_otg_hcd->start_work);
8014 + queue_delayed_work(core_if->wq_otg, &dwc_otg_hcd->start_work, 50 * HZ / 1000);
8015 +
8016 + return 1;
8017 +}
8018 +
8019 +/**
8020 + * HCD Callback function for stopping the HCD.
8021 + *
8022 + * @param p void pointer to the <code>struct usb_hcd</code>
8023 + */
8024 +static int32_t dwc_otg_hcd_stop_cb(void *p)
8025 +{
8026 + struct usb_hcd *usb_hcd = (struct usb_hcd *)p;
8027 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
8028 + dwc_otg_hcd_stop(usb_hcd);
8029 + return 1;
8030 +}
8031 +
8032 +static void del_xfer_timers(dwc_otg_hcd_t *hcd)
8033 +{
8034 +#ifdef DEBUG
8035 + int i;
8036 + int num_channels = hcd->core_if->core_params->host_channels;
8037 + for (i = 0; i < num_channels; i++) {
8038 + del_timer(&hcd->core_if->hc_xfer_timer[i]);
8039 + }
8040 +#endif
8041 +}
8042 +
8043 +static void del_timers(dwc_otg_hcd_t *hcd)
8044 +{
8045 + del_xfer_timers(hcd);
8046 + del_timer(&hcd->conn_timer);
8047 +}
8048 +
8049 +/**
8050 + * Processes all the URBs in a single list of QHs. Completes them with
8051 + * -ETIMEDOUT and frees the QTD.
8052 + */
8053 +static void kill_urbs_in_qh_list(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
8054 +{
8055 + struct list_head *qh_item;
8056 + dwc_otg_qh_t *qh;
8057 + struct list_head *qtd_item;
8058 + dwc_otg_qtd_t *qtd;
8059 + unsigned long flags;
8060 +
8061 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
8062 + list_for_each(qh_item, qh_list) {
8063 + qh = list_entry(qh_item, dwc_otg_qh_t, qh_list_entry);
8064 + for (qtd_item = qh->qtd_list.next;
8065 + qtd_item != &qh->qtd_list;
8066 + qtd_item = qh->qtd_list.next) {
8067 + qtd = list_entry(qtd_item, dwc_otg_qtd_t, qtd_list_entry);
8068 + if (qtd->urb != NULL) {
8069 + dwc_otg_hcd_complete_urb(hcd, qtd->urb,
8070 + -ETIMEDOUT);
8071 + }
8072 + dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
8073 + }
8074 + }
8075 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
8076 +}
8077 +
8078 +/**
8079 + * Responds with an error status of ETIMEDOUT to all URBs in the non-periodic
8080 + * and periodic schedules. The QTD associated with each URB is removed from
8081 + * the schedule and freed. This function may be called when a disconnect is
8082 + * detected or when the HCD is being stopped.
8083 + */
8084 +static void kill_all_urbs(dwc_otg_hcd_t *hcd)
8085 +{
8086 + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_inactive);
8087 + kill_urbs_in_qh_list(hcd, &hcd->non_periodic_sched_active);
8088 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_inactive);
8089 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_ready);
8090 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_assigned);
8091 + kill_urbs_in_qh_list(hcd, &hcd->periodic_sched_queued);
8092 +}
8093 +
8094 +/**
8095 + * HCD Callback function for disconnect of the HCD.
8096 + *
8097 + * @param p void pointer to the <code>struct usb_hcd</code>
8098 + */
8099 +static int32_t dwc_otg_hcd_disconnect_cb(void *p)
8100 +{
8101 + gintsts_data_t intr;
8102 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
8103 +
8104 + //DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
8105 +
8106 + /*
8107 + * Set status flags for the hub driver.
8108 + */
8109 + dwc_otg_hcd->flags.b.port_connect_status_change = 1;
8110 + dwc_otg_hcd->flags.b.port_connect_status = 0;
8111 +
8112 + /*
8113 + * Shutdown any transfers in process by clearing the Tx FIFO Empty
8114 + * interrupt mask and status bits and disabling subsequent host
8115 + * channel interrupts.
8116 + */
8117 + intr.d32 = 0;
8118 + intr.b.nptxfempty = 1;
8119 + intr.b.ptxfempty = 1;
8120 + intr.b.hcintr = 1;
8121 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, intr.d32, 0);
8122 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintsts, intr.d32, 0);
8123 +
8124 + del_timers(dwc_otg_hcd);
8125 +
8126 + /*
8127 + * Turn off the vbus power only if the core has transitioned to device
8128 + * mode. If still in host mode, need to keep power on to detect a
8129 + * reconnection.
8130 + */
8131 + if (dwc_otg_is_device_mode(dwc_otg_hcd->core_if)) {
8132 + if (dwc_otg_hcd->core_if->op_state != A_SUSPEND) {
8133 + hprt0_data_t hprt0 = { .d32=0 };
8134 + DWC_PRINT("Disconnect: PortPower off\n");
8135 + hprt0.b.prtpwr = 0;
8136 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
8137 + }
8138 +
8139 + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
8140 + }
8141 +
8142 + /* Respond with an error status to all URBs in the schedule. */
8143 + kill_all_urbs(dwc_otg_hcd);
8144 +
8145 + if (dwc_otg_is_host_mode(dwc_otg_hcd->core_if)) {
8146 + /* Clean up any host channels that were in use. */
8147 + int num_channels;
8148 + int i;
8149 + dwc_hc_t *channel;
8150 + dwc_otg_hc_regs_t *hc_regs;
8151 + hcchar_data_t hcchar;
8152 +
8153 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
8154 +
8155 + if (!dwc_otg_hcd->core_if->dma_enable) {
8156 + /* Flush out any channel requests in slave mode. */
8157 + for (i = 0; i < num_channels; i++) {
8158 + channel = dwc_otg_hcd->hc_ptr_array[i];
8159 + if (list_empty(&channel->hc_list_entry)) {
8160 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
8161 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8162 + if (hcchar.b.chen) {
8163 + hcchar.b.chen = 0;
8164 + hcchar.b.chdis = 1;
8165 + hcchar.b.epdir = 0;
8166 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8167 + }
8168 + }
8169 + }
8170 + }
8171 +
8172 + for (i = 0; i < num_channels; i++) {
8173 + channel = dwc_otg_hcd->hc_ptr_array[i];
8174 + if (list_empty(&channel->hc_list_entry)) {
8175 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[i];
8176 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8177 + if (hcchar.b.chen) {
8178 + /* Halt the channel. */
8179 + hcchar.b.chdis = 1;
8180 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
8181 + }
8182 +
8183 + dwc_otg_hc_cleanup(dwc_otg_hcd->core_if, channel);
8184 + list_add_tail(&channel->hc_list_entry,
8185 + &dwc_otg_hcd->free_hc_list);
8186 + }
8187 + }
8188 + }
8189 +
8190 + /* A disconnect will end the session so the B-Device is no
8191 + * longer a B-host. */
8192 + ((struct usb_hcd *)p)->self.is_b_host = 0;
8193 + return 1;
8194 +}
8195 +
8196 +/**
8197 + * Connection timeout function. An OTG host is required to display a
8198 + * message if the device does not connect within 10 seconds.
8199 + */
8200 +void dwc_otg_hcd_connect_timeout(unsigned long ptr)
8201 +{
8202 + DWC_DEBUGPL(DBG_HCDV, "%s(%x)\n", __func__, (int)ptr);
8203 + DWC_PRINT("Connect Timeout\n");
8204 + DWC_ERROR("Device Not Connected/Responding\n");
8205 +}
8206 +
8207 +/**
8208 + * Start the connection timer. An OTG host is required to display a
8209 + * message if the device does not connect within 10 seconds. The
8210 + * timer is deleted if a port connect interrupt occurs before the
8211 + * timer expires.
8212 + */
8213 +static void dwc_otg_hcd_start_connect_timer(dwc_otg_hcd_t *hcd)
8214 +{
8215 + init_timer(&hcd->conn_timer);
8216 + hcd->conn_timer.function = dwc_otg_hcd_connect_timeout;
8217 + hcd->conn_timer.data = 0;
8218 + hcd->conn_timer.expires = jiffies + (HZ * 10);
8219 + add_timer(&hcd->conn_timer);
8220 +}
8221 +
8222 +/**
8223 + * HCD Callback function for disconnect of the HCD.
8224 + *
8225 + * @param p void pointer to the <code>struct usb_hcd</code>
8226 + */
8227 +static int32_t dwc_otg_hcd_session_start_cb(void *p)
8228 +{
8229 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(p);
8230 + DWC_DEBUGPL(DBG_HCDV, "%s(%p)\n", __func__, p);
8231 + dwc_otg_hcd_start_connect_timer(dwc_otg_hcd);
8232 + return 1;
8233 +}
8234 +
8235 +/**
8236 + * HCD Callback structure for handling mode switching.
8237 + */
8238 +static dwc_otg_cil_callbacks_t hcd_cil_callbacks = {
8239 + .start = dwc_otg_hcd_start_cb,
8240 + .stop = dwc_otg_hcd_stop_cb,
8241 + .disconnect = dwc_otg_hcd_disconnect_cb,
8242 + .session_start = dwc_otg_hcd_session_start_cb,
8243 + .p = 0,
8244 +};
8245 +
8246 +/**
8247 + * Reset tasklet function
8248 + */
8249 +static void reset_tasklet_func(unsigned long data)
8250 +{
8251 + dwc_otg_hcd_t *dwc_otg_hcd = (dwc_otg_hcd_t *)data;
8252 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
8253 + hprt0_data_t hprt0;
8254 +
8255 + DWC_DEBUGPL(DBG_HCDV, "USB RESET tasklet called\n");
8256 +
8257 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
8258 + hprt0.b.prtrst = 1;
8259 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8260 + mdelay(60);
8261 +
8262 + hprt0.b.prtrst = 0;
8263 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
8264 + dwc_otg_hcd->flags.b.port_reset_change = 1;
8265 +}
8266 +
8267 +static struct tasklet_struct reset_tasklet = {
8268 + .next = NULL,
8269 + .state = 0,
8270 + .count = ATOMIC_INIT(0),
8271 + .func = reset_tasklet_func,
8272 + .data = 0,
8273 +};
8274 +
8275 +/**
8276 + * Initializes the HCD. This function allocates memory for and initializes the
8277 + * static parts of the usb_hcd and dwc_otg_hcd structures. It also registers the
8278 + * USB bus with the core and calls the hc_driver->start() function. It returns
8279 + * a negative error on failure.
8280 + */
8281 +int dwc_otg_hcd_init(struct platform_device *pdev)
8282 +{
8283 + struct usb_hcd *hcd = NULL;
8284 + dwc_otg_hcd_t *dwc_otg_hcd = NULL;
8285 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
8286 +
8287 + int num_channels;
8288 + int i;
8289 + dwc_hc_t *channel;
8290 +
8291 + int retval = 0;
8292 +
8293 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD INIT\n");
8294 +
8295 + /* Set device flags indicating whether the HCD supports DMA. */
8296 + if (otg_dev->core_if->dma_enable) {
8297 + DWC_PRINT("Using DMA mode\n");
8298 +
8299 + if (otg_dev->core_if->dma_desc_enable) {
8300 + DWC_PRINT("Device using Descriptor DMA mode\n");
8301 + } else {
8302 + DWC_PRINT("Device using Buffer DMA mode\n");
8303 + }
8304 + }
8305 + /*
8306 + * Allocate memory for the base HCD plus the DWC OTG HCD.
8307 + * Initialize the base HCD.
8308 + */
8309 +
8310 + hcd = usb_create_hcd(&dwc_otg_hc_driver, &pdev->dev, "gadget");
8311 + if (!hcd) {
8312 + retval = -ENOMEM;
8313 + goto error1;
8314 + }
8315 +
8316 + hcd->regs = otg_dev->base;
8317 + hcd->self.otg_port = 1;
8318 +
8319 + /* Integrate TT in root hub, by default this is disbled. */
8320 + hcd->has_tt = 1;
8321 +
8322 + /* Initialize the DWC OTG HCD. */
8323 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8324 + dwc_otg_hcd->core_if = otg_dev->core_if;
8325 + otg_dev->hcd = dwc_otg_hcd;
8326 + init_hcd_usecs(dwc_otg_hcd);
8327 +
8328 + /* */
8329 + spin_lock_init(&dwc_otg_hcd->lock);
8330 +
8331 + /* Register the HCD CIL Callbacks */
8332 + dwc_otg_cil_register_hcd_callbacks(otg_dev->core_if,
8333 + &hcd_cil_callbacks, hcd);
8334 +
8335 + /* Initialize the non-periodic schedule. */
8336 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_inactive);
8337 + INIT_LIST_HEAD(&dwc_otg_hcd->non_periodic_sched_active);
8338 +
8339 + /* Initialize the periodic schedule. */
8340 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_inactive);
8341 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_ready);
8342 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_assigned);
8343 + INIT_LIST_HEAD(&dwc_otg_hcd->periodic_sched_queued);
8344 +
8345 + /*
8346 + * Create a host channel descriptor for each host channel implemented
8347 + * in the controller. Initialize the channel descriptor array.
8348 + */
8349 + INIT_LIST_HEAD(&dwc_otg_hcd->free_hc_list);
8350 + num_channels = dwc_otg_hcd->core_if->core_params->host_channels;
8351 + memset(dwc_otg_hcd->hc_ptr_array, 0, sizeof(dwc_otg_hcd->hc_ptr_array));
8352 + for (i = 0; i < num_channels; i++) {
8353 + channel = kmalloc(sizeof(dwc_hc_t), GFP_KERNEL);
8354 + if (channel == NULL) {
8355 + retval = -ENOMEM;
8356 + DWC_ERROR("%s: host channel allocation failed\n", __func__);
8357 + goto error2;
8358 + }
8359 + memset(channel, 0, sizeof(dwc_hc_t));
8360 + channel->hc_num = i;
8361 + dwc_otg_hcd->hc_ptr_array[i] = channel;
8362 +#ifdef DEBUG
8363 + init_timer(&dwc_otg_hcd->core_if->hc_xfer_timer[i]);
8364 +#endif
8365 + DWC_DEBUGPL(DBG_HCDV, "HCD Added channel #%d, hc=%p\n", i, channel);
8366 + }
8367 +
8368 + /* Initialize the Connection timeout timer. */
8369 + init_timer(&dwc_otg_hcd->conn_timer);
8370 +
8371 + /* Initialize reset tasklet. */
8372 + reset_tasklet.data = (unsigned long) dwc_otg_hcd;
8373 + dwc_otg_hcd->reset_tasklet = &reset_tasklet;
8374 +
8375 + /*
8376 + * Finish generic HCD initialization and start the HCD. This function
8377 + * allocates the DMA buffer pool, registers the USB bus, requests the
8378 + * IRQ line, and calls dwc_otg_hcd_start method.
8379 + */
8380 + retval = usb_add_hcd(hcd, otg_dev->irq, IRQF_SHARED);
8381 + if (retval < 0) {
8382 + goto error2;
8383 + }
8384 +
8385 + /*
8386 + * Allocate space for storing data on status transactions. Normally no
8387 + * data is sent, but this space acts as a bit bucket. This must be
8388 + * done after usb_add_hcd since that function allocates the DMA buffer
8389 + * pool.
8390 + */
8391 + if (otg_dev->core_if->dma_enable) {
8392 + dwc_otg_hcd->status_buf =
8393 + dma_alloc_coherent(&pdev->dev,
8394 + DWC_OTG_HCD_STATUS_BUF_SIZE,
8395 + &dwc_otg_hcd->status_buf_dma,
8396 + GFP_KERNEL | GFP_DMA);
8397 + } else {
8398 + dwc_otg_hcd->status_buf = kmalloc(DWC_OTG_HCD_STATUS_BUF_SIZE,
8399 + GFP_KERNEL);
8400 + }
8401 + if (!dwc_otg_hcd->status_buf) {
8402 + retval = -ENOMEM;
8403 + DWC_ERROR("%s: status_buf allocation failed\n", __func__);
8404 + goto error3;
8405 + }
8406 +
8407 + dwc_otg_hcd->otg_dev = otg_dev;
8408 +
8409 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Initialized HCD, usbbus=%d\n",
8410 + hcd->self.busnum);
8411 + return 0;
8412 +
8413 + /* Error conditions */
8414 + error3:
8415 + usb_remove_hcd(hcd);
8416 + error2:
8417 + dwc_otg_hcd_free(hcd);
8418 + usb_put_hcd(hcd);
8419 + error1:
8420 + return retval;
8421 +}
8422 +
8423 +/**
8424 + * Removes the HCD.
8425 + * Frees memory and resources associated with the HCD and deregisters the bus.
8426 + */
8427 +void dwc_otg_hcd_remove(struct platform_device *pdev)
8428 +{
8429 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
8430 + dwc_otg_hcd_t *dwc_otg_hcd;
8431 + struct usb_hcd *hcd;
8432 +
8433 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD REMOVE\n");
8434 +
8435 + if (!otg_dev) {
8436 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev NULL!\n", __func__);
8437 + return;
8438 + }
8439 +
8440 + dwc_otg_hcd = otg_dev->hcd;
8441 +
8442 + if (!dwc_otg_hcd) {
8443 + DWC_DEBUGPL(DBG_ANY, "%s: otg_dev->hcd NULL!\n", __func__);
8444 + return;
8445 + }
8446 +
8447 + hcd = dwc_otg_hcd_to_hcd(dwc_otg_hcd);
8448 +
8449 + if (!hcd) {
8450 + DWC_DEBUGPL(DBG_ANY, "%s: dwc_otg_hcd_to_hcd(dwc_otg_hcd) NULL!\n", __func__);
8451 + return;
8452 + }
8453 +
8454 + /* Turn off all interrupts */
8455 + dwc_write_reg32(&dwc_otg_hcd->core_if->core_global_regs->gintmsk, 0);
8456 + dwc_modify_reg32(&dwc_otg_hcd->core_if->core_global_regs->gahbcfg, 1, 0);
8457 +
8458 + usb_remove_hcd(hcd);
8459 + dwc_otg_hcd_free(hcd);
8460 + usb_put_hcd(hcd);
8461 +}
8462 +
8463 +/* =========================================================================
8464 + * Linux HC Driver Functions
8465 + * ========================================================================= */
8466 +
8467 +/**
8468 + * Initializes dynamic portions of the DWC_otg HCD state.
8469 + */
8470 +static void hcd_reinit(dwc_otg_hcd_t *hcd)
8471 +{
8472 + struct list_head *item;
8473 + int num_channels;
8474 + int i;
8475 + dwc_hc_t *channel;
8476 +
8477 + hcd->flags.d32 = 0;
8478 +
8479 + hcd->non_periodic_qh_ptr = &hcd->non_periodic_sched_active;
8480 + hcd->non_periodic_channels = 0;
8481 + hcd->periodic_channels = 0;
8482 +
8483 + /*
8484 + * Put all channels in the free channel list and clean up channel
8485 + * states.
8486 + */
8487 + item = hcd->free_hc_list.next;
8488 + while (item != &hcd->free_hc_list) {
8489 + list_del(item);
8490 + item = hcd->free_hc_list.next;
8491 + }
8492 + num_channels = hcd->core_if->core_params->host_channels;
8493 + for (i = 0; i < num_channels; i++) {
8494 + channel = hcd->hc_ptr_array[i];
8495 + list_add_tail(&channel->hc_list_entry, &hcd->free_hc_list);
8496 + dwc_otg_hc_cleanup(hcd->core_if, channel);
8497 + }
8498 +
8499 + /* Initialize the DWC core for host mode operation. */
8500 + dwc_otg_core_host_init(hcd->core_if);
8501 +}
8502 +
8503 +/** Initializes the DWC_otg controller and its root hub and prepares it for host
8504 + * mode operation. Activates the root port. Returns 0 on success and a negative
8505 + * error code on failure. */
8506 +int dwc_otg_hcd_start(struct usb_hcd *hcd)
8507 +{
8508 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8509 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
8510 + struct usb_bus *bus;
8511 +
8512 +
8513 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD START\n");
8514 +
8515 + bus = hcd_to_bus(hcd);
8516 +
8517 + /* Initialize the bus state. If the core is in Device Mode
8518 + * HALT the USB bus and return. */
8519 + if (dwc_otg_is_device_mode(core_if)) {
8520 + hcd->state = HC_STATE_RUNNING;
8521 + return 0;
8522 + }
8523 + hcd->state = HC_STATE_RUNNING;
8524 +
8525 + /* Initialize and connect root hub if one is not already attached */
8526 + if (bus->root_hub) {
8527 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Has Root Hub\n");
8528 + /* Inform the HUB driver to resume. */
8529 + usb_hcd_resume_root_hub(hcd);
8530 + }
8531 + else {
8532 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Does Not Have Root Hub\n");
8533 + }
8534 +
8535 + hcd_reinit(dwc_otg_hcd);
8536 +
8537 + return 0;
8538 +}
8539 +
8540 +static void qh_list_free(dwc_otg_hcd_t *hcd, struct list_head *qh_list)
8541 +{
8542 + struct list_head *item;
8543 + dwc_otg_qh_t *qh;
8544 + unsigned long flags;
8545 +
8546 + if (!qh_list->next) {
8547 + /* The list hasn't been initialized yet. */
8548 + return;
8549 + }
8550 +
8551 + /* Ensure there are no QTDs or URBs left. */
8552 + kill_urbs_in_qh_list(hcd, qh_list);
8553 +
8554 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
8555 + for (item = qh_list->next; item != qh_list; item = qh_list->next) {
8556 + qh = list_entry(item, dwc_otg_qh_t, qh_list_entry);
8557 + dwc_otg_hcd_qh_remove_and_free(hcd, qh);
8558 + }
8559 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
8560 +}
8561 +
8562 +/**
8563 + * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
8564 + * stopped.
8565 + */
8566 +void dwc_otg_hcd_stop(struct usb_hcd *hcd)
8567 +{
8568 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8569 + hprt0_data_t hprt0 = { .d32=0 };
8570 +
8571 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD STOP\n");
8572 +
8573 + /* Turn off all host-specific interrupts. */
8574 + dwc_otg_disable_host_interrupts(dwc_otg_hcd->core_if);
8575 +
8576 + /*
8577 + * The root hub should be disconnected before this function is called.
8578 + * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
8579 + * and the QH lists (via ..._hcd_endpoint_disable).
8580 + */
8581 +
8582 + /* Turn off the vbus power */
8583 + DWC_PRINT("PortPower off\n");
8584 + hprt0.b.prtpwr = 0;
8585 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0.d32);
8586 +}
8587 +
8588 +/** Returns the current frame number. */
8589 +int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd)
8590 +{
8591 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8592 + hfnum_data_t hfnum;
8593 +
8594 + hfnum.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->
8595 + host_if->host_global_regs->hfnum);
8596 +
8597 +#ifdef DEBUG_SOF
8598 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD GET FRAME NUMBER %d\n", hfnum.b.frnum);
8599 +#endif
8600 + return hfnum.b.frnum;
8601 +}
8602 +
8603 +/**
8604 + * Frees secondary storage associated with the dwc_otg_hcd structure contained
8605 + * in the struct usb_hcd field.
8606 + */
8607 +void dwc_otg_hcd_free(struct usb_hcd *hcd)
8608 +{
8609 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8610 + int i;
8611 +
8612 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD FREE\n");
8613 +
8614 + del_timers(dwc_otg_hcd);
8615 +
8616 + /* Free memory for QH/QTD lists */
8617 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_inactive);
8618 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->non_periodic_sched_active);
8619 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_inactive);
8620 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_ready);
8621 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_assigned);
8622 + qh_list_free(dwc_otg_hcd, &dwc_otg_hcd->periodic_sched_queued);
8623 +
8624 + /* Free memory for the host channels. */
8625 + for (i = 0; i < MAX_EPS_CHANNELS; i++) {
8626 + dwc_hc_t *hc = dwc_otg_hcd->hc_ptr_array[i];
8627 + if (hc != NULL) {
8628 + DWC_DEBUGPL(DBG_HCDV, "HCD Free channel #%i, hc=%p\n", i, hc);
8629 + kfree(hc);
8630 + }
8631 + }
8632 +
8633 + if (dwc_otg_hcd->core_if->dma_enable) {
8634 + if (dwc_otg_hcd->status_buf_dma) {
8635 + dma_free_coherent(hcd->self.controller,
8636 + DWC_OTG_HCD_STATUS_BUF_SIZE,
8637 + dwc_otg_hcd->status_buf,
8638 + dwc_otg_hcd->status_buf_dma);
8639 + }
8640 + } else if (dwc_otg_hcd->status_buf != NULL) {
8641 + kfree(dwc_otg_hcd->status_buf);
8642 + }
8643 +}
8644 +
8645 +#ifdef DEBUG
8646 +static void dump_urb_info(struct urb *urb, char* fn_name)
8647 +{
8648 + DWC_PRINT("%s, urb %p\n", fn_name, urb);
8649 + DWC_PRINT(" Device address: %d\n", usb_pipedevice(urb->pipe));
8650 + DWC_PRINT(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
8651 + (usb_pipein(urb->pipe) ? "IN" : "OUT"));
8652 + DWC_PRINT(" Endpoint type: %s\n",
8653 + ({char *pipetype;
8654 + switch (usb_pipetype(urb->pipe)) {
8655 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
8656 + case PIPE_BULK: pipetype = "BULK"; break;
8657 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
8658 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
8659 + default: pipetype = "UNKNOWN"; break;
8660 + }; pipetype;}));
8661 + DWC_PRINT(" Speed: %s\n",
8662 + ({char *speed;
8663 + switch (urb->dev->speed) {
8664 + case USB_SPEED_HIGH: speed = "HIGH"; break;
8665 + case USB_SPEED_FULL: speed = "FULL"; break;
8666 + case USB_SPEED_LOW: speed = "LOW"; break;
8667 + default: speed = "UNKNOWN"; break;
8668 + }; speed;}));
8669 + DWC_PRINT(" Max packet size: %d\n",
8670 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
8671 + DWC_PRINT(" Data buffer length: %d\n", urb->transfer_buffer_length);
8672 + DWC_PRINT(" Transfer buffer: %p, Transfer DMA: %p\n",
8673 + urb->transfer_buffer, (void *)urb->transfer_dma);
8674 + DWC_PRINT(" Setup buffer: %p, Setup DMA: %p\n",
8675 + urb->setup_packet, (void *)urb->setup_dma);
8676 + DWC_PRINT(" Interval: %d\n", urb->interval);
8677 + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
8678 + int i;
8679 + for (i = 0; i < urb->number_of_packets; i++) {
8680 + DWC_PRINT(" ISO Desc %d:\n", i);
8681 + DWC_PRINT(" offset: %d, length %d\n",
8682 + urb->iso_frame_desc[i].offset,
8683 + urb->iso_frame_desc[i].length);
8684 + }
8685 + }
8686 +}
8687 +
8688 +static void dump_channel_info(dwc_otg_hcd_t *hcd,
8689 + dwc_otg_qh_t *qh)
8690 +{
8691 + if (qh->channel != NULL) {
8692 + dwc_hc_t *hc = qh->channel;
8693 + struct list_head *item;
8694 + dwc_otg_qh_t *qh_item;
8695 + int num_channels = hcd->core_if->core_params->host_channels;
8696 + int i;
8697 +
8698 + dwc_otg_hc_regs_t *hc_regs;
8699 + hcchar_data_t hcchar;
8700 + hcsplt_data_t hcsplt;
8701 + hctsiz_data_t hctsiz;
8702 + uint32_t hcdma;
8703 +
8704 + hc_regs = hcd->core_if->host_if->hc_regs[hc->hc_num];
8705 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
8706 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
8707 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
8708 + hcdma = dwc_read_reg32(&hc_regs->hcdma);
8709 +
8710 + DWC_PRINT(" Assigned to channel %p:\n", hc);
8711 + DWC_PRINT(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
8712 + DWC_PRINT(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
8713 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
8714 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
8715 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
8716 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
8717 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
8718 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
8719 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
8720 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
8721 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
8722 + DWC_PRINT(" qh: %p\n", hc->qh);
8723 + DWC_PRINT(" NP inactive sched:\n");
8724 + list_for_each(item, &hcd->non_periodic_sched_inactive) {
8725 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
8726 + DWC_PRINT(" %p\n", qh_item);
8727 + }
8728 + DWC_PRINT(" NP active sched:\n");
8729 + list_for_each(item, &hcd->non_periodic_sched_active) {
8730 + qh_item = list_entry(item, dwc_otg_qh_t, qh_list_entry);
8731 + DWC_PRINT(" %p\n", qh_item);
8732 + }
8733 + DWC_PRINT(" Channels: \n");
8734 + for (i = 0; i < num_channels; i++) {
8735 + dwc_hc_t *hc = hcd->hc_ptr_array[i];
8736 + DWC_PRINT(" %2d: %p\n", i, hc);
8737 + }
8738 + }
8739 +}
8740 +#endif
8741 +
8742 +
8743 +//OTG host require the DMA addr is DWORD-aligned,
8744 +//patch it if the buffer is not DWORD-aligned
8745 +inline
8746 +void hcd_check_and_patch_dma_addr(struct urb *urb){
8747 +
8748 + if((!urb->transfer_buffer)||!urb->transfer_dma||urb->transfer_dma==0xffffffff)
8749 + return;
8750 +
8751 + if(((u32)urb->transfer_buffer)& 0x3){
8752 + /*
8753 + printk("%s: "
8754 + "urb(%.8x) "
8755 + "transfer_buffer=%.8x, "
8756 + "transfer_dma=%.8x, "
8757 + "transfer_buffer_length=%d, "
8758 + "actual_length=%d(%x), "
8759 + "\n",
8760 + ((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT)?"OUT":"IN",
8761 + urb,
8762 + urb->transfer_buffer,
8763 + urb->transfer_dma,
8764 + urb->transfer_buffer_length,
8765 + urb->actual_length,urb->actual_length
8766 + );
8767 + */
8768 + if(!urb->aligned_transfer_buffer||urb->aligned_transfer_buffer_length<urb->transfer_buffer_length){
8769 + urb->aligned_transfer_buffer_length=urb->transfer_buffer_length;
8770 + if(urb->aligned_transfer_buffer) {
8771 + kfree(urb->aligned_transfer_buffer);
8772 + }
8773 + urb->aligned_transfer_buffer=kmalloc(urb->aligned_transfer_buffer_length,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
8774 + urb->aligned_transfer_dma=dma_map_single(NULL,(void *)(urb->aligned_transfer_buffer),(urb->aligned_transfer_buffer_length),DMA_FROM_DEVICE);
8775 + if(!urb->aligned_transfer_buffer){
8776 + DWC_ERROR("Cannot alloc required buffer!!\n");
8777 + BUG();
8778 + }
8779 + //printk(" new allocated aligned_buf=%.8x aligned_buf_len=%d\n", (u32)urb->aligned_transfer_buffer, urb->aligned_transfer_buffer_length);
8780 + }
8781 + urb->transfer_dma=urb->aligned_transfer_dma;
8782 + if((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_OUT) {
8783 + memcpy(urb->aligned_transfer_buffer,urb->transfer_buffer,urb->transfer_buffer_length);
8784 + dma_sync_single_for_device(NULL,urb->transfer_dma,urb->transfer_buffer_length,DMA_TO_DEVICE);
8785 + }
8786 + }
8787 +}
8788 +
8789 +
8790 +
8791 +/** Starts processing a USB transfer request specified by a USB Request Block
8792 + * (URB). mem_flags indicates the type of memory allocation to use while
8793 + * processing this URB. */
8794 +int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
8795 +// struct usb_host_endpoint *ep,
8796 + struct urb *urb,
8797 + gfp_t mem_flags
8798 + )
8799 +{
8800 + int retval = 0;
8801 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8802 + dwc_otg_qtd_t *qtd;
8803 +
8804 +#ifdef DEBUG
8805 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8806 + dump_urb_info(urb, "dwc_otg_hcd_urb_enqueue");
8807 + }
8808 +#endif
8809 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
8810 + /* No longer connected. */
8811 + return -ENODEV;
8812 + }
8813 +
8814 + hcd_check_and_patch_dma_addr(urb);
8815 + qtd = dwc_otg_hcd_qtd_create(urb);
8816 + if (qtd == NULL) {
8817 + DWC_ERROR("DWC OTG HCD URB Enqueue failed creating QTD\n");
8818 + return -ENOMEM;
8819 + }
8820 +
8821 + retval = dwc_otg_hcd_qtd_add(qtd, dwc_otg_hcd);
8822 + if (retval < 0) {
8823 + DWC_ERROR("DWC OTG HCD URB Enqueue failed adding QTD. "
8824 + "Error status %d\n", retval);
8825 + dwc_otg_hcd_qtd_free(qtd);
8826 + }
8827 +
8828 + return retval;
8829 +}
8830 +
8831 +/** Aborts/cancels a USB transfer request. Always returns 0 to indicate
8832 + * success. */
8833 +int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
8834 + struct urb *urb, int status)
8835 +{
8836 + unsigned long flags;
8837 + dwc_otg_hcd_t *dwc_otg_hcd;
8838 + dwc_otg_qtd_t *urb_qtd;
8839 + dwc_otg_qh_t *qh;
8840 + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
8841 +
8842 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Dequeue\n");
8843 +
8844 + dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8845 +
8846 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
8847 +
8848 + urb_qtd = (dwc_otg_qtd_t *)urb->hcpriv;
8849 + qh = (dwc_otg_qh_t *)ep->hcpriv;
8850 +
8851 + if (urb_qtd == NULL) {
8852 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8853 + return 0;
8854 + }
8855 +#ifdef DEBUG
8856 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8857 + dump_urb_info(urb, "dwc_otg_hcd_urb_dequeue");
8858 + if (urb_qtd == qh->qtd_in_process) {
8859 + dump_channel_info(dwc_otg_hcd, qh);
8860 + }
8861 + }
8862 +#endif
8863 +
8864 + if (urb_qtd == qh->qtd_in_process) {
8865 + /* The QTD is in process (it has been assigned to a channel). */
8866 +
8867 + if (dwc_otg_hcd->flags.b.port_connect_status) {
8868 + /*
8869 + * If still connected (i.e. in host mode), halt the
8870 + * channel so it can be used for other transfers. If
8871 + * no longer connected, the host registers can't be
8872 + * written to halt the channel since the core is in
8873 + * device mode.
8874 + */
8875 + dwc_otg_hc_halt(dwc_otg_hcd->core_if, qh->channel,
8876 + DWC_OTG_HC_XFER_URB_DEQUEUE);
8877 + }
8878 + }
8879 +
8880 + /*
8881 + * Free the QTD and clean up the associated QH. Leave the QH in the
8882 + * schedule if it has any remaining QTDs.
8883 + */
8884 + dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd, urb_qtd);
8885 + if (urb_qtd == qh->qtd_in_process) {
8886 + /* Note that dwc_otg_hcd_qh_deactivate() locks the spin_lock again */
8887 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8888 + dwc_otg_hcd_qh_deactivate(dwc_otg_hcd, qh, 0);
8889 + qh->channel = NULL;
8890 + qh->qtd_in_process = NULL;
8891 + } else {
8892 + if (list_empty(&qh->qtd_list))
8893 + dwc_otg_hcd_qh_remove(dwc_otg_hcd, qh);
8894 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8895 + }
8896 +
8897 + urb->hcpriv = NULL;
8898 +
8899 + /* Higher layer software sets URB status. */
8900 + usb_hcd_giveback_urb(hcd, urb, status);
8901 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
8902 + DWC_PRINT("Called usb_hcd_giveback_urb()\n");
8903 + DWC_PRINT(" urb->status = %d\n", urb->status);
8904 + }
8905 +
8906 + return 0;
8907 +}
8908 +
8909 +/** Frees resources in the DWC_otg controller related to a given endpoint. Also
8910 + * clears state in the HCD related to the endpoint. Any URBs for the endpoint
8911 + * must already be dequeued. */
8912 +void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
8913 + struct usb_host_endpoint *ep)
8914 +{
8915 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8916 + dwc_otg_qh_t *qh;
8917 +
8918 + unsigned long flags;
8919 + int retry = 0;
8920 +
8921 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD EP DISABLE: _bEndpointAddress=0x%02x, "
8922 + "endpoint=%d\n", ep->desc.bEndpointAddress,
8923 + dwc_ep_addr_to_endpoint(ep->desc.bEndpointAddress));
8924 +
8925 +rescan:
8926 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
8927 + qh = (dwc_otg_qh_t *)(ep->hcpriv);
8928 + if (!qh)
8929 + goto done;
8930 +
8931 + /** Check that the QTD list is really empty */
8932 + if (!list_empty(&qh->qtd_list)) {
8933 + if (retry++ < 250) {
8934 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8935 + schedule_timeout_uninterruptible(1);
8936 + goto rescan;
8937 + }
8938 +
8939 + DWC_WARN("DWC OTG HCD EP DISABLE:"
8940 + " QTD List for this endpoint is not empty\n");
8941 + }
8942 +
8943 + dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd, qh);
8944 + ep->hcpriv = NULL;
8945 +done:
8946 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
8947 +}
8948 +
8949 +/** Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
8950 + * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
8951 + * interrupt.
8952 + *
8953 + * This function is called by the USB core when an interrupt occurs */
8954 +irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd)
8955 +{
8956 + int retVal = 0;
8957 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8958 + retVal = dwc_otg_hcd_handle_intr(dwc_otg_hcd);
8959 + if (dwc_otg_hcd->flags.b.port_connect_status_change == 1)
8960 + usb_hcd_poll_rh_status(hcd);
8961 + return IRQ_RETVAL(retVal);
8962 +}
8963 +
8964 +/** Creates Status Change bitmap for the root hub and root port. The bitmap is
8965 + * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
8966 + * is the status change indicator for the single root port. Returns 1 if either
8967 + * change indicator is 1, otherwise returns 0. */
8968 +int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
8969 +{
8970 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
8971 +
8972 + buf[0] = 0;
8973 + buf[0] |= (dwc_otg_hcd->flags.b.port_connect_status_change ||
8974 + dwc_otg_hcd->flags.b.port_reset_change ||
8975 + dwc_otg_hcd->flags.b.port_enable_change ||
8976 + dwc_otg_hcd->flags.b.port_suspend_change ||
8977 + dwc_otg_hcd->flags.b.port_over_current_change) << 1;
8978 +
8979 +#ifdef DEBUG
8980 + if (buf[0]) {
8981 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB STATUS DATA:"
8982 + " Root port status changed\n");
8983 + DWC_DEBUGPL(DBG_HCDV, " port_connect_status_change: %d\n",
8984 + dwc_otg_hcd->flags.b.port_connect_status_change);
8985 + DWC_DEBUGPL(DBG_HCDV, " port_reset_change: %d\n",
8986 + dwc_otg_hcd->flags.b.port_reset_change);
8987 + DWC_DEBUGPL(DBG_HCDV, " port_enable_change: %d\n",
8988 + dwc_otg_hcd->flags.b.port_enable_change);
8989 + DWC_DEBUGPL(DBG_HCDV, " port_suspend_change: %d\n",
8990 + dwc_otg_hcd->flags.b.port_suspend_change);
8991 + DWC_DEBUGPL(DBG_HCDV, " port_over_current_change: %d\n",
8992 + dwc_otg_hcd->flags.b.port_over_current_change);
8993 + }
8994 +#endif
8995 + return (buf[0] != 0);
8996 +}
8997 +
8998 +#ifdef DWC_HS_ELECT_TST
8999 +/*
9000 + * Quick and dirty hack to implement the HS Electrical Test
9001 + * SINGLE_STEP_GET_DEVICE_DESCRIPTOR feature.
9002 + *
9003 + * This code was copied from our userspace app "hset". It sends a
9004 + * Get Device Descriptor control sequence in two parts, first the
9005 + * Setup packet by itself, followed some time later by the In and
9006 + * Ack packets. Rather than trying to figure out how to add this
9007 + * functionality to the normal driver code, we just hijack the
9008 + * hardware, using these two function to drive the hardware
9009 + * directly.
9010 + */
9011 +
9012 +dwc_otg_core_global_regs_t *global_regs;
9013 +dwc_otg_host_global_regs_t *hc_global_regs;
9014 +dwc_otg_hc_regs_t *hc_regs;
9015 +uint32_t *data_fifo;
9016 +
9017 +static void do_setup(void)
9018 +{
9019 + gintsts_data_t gintsts;
9020 + hctsiz_data_t hctsiz;
9021 + hcchar_data_t hcchar;
9022 + haint_data_t haint;
9023 + hcint_data_t hcint;
9024 +
9025 + /* Enable HAINTs */
9026 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
9027 +
9028 + /* Enable HCINTs */
9029 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
9030 +
9031 + /* Read GINTSTS */
9032 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9033 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9034 +
9035 + /* Read HAINT */
9036 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9037 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9038 +
9039 + /* Read HCINT */
9040 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9041 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9042 +
9043 + /* Read HCCHAR */
9044 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9045 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9046 +
9047 + /* Clear HCINT */
9048 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9049 +
9050 + /* Clear HAINT */
9051 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9052 +
9053 + /* Clear GINTSTS */
9054 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9055 +
9056 + /* Read GINTSTS */
9057 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9058 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9059 +
9060 + /*
9061 + * Send Setup packet (Get Device Descriptor)
9062 + */
9063 +
9064 + /* Make sure channel is disabled */
9065 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9066 + if (hcchar.b.chen) {
9067 + //fprintf(stderr, "Channel already enabled 1, HCCHAR = %08x\n", hcchar.d32);
9068 + hcchar.b.chdis = 1;
9069 +// hcchar.b.chen = 1;
9070 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9071 + //sleep(1);
9072 + mdelay(1000);
9073 +
9074 + /* Read GINTSTS */
9075 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9076 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9077 +
9078 + /* Read HAINT */
9079 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9080 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9081 +
9082 + /* Read HCINT */
9083 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9084 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9085 +
9086 + /* Read HCCHAR */
9087 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9088 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9089 +
9090 + /* Clear HCINT */
9091 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9092 +
9093 + /* Clear HAINT */
9094 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9095 +
9096 + /* Clear GINTSTS */
9097 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9098 +
9099 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9100 + //if (hcchar.b.chen) {
9101 + // fprintf(stderr, "** Channel _still_ enabled 1, HCCHAR = %08x **\n", hcchar.d32);
9102 + //}
9103 + }
9104 +
9105 + /* Set HCTSIZ */
9106 + hctsiz.d32 = 0;
9107 + hctsiz.b.xfersize = 8;
9108 + hctsiz.b.pktcnt = 1;
9109 + hctsiz.b.pid = DWC_OTG_HC_PID_SETUP;
9110 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
9111 +
9112 + /* Set HCCHAR */
9113 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9114 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9115 + hcchar.b.epdir = 0;
9116 + hcchar.b.epnum = 0;
9117 + hcchar.b.mps = 8;
9118 + hcchar.b.chen = 1;
9119 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9120 +
9121 + /* Fill FIFO with Setup data for Get Device Descriptor */
9122 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
9123 + dwc_write_reg32(data_fifo++, 0x01000680);
9124 + dwc_write_reg32(data_fifo++, 0x00080000);
9125 +
9126 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9127 + //fprintf(stderr, "Waiting for HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
9128 +
9129 + /* Wait for host channel interrupt */
9130 + do {
9131 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9132 + } while (gintsts.b.hcintr == 0);
9133 +
9134 + //fprintf(stderr, "Got HCINTR intr 1, GINTSTS = %08x\n", gintsts.d32);
9135 +
9136 + /* Disable HCINTs */
9137 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
9138 +
9139 + /* Disable HAINTs */
9140 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
9141 +
9142 + /* Read HAINT */
9143 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9144 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9145 +
9146 + /* Read HCINT */
9147 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9148 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9149 +
9150 + /* Read HCCHAR */
9151 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9152 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9153 +
9154 + /* Clear HCINT */
9155 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9156 +
9157 + /* Clear HAINT */
9158 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9159 +
9160 + /* Clear GINTSTS */
9161 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9162 +
9163 + /* Read GINTSTS */
9164 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9165 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9166 +}
9167 +
9168 +static void do_in_ack(void)
9169 +{
9170 + gintsts_data_t gintsts;
9171 + hctsiz_data_t hctsiz;
9172 + hcchar_data_t hcchar;
9173 + haint_data_t haint;
9174 + hcint_data_t hcint;
9175 + host_grxsts_data_t grxsts;
9176 +
9177 + /* Enable HAINTs */
9178 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0001);
9179 +
9180 + /* Enable HCINTs */
9181 + dwc_write_reg32(&hc_regs->hcintmsk, 0x04a3);
9182 +
9183 + /* Read GINTSTS */
9184 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9185 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9186 +
9187 + /* Read HAINT */
9188 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9189 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9190 +
9191 + /* Read HCINT */
9192 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9193 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9194 +
9195 + /* Read HCCHAR */
9196 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9197 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9198 +
9199 + /* Clear HCINT */
9200 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9201 +
9202 + /* Clear HAINT */
9203 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9204 +
9205 + /* Clear GINTSTS */
9206 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9207 +
9208 + /* Read GINTSTS */
9209 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9210 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9211 +
9212 + /*
9213 + * Receive Control In packet
9214 + */
9215 +
9216 + /* Make sure channel is disabled */
9217 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9218 + if (hcchar.b.chen) {
9219 + //fprintf(stderr, "Channel already enabled 2, HCCHAR = %08x\n", hcchar.d32);
9220 + hcchar.b.chdis = 1;
9221 + hcchar.b.chen = 1;
9222 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9223 + //sleep(1);
9224 + mdelay(1000);
9225 +
9226 + /* Read GINTSTS */
9227 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9228 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9229 +
9230 + /* Read HAINT */
9231 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9232 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9233 +
9234 + /* Read HCINT */
9235 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9236 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9237 +
9238 + /* Read HCCHAR */
9239 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9240 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9241 +
9242 + /* Clear HCINT */
9243 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9244 +
9245 + /* Clear HAINT */
9246 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9247 +
9248 + /* Clear GINTSTS */
9249 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9250 +
9251 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9252 + //if (hcchar.b.chen) {
9253 + // fprintf(stderr, "** Channel _still_ enabled 2, HCCHAR = %08x **\n", hcchar.d32);
9254 + //}
9255 + }
9256 +
9257 + /* Set HCTSIZ */
9258 + hctsiz.d32 = 0;
9259 + hctsiz.b.xfersize = 8;
9260 + hctsiz.b.pktcnt = 1;
9261 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
9262 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
9263 +
9264 + /* Set HCCHAR */
9265 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9266 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9267 + hcchar.b.epdir = 1;
9268 + hcchar.b.epnum = 0;
9269 + hcchar.b.mps = 8;
9270 + hcchar.b.chen = 1;
9271 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9272 +
9273 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9274 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
9275 +
9276 + /* Wait for receive status queue interrupt */
9277 + do {
9278 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9279 + } while (gintsts.b.rxstsqlvl == 0);
9280 +
9281 + //fprintf(stderr, "Got RXSTSQLVL intr 1, GINTSTS = %08x\n", gintsts.d32);
9282 +
9283 + /* Read RXSTS */
9284 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
9285 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
9286 +
9287 + /* Clear RXSTSQLVL in GINTSTS */
9288 + gintsts.d32 = 0;
9289 + gintsts.b.rxstsqlvl = 1;
9290 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9291 +
9292 + switch (grxsts.b.pktsts) {
9293 + case DWC_GRXSTS_PKTSTS_IN:
9294 + /* Read the data into the host buffer */
9295 + if (grxsts.b.bcnt > 0) {
9296 + int i;
9297 + int word_count = (grxsts.b.bcnt + 3) / 4;
9298 +
9299 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
9300 +
9301 + for (i = 0; i < word_count; i++) {
9302 + (void)dwc_read_reg32(data_fifo++);
9303 + }
9304 + }
9305 +
9306 + //fprintf(stderr, "Received %u bytes\n", (unsigned)grxsts.b.bcnt);
9307 + break;
9308 +
9309 + default:
9310 + //fprintf(stderr, "** Unexpected GRXSTS packet status 1 **\n");
9311 + break;
9312 + }
9313 +
9314 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9315 + //fprintf(stderr, "Waiting for RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
9316 +
9317 + /* Wait for receive status queue interrupt */
9318 + do {
9319 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9320 + } while (gintsts.b.rxstsqlvl == 0);
9321 +
9322 + //fprintf(stderr, "Got RXSTSQLVL intr 2, GINTSTS = %08x\n", gintsts.d32);
9323 +
9324 + /* Read RXSTS */
9325 + grxsts.d32 = dwc_read_reg32(&global_regs->grxstsp);
9326 + //fprintf(stderr, "GRXSTS: %08x\n", grxsts.d32);
9327 +
9328 + /* Clear RXSTSQLVL in GINTSTS */
9329 + gintsts.d32 = 0;
9330 + gintsts.b.rxstsqlvl = 1;
9331 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9332 +
9333 + switch (grxsts.b.pktsts) {
9334 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
9335 + break;
9336 +
9337 + default:
9338 + //fprintf(stderr, "** Unexpected GRXSTS packet status 2 **\n");
9339 + break;
9340 + }
9341 +
9342 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9343 + //fprintf(stderr, "Waiting for HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
9344 +
9345 + /* Wait for host channel interrupt */
9346 + do {
9347 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9348 + } while (gintsts.b.hcintr == 0);
9349 +
9350 + //fprintf(stderr, "Got HCINTR intr 2, GINTSTS = %08x\n", gintsts.d32);
9351 +
9352 + /* Read HAINT */
9353 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9354 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9355 +
9356 + /* Read HCINT */
9357 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9358 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9359 +
9360 + /* Read HCCHAR */
9361 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9362 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9363 +
9364 + /* Clear HCINT */
9365 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9366 +
9367 + /* Clear HAINT */
9368 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9369 +
9370 + /* Clear GINTSTS */
9371 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9372 +
9373 + /* Read GINTSTS */
9374 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9375 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9376 +
9377 +// usleep(100000);
9378 +// mdelay(100);
9379 + mdelay(1);
9380 +
9381 + /*
9382 + * Send handshake packet
9383 + */
9384 +
9385 + /* Read HAINT */
9386 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9387 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9388 +
9389 + /* Read HCINT */
9390 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9391 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9392 +
9393 + /* Read HCCHAR */
9394 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9395 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9396 +
9397 + /* Clear HCINT */
9398 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9399 +
9400 + /* Clear HAINT */
9401 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9402 +
9403 + /* Clear GINTSTS */
9404 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9405 +
9406 + /* Read GINTSTS */
9407 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9408 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9409 +
9410 + /* Make sure channel is disabled */
9411 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9412 + if (hcchar.b.chen) {
9413 + //fprintf(stderr, "Channel already enabled 3, HCCHAR = %08x\n", hcchar.d32);
9414 + hcchar.b.chdis = 1;
9415 + hcchar.b.chen = 1;
9416 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9417 + //sleep(1);
9418 + mdelay(1000);
9419 +
9420 + /* Read GINTSTS */
9421 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9422 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9423 +
9424 + /* Read HAINT */
9425 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9426 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9427 +
9428 + /* Read HCINT */
9429 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9430 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9431 +
9432 + /* Read HCCHAR */
9433 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9434 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9435 +
9436 + /* Clear HCINT */
9437 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9438 +
9439 + /* Clear HAINT */
9440 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9441 +
9442 + /* Clear GINTSTS */
9443 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9444 +
9445 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9446 + //if (hcchar.b.chen) {
9447 + // fprintf(stderr, "** Channel _still_ enabled 3, HCCHAR = %08x **\n", hcchar.d32);
9448 + //}
9449 + }
9450 +
9451 + /* Set HCTSIZ */
9452 + hctsiz.d32 = 0;
9453 + hctsiz.b.xfersize = 0;
9454 + hctsiz.b.pktcnt = 1;
9455 + hctsiz.b.pid = DWC_OTG_HC_PID_DATA1;
9456 + dwc_write_reg32(&hc_regs->hctsiz, hctsiz.d32);
9457 +
9458 + /* Set HCCHAR */
9459 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9460 + hcchar.b.eptype = DWC_OTG_EP_TYPE_CONTROL;
9461 + hcchar.b.epdir = 0;
9462 + hcchar.b.epnum = 0;
9463 + hcchar.b.mps = 8;
9464 + hcchar.b.chen = 1;
9465 + dwc_write_reg32(&hc_regs->hcchar, hcchar.d32);
9466 +
9467 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9468 + //fprintf(stderr, "Waiting for HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
9469 +
9470 + /* Wait for host channel interrupt */
9471 + do {
9472 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9473 + } while (gintsts.b.hcintr == 0);
9474 +
9475 + //fprintf(stderr, "Got HCINTR intr 3, GINTSTS = %08x\n", gintsts.d32);
9476 +
9477 + /* Disable HCINTs */
9478 + dwc_write_reg32(&hc_regs->hcintmsk, 0x0000);
9479 +
9480 + /* Disable HAINTs */
9481 + dwc_write_reg32(&hc_global_regs->haintmsk, 0x0000);
9482 +
9483 + /* Read HAINT */
9484 + haint.d32 = dwc_read_reg32(&hc_global_regs->haint);
9485 + //fprintf(stderr, "HAINT: %08x\n", haint.d32);
9486 +
9487 + /* Read HCINT */
9488 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
9489 + //fprintf(stderr, "HCINT: %08x\n", hcint.d32);
9490 +
9491 + /* Read HCCHAR */
9492 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
9493 + //fprintf(stderr, "HCCHAR: %08x\n", hcchar.d32);
9494 +
9495 + /* Clear HCINT */
9496 + dwc_write_reg32(&hc_regs->hcint, hcint.d32);
9497 +
9498 + /* Clear HAINT */
9499 + dwc_write_reg32(&hc_global_regs->haint, haint.d32);
9500 +
9501 + /* Clear GINTSTS */
9502 + dwc_write_reg32(&global_regs->gintsts, gintsts.d32);
9503 +
9504 + /* Read GINTSTS */
9505 + gintsts.d32 = dwc_read_reg32(&global_regs->gintsts);
9506 + //fprintf(stderr, "GINTSTS: %08x\n", gintsts.d32);
9507 +}
9508 +#endif /* DWC_HS_ELECT_TST */
9509 +
9510 +/** Handles hub class-specific requests. */
9511 +int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
9512 + u16 typeReq,
9513 + u16 wValue,
9514 + u16 wIndex,
9515 + char *buf,
9516 + u16 wLength)
9517 +{
9518 + int retval = 0;
9519 +
9520 + dwc_otg_hcd_t *dwc_otg_hcd = hcd_to_dwc_otg_hcd(hcd);
9521 + dwc_otg_core_if_t *core_if = hcd_to_dwc_otg_hcd(hcd)->core_if;
9522 + struct usb_hub_descriptor *desc;
9523 + hprt0_data_t hprt0 = {.d32 = 0};
9524 +
9525 + uint32_t port_status;
9526 +
9527 + switch (typeReq) {
9528 + case ClearHubFeature:
9529 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9530 + "ClearHubFeature 0x%x\n", wValue);
9531 + switch (wValue) {
9532 + case C_HUB_LOCAL_POWER:
9533 + case C_HUB_OVER_CURRENT:
9534 + /* Nothing required here */
9535 + break;
9536 + default:
9537 + retval = -EINVAL;
9538 + DWC_ERROR("DWC OTG HCD - "
9539 + "ClearHubFeature request %xh unknown\n", wValue);
9540 + }
9541 + break;
9542 + case ClearPortFeature:
9543 + if (!wIndex || wIndex > 1)
9544 + goto error;
9545 +
9546 + switch (wValue) {
9547 + case USB_PORT_FEAT_ENABLE:
9548 + DWC_DEBUGPL(DBG_ANY, "DWC OTG HCD HUB CONTROL - "
9549 + "ClearPortFeature USB_PORT_FEAT_ENABLE\n");
9550 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9551 + hprt0.b.prtena = 1;
9552 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9553 + break;
9554 + case USB_PORT_FEAT_SUSPEND:
9555 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9556 + "ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
9557 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9558 + hprt0.b.prtres = 1;
9559 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9560 + /* Clear Resume bit */
9561 + mdelay(100);
9562 + hprt0.b.prtres = 0;
9563 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9564 + break;
9565 + case USB_PORT_FEAT_POWER:
9566 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9567 + "ClearPortFeature USB_PORT_FEAT_POWER\n");
9568 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9569 + hprt0.b.prtpwr = 0;
9570 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9571 + break;
9572 + case USB_PORT_FEAT_INDICATOR:
9573 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9574 + "ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
9575 + /* Port inidicator not supported */
9576 + break;
9577 + case USB_PORT_FEAT_C_CONNECTION:
9578 + /* Clears drivers internal connect status change
9579 + * flag */
9580 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9581 + "ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
9582 + dwc_otg_hcd->flags.b.port_connect_status_change = 0;
9583 + break;
9584 + case USB_PORT_FEAT_C_RESET:
9585 + /* Clears the driver's internal Port Reset Change
9586 + * flag */
9587 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9588 + "ClearPortFeature USB_PORT_FEAT_C_RESET\n");
9589 + dwc_otg_hcd->flags.b.port_reset_change = 0;
9590 + break;
9591 + case USB_PORT_FEAT_C_ENABLE:
9592 + /* Clears the driver's internal Port
9593 + * Enable/Disable Change flag */
9594 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9595 + "ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
9596 + dwc_otg_hcd->flags.b.port_enable_change = 0;
9597 + break;
9598 + case USB_PORT_FEAT_C_SUSPEND:
9599 + /* Clears the driver's internal Port Suspend
9600 + * Change flag, which is set when resume signaling on
9601 + * the host port is complete */
9602 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9603 + "ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
9604 + dwc_otg_hcd->flags.b.port_suspend_change = 0;
9605 + break;
9606 + case USB_PORT_FEAT_C_OVER_CURRENT:
9607 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9608 + "ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
9609 + dwc_otg_hcd->flags.b.port_over_current_change = 0;
9610 + break;
9611 + default:
9612 + retval = -EINVAL;
9613 + DWC_ERROR("DWC OTG HCD - "
9614 + "ClearPortFeature request %xh "
9615 + "unknown or unsupported\n", wValue);
9616 + }
9617 + break;
9618 + case GetHubDescriptor:
9619 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9620 + "GetHubDescriptor\n");
9621 + desc = (struct usb_hub_descriptor *)buf;
9622 + desc->bDescLength = 9;
9623 + desc->bDescriptorType = 0x29;
9624 + desc->bNbrPorts = 1;
9625 + desc->wHubCharacteristics = 0x08;
9626 + desc->bPwrOn2PwrGood = 1;
9627 + desc->bHubContrCurrent = 0;
9628 + desc->u.hs.DeviceRemovable[0] = 0;
9629 + desc->u.hs.DeviceRemovable[1] = 0xff;
9630 + break;
9631 + case GetHubStatus:
9632 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9633 + "GetHubStatus\n");
9634 + memset(buf, 0, 4);
9635 + break;
9636 + case GetPortStatus:
9637 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9638 + "GetPortStatus\n");
9639 +
9640 + if (!wIndex || wIndex > 1)
9641 + goto error;
9642 +
9643 + port_status = 0;
9644 +
9645 + if (dwc_otg_hcd->flags.b.port_connect_status_change)
9646 + port_status |= (1 << USB_PORT_FEAT_C_CONNECTION);
9647 +
9648 + if (dwc_otg_hcd->flags.b.port_enable_change)
9649 + port_status |= (1 << USB_PORT_FEAT_C_ENABLE);
9650 +
9651 + if (dwc_otg_hcd->flags.b.port_suspend_change)
9652 + port_status |= (1 << USB_PORT_FEAT_C_SUSPEND);
9653 +
9654 + if (dwc_otg_hcd->flags.b.port_reset_change)
9655 + port_status |= (1 << USB_PORT_FEAT_C_RESET);
9656 +
9657 + if (dwc_otg_hcd->flags.b.port_over_current_change) {
9658 + DWC_ERROR("Device Not Supported\n");
9659 + port_status |= (1 << USB_PORT_FEAT_C_OVER_CURRENT);
9660 + }
9661 +
9662 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
9663 + /*
9664 + * The port is disconnected, which means the core is
9665 + * either in device mode or it soon will be. Just
9666 + * return 0's for the remainder of the port status
9667 + * since the port register can't be read if the core
9668 + * is in device mode.
9669 + */
9670 + *((__le32 *) buf) = cpu_to_le32(port_status);
9671 + break;
9672 + }
9673 +
9674 + hprt0.d32 = dwc_read_reg32(core_if->host_if->hprt0);
9675 + DWC_DEBUGPL(DBG_HCDV, " HPRT0: 0x%08x\n", hprt0.d32);
9676 +
9677 + if (hprt0.b.prtconnsts)
9678 + port_status |= (1 << USB_PORT_FEAT_CONNECTION);
9679 +
9680 + if (hprt0.b.prtena)
9681 + port_status |= (1 << USB_PORT_FEAT_ENABLE);
9682 +
9683 + if (hprt0.b.prtsusp)
9684 + port_status |= (1 << USB_PORT_FEAT_SUSPEND);
9685 +
9686 + if (hprt0.b.prtovrcurract)
9687 + port_status |= (1 << USB_PORT_FEAT_OVER_CURRENT);
9688 +
9689 + if (hprt0.b.prtrst)
9690 + port_status |= (1 << USB_PORT_FEAT_RESET);
9691 +
9692 + if (hprt0.b.prtpwr)
9693 + port_status |= (1 << USB_PORT_FEAT_POWER);
9694 +
9695 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED)
9696 + port_status |= (USB_PORT_STAT_HIGH_SPEED);
9697 + else if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED)
9698 + port_status |= (USB_PORT_STAT_LOW_SPEED);
9699 +
9700 + if (hprt0.b.prttstctl)
9701 + port_status |= (1 << USB_PORT_FEAT_TEST);
9702 +
9703 + /* USB_PORT_FEAT_INDICATOR unsupported always 0 */
9704 +
9705 + *((__le32 *) buf) = cpu_to_le32(port_status);
9706 +
9707 + break;
9708 + case SetHubFeature:
9709 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9710 + "SetHubFeature\n");
9711 + /* No HUB features supported */
9712 + break;
9713 + case SetPortFeature:
9714 + if (wValue != USB_PORT_FEAT_TEST && (!wIndex || wIndex > 1))
9715 + goto error;
9716 +
9717 + if (!dwc_otg_hcd->flags.b.port_connect_status) {
9718 + /*
9719 + * The port is disconnected, which means the core is
9720 + * either in device mode or it soon will be. Just
9721 + * return without doing anything since the port
9722 + * register can't be written if the core is in device
9723 + * mode.
9724 + */
9725 + break;
9726 + }
9727 +
9728 + switch (wValue) {
9729 + case USB_PORT_FEAT_SUSPEND:
9730 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9731 + "SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
9732 + if (hcd->self.otg_port == wIndex &&
9733 + hcd->self.b_hnp_enable) {
9734 + gotgctl_data_t gotgctl = {.d32=0};
9735 + gotgctl.b.hstsethnpen = 1;
9736 + dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
9737 + 0, gotgctl.d32);
9738 + core_if->op_state = A_SUSPEND;
9739 + }
9740 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9741 + hprt0.b.prtsusp = 1;
9742 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9743 + //DWC_PRINT("SUSPEND: HPRT0=%0x\n", hprt0.d32);
9744 + /* Suspend the Phy Clock */
9745 + {
9746 + pcgcctl_data_t pcgcctl = {.d32=0};
9747 + pcgcctl.b.stoppclk = 1;
9748 + dwc_write_reg32(core_if->pcgcctl, pcgcctl.d32);
9749 + }
9750 +
9751 + /* For HNP the bus must be suspended for at least 200ms. */
9752 + if (hcd->self.b_hnp_enable) {
9753 + mdelay(200);
9754 + //DWC_PRINT("SUSPEND: wait complete! (%d)\n", _hcd->state);
9755 + }
9756 + break;
9757 + case USB_PORT_FEAT_POWER:
9758 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9759 + "SetPortFeature - USB_PORT_FEAT_POWER\n");
9760 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9761 + hprt0.b.prtpwr = 1;
9762 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9763 + break;
9764 + case USB_PORT_FEAT_RESET:
9765 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9766 + "SetPortFeature - USB_PORT_FEAT_RESET\n");
9767 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9768 + /* When B-Host the Port reset bit is set in
9769 + * the Start HCD Callback function, so that
9770 + * the reset is started within 1ms of the HNP
9771 + * success interrupt. */
9772 + if (!hcd->self.is_b_host) {
9773 + hprt0.b.prtrst = 1;
9774 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9775 + }
9776 + /* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
9777 + MDELAY(60);
9778 + hprt0.b.prtrst = 0;
9779 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9780 + break;
9781 +
9782 +#ifdef DWC_HS_ELECT_TST
9783 + case USB_PORT_FEAT_TEST:
9784 + {
9785 + uint32_t t;
9786 + gintmsk_data_t gintmsk;
9787 +
9788 + t = (wIndex >> 8); /* MSB wIndex USB */
9789 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9790 + "SetPortFeature - USB_PORT_FEAT_TEST %d\n", t);
9791 + warn("USB_PORT_FEAT_TEST %d\n", t);
9792 + if (t < 6) {
9793 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9794 + hprt0.b.prttstctl = t;
9795 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9796 + } else {
9797 + /* Setup global vars with reg addresses (quick and
9798 + * dirty hack, should be cleaned up)
9799 + */
9800 + global_regs = core_if->core_global_regs;
9801 + hc_global_regs = core_if->host_if->host_global_regs;
9802 + hc_regs = (dwc_otg_hc_regs_t *)((char *)global_regs + 0x500);
9803 + data_fifo = (uint32_t *)((char *)global_regs + 0x1000);
9804 +
9805 + if (t == 6) { /* HS_HOST_PORT_SUSPEND_RESUME */
9806 + /* Save current interrupt mask */
9807 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9808 +
9809 + /* Disable all interrupts while we muck with
9810 + * the hardware directly
9811 + */
9812 + dwc_write_reg32(&global_regs->gintmsk, 0);
9813 +
9814 + /* 15 second delay per the test spec */
9815 + mdelay(15000);
9816 +
9817 + /* Drive suspend on the root port */
9818 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9819 + hprt0.b.prtsusp = 1;
9820 + hprt0.b.prtres = 0;
9821 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9822 +
9823 + /* 15 second delay per the test spec */
9824 + mdelay(15000);
9825 +
9826 + /* Drive resume on the root port */
9827 + hprt0.d32 = dwc_otg_read_hprt0(core_if);
9828 + hprt0.b.prtsusp = 0;
9829 + hprt0.b.prtres = 1;
9830 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9831 + mdelay(100);
9832 +
9833 + /* Clear the resume bit */
9834 + hprt0.b.prtres = 0;
9835 + dwc_write_reg32(core_if->host_if->hprt0, hprt0.d32);
9836 +
9837 + /* Restore interrupts */
9838 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9839 + } else if (t == 7) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR setup */
9840 + /* Save current interrupt mask */
9841 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9842 +
9843 + /* Disable all interrupts while we muck with
9844 + * the hardware directly
9845 + */
9846 + dwc_write_reg32(&global_regs->gintmsk, 0);
9847 +
9848 + /* 15 second delay per the test spec */
9849 + mdelay(15000);
9850 +
9851 + /* Send the Setup packet */
9852 + do_setup();
9853 +
9854 + /* 15 second delay so nothing else happens for awhile */
9855 + mdelay(15000);
9856 +
9857 + /* Restore interrupts */
9858 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9859 + } else if (t == 8) { /* SINGLE_STEP_GET_DEVICE_DESCRIPTOR execute */
9860 + /* Save current interrupt mask */
9861 + gintmsk.d32 = dwc_read_reg32(&global_regs->gintmsk);
9862 +
9863 + /* Disable all interrupts while we muck with
9864 + * the hardware directly
9865 + */
9866 + dwc_write_reg32(&global_regs->gintmsk, 0);
9867 +
9868 + /* Send the Setup packet */
9869 + do_setup();
9870 +
9871 + /* 15 second delay so nothing else happens for awhile */
9872 + mdelay(15000);
9873 +
9874 + /* Send the In and Ack packets */
9875 + do_in_ack();
9876 +
9877 + /* 15 second delay so nothing else happens for awhile */
9878 + mdelay(15000);
9879 +
9880 + /* Restore interrupts */
9881 + dwc_write_reg32(&global_regs->gintmsk, gintmsk.d32);
9882 + }
9883 + }
9884 + break;
9885 + }
9886 +#endif /* DWC_HS_ELECT_TST */
9887 +
9888 + case USB_PORT_FEAT_INDICATOR:
9889 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD HUB CONTROL - "
9890 + "SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
9891 + /* Not supported */
9892 + break;
9893 + default:
9894 + retval = -EINVAL;
9895 + DWC_ERROR("DWC OTG HCD - "
9896 + "SetPortFeature request %xh "
9897 + "unknown or unsupported\n", wValue);
9898 + break;
9899 + }
9900 + break;
9901 + default:
9902 + error:
9903 + retval = -EINVAL;
9904 + DWC_WARN("DWC OTG HCD - "
9905 + "Unknown hub control request type or invalid typeReq: %xh wIndex: %xh wValue: %xh\n",
9906 + typeReq, wIndex, wValue);
9907 + break;
9908 + }
9909 +
9910 + return retval;
9911 +}
9912 +
9913 +/**
9914 + * Assigns transactions from a QTD to a free host channel and initializes the
9915 + * host channel to perform the transactions. The host channel is removed from
9916 + * the free list.
9917 + *
9918 + * @param hcd The HCD state structure.
9919 + * @param qh Transactions from the first QTD for this QH are selected and
9920 + * assigned to a free host channel.
9921 + */
9922 +static void assign_and_init_hc(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
9923 +{
9924 + dwc_hc_t *hc;
9925 + dwc_otg_qtd_t *qtd;
9926 + struct urb *urb;
9927 +
9928 + DWC_DEBUGPL(DBG_HCDV, "%s(%p,%p)\n", __func__, hcd, qh);
9929 +
9930 + hc = list_entry(hcd->free_hc_list.next, dwc_hc_t, hc_list_entry);
9931 +
9932 + /* Remove the host channel from the free list. */
9933 + list_del_init(&hc->hc_list_entry);
9934 +
9935 + qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
9936 + urb = qtd->urb;
9937 + qh->channel = hc;
9938 + qh->qtd_in_process = qtd;
9939 +
9940 + /*
9941 + * Use usb_pipedevice to determine device address. This address is
9942 + * 0 before the SET_ADDRESS command and the correct address afterward.
9943 + */
9944 + hc->dev_addr = usb_pipedevice(urb->pipe);
9945 + hc->ep_num = usb_pipeendpoint(urb->pipe);
9946 +
9947 + if (urb->dev->speed == USB_SPEED_LOW) {
9948 + hc->speed = DWC_OTG_EP_SPEED_LOW;
9949 + } else if (urb->dev->speed == USB_SPEED_FULL) {
9950 + hc->speed = DWC_OTG_EP_SPEED_FULL;
9951 + } else {
9952 + hc->speed = DWC_OTG_EP_SPEED_HIGH;
9953 + }
9954 +
9955 + hc->max_packet = dwc_max_packet(qh->maxp);
9956 +
9957 + hc->xfer_started = 0;
9958 + hc->halt_status = DWC_OTG_HC_XFER_NO_HALT_STATUS;
9959 + hc->error_state = (qtd->error_count > 0);
9960 + hc->halt_on_queue = 0;
9961 + hc->halt_pending = 0;
9962 + hc->requests = 0;
9963 +
9964 + /*
9965 + * The following values may be modified in the transfer type section
9966 + * below. The xfer_len value may be reduced when the transfer is
9967 + * started to accommodate the max widths of the XferSize and PktCnt
9968 + * fields in the HCTSIZn register.
9969 + */
9970 + hc->do_ping = qh->ping_state;
9971 + hc->ep_is_in = (usb_pipein(urb->pipe) != 0);
9972 + hc->data_pid_start = qh->data_toggle;
9973 + hc->multi_count = 1;
9974 +
9975 + if (hcd->core_if->dma_enable) {
9976 + hc->xfer_buff = (uint8_t *)urb->transfer_dma + urb->actual_length;
9977 + } else {
9978 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer + urb->actual_length;
9979 + }
9980 + hc->xfer_len = urb->transfer_buffer_length - urb->actual_length;
9981 + hc->xfer_count = 0;
9982 +
9983 + /*
9984 + * Set the split attributes
9985 + */
9986 + hc->do_split = 0;
9987 + if (qh->do_split) {
9988 + hc->do_split = 1;
9989 + hc->xact_pos = qtd->isoc_split_pos;
9990 + hc->complete_split = qtd->complete_split;
9991 + hc->hub_addr = urb->dev->tt->hub->devnum;
9992 + hc->port_addr = urb->dev->ttport;
9993 + }
9994 +
9995 + switch (usb_pipetype(urb->pipe)) {
9996 + case PIPE_CONTROL:
9997 + hc->ep_type = DWC_OTG_EP_TYPE_CONTROL;
9998 + switch (qtd->control_phase) {
9999 + case DWC_OTG_CONTROL_SETUP:
10000 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction\n");
10001 + hc->do_ping = 0;
10002 + hc->ep_is_in = 0;
10003 + hc->data_pid_start = DWC_OTG_HC_PID_SETUP;
10004 + if (hcd->core_if->dma_enable) {
10005 + hc->xfer_buff = (uint8_t *)urb->setup_dma;
10006 + } else {
10007 + hc->xfer_buff = (uint8_t *)urb->setup_packet;
10008 + }
10009 + hc->xfer_len = 8;
10010 + break;
10011 + case DWC_OTG_CONTROL_DATA:
10012 + DWC_DEBUGPL(DBG_HCDV, " Control data transaction\n");
10013 + hc->data_pid_start = qtd->data_toggle;
10014 + break;
10015 + case DWC_OTG_CONTROL_STATUS:
10016 + /*
10017 + * Direction is opposite of data direction or IN if no
10018 + * data.
10019 + */
10020 + DWC_DEBUGPL(DBG_HCDV, " Control status transaction\n");
10021 + if (urb->transfer_buffer_length == 0) {
10022 + hc->ep_is_in = 1;
10023 + } else {
10024 + hc->ep_is_in = (usb_pipein(urb->pipe) != USB_DIR_IN);
10025 + }
10026 + if (hc->ep_is_in) {
10027 + hc->do_ping = 0;
10028 + }
10029 + hc->data_pid_start = DWC_OTG_HC_PID_DATA1;
10030 + hc->xfer_len = 0;
10031 + if (hcd->core_if->dma_enable) {
10032 + hc->xfer_buff = (uint8_t *)hcd->status_buf_dma;
10033 + } else {
10034 + hc->xfer_buff = (uint8_t *)hcd->status_buf;
10035 + }
10036 + break;
10037 + }
10038 + break;
10039 + case PIPE_BULK:
10040 + hc->ep_type = DWC_OTG_EP_TYPE_BULK;
10041 + break;
10042 + case PIPE_INTERRUPT:
10043 + hc->ep_type = DWC_OTG_EP_TYPE_INTR;
10044 + break;
10045 + case PIPE_ISOCHRONOUS:
10046 + {
10047 + struct usb_iso_packet_descriptor *frame_desc;
10048 + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
10049 + hc->ep_type = DWC_OTG_EP_TYPE_ISOC;
10050 + if (hcd->core_if->dma_enable) {
10051 + hc->xfer_buff = (uint8_t *)urb->transfer_dma;
10052 + } else {
10053 + hc->xfer_buff = (uint8_t *)urb->transfer_buffer;
10054 + }
10055 + hc->xfer_buff += frame_desc->offset + qtd->isoc_split_offset;
10056 + hc->xfer_len = frame_desc->length - qtd->isoc_split_offset;
10057 +
10058 + if (hc->xact_pos == DWC_HCSPLIT_XACTPOS_ALL) {
10059 + if (hc->xfer_len <= 188) {
10060 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_ALL;
10061 + }
10062 + else {
10063 + hc->xact_pos = DWC_HCSPLIT_XACTPOS_BEGIN;
10064 + }
10065 + }
10066 + }
10067 + break;
10068 + }
10069 +
10070 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
10071 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
10072 + /*
10073 + * This value may be modified when the transfer is started to
10074 + * reflect the actual transfer length.
10075 + */
10076 + hc->multi_count = dwc_hb_mult(qh->maxp);
10077 + }
10078 +
10079 + dwc_otg_hc_init(hcd->core_if, hc);
10080 + hc->qh = qh;
10081 +}
10082 +
10083 +/**
10084 + * This function selects transactions from the HCD transfer schedule and
10085 + * assigns them to available host channels. It is called from HCD interrupt
10086 + * handler functions.
10087 + *
10088 + * @param hcd The HCD state structure.
10089 + *
10090 + * @return The types of new transactions that were assigned to host channels.
10091 + */
10092 +dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd)
10093 +{
10094 + struct list_head *qh_ptr;
10095 + dwc_otg_qh_t *qh;
10096 + int num_channels;
10097 + dwc_otg_transaction_type_e ret_val = DWC_OTG_TRANSACTION_NONE;
10098 +
10099 +#ifdef DEBUG_SOF
10100 + DWC_DEBUGPL(DBG_HCD, " Select Transactions\n");
10101 +#endif
10102 +
10103 + spin_lock(&hcd->lock);
10104 + /* Process entries in the periodic ready list. */
10105 + qh_ptr = hcd->periodic_sched_ready.next;
10106 + while (qh_ptr != &hcd->periodic_sched_ready &&
10107 + !list_empty(&hcd->free_hc_list)) {
10108 +
10109 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
10110 + assign_and_init_hc(hcd, qh);
10111 +
10112 + /*
10113 + * Move the QH from the periodic ready schedule to the
10114 + * periodic assigned schedule.
10115 + */
10116 + qh_ptr = qh_ptr->next;
10117 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_assigned);
10118 +
10119 + ret_val = DWC_OTG_TRANSACTION_PERIODIC;
10120 + }
10121 +
10122 + /*
10123 + * Process entries in the inactive portion of the non-periodic
10124 + * schedule. Some free host channels may not be used if they are
10125 + * reserved for periodic transfers.
10126 + */
10127 + qh_ptr = hcd->non_periodic_sched_inactive.next;
10128 + num_channels = hcd->core_if->core_params->host_channels;
10129 + while (qh_ptr != &hcd->non_periodic_sched_inactive &&
10130 + (hcd->non_periodic_channels <
10131 + num_channels - hcd->periodic_channels) &&
10132 + !list_empty(&hcd->free_hc_list)) {
10133 +
10134 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
10135 + assign_and_init_hc(hcd, qh);
10136 +
10137 + /*
10138 + * Move the QH from the non-periodic inactive schedule to the
10139 + * non-periodic active schedule.
10140 + */
10141 + qh_ptr = qh_ptr->next;
10142 + list_move(&qh->qh_list_entry, &hcd->non_periodic_sched_active);
10143 +
10144 + if (ret_val == DWC_OTG_TRANSACTION_NONE) {
10145 + ret_val = DWC_OTG_TRANSACTION_NON_PERIODIC;
10146 + } else {
10147 + ret_val = DWC_OTG_TRANSACTION_ALL;
10148 + }
10149 +
10150 + hcd->non_periodic_channels++;
10151 + }
10152 + spin_unlock(&hcd->lock);
10153 +
10154 + return ret_val;
10155 +}
10156 +
10157 +/**
10158 + * Attempts to queue a single transaction request for a host channel
10159 + * associated with either a periodic or non-periodic transfer. This function
10160 + * assumes that there is space available in the appropriate request queue. For
10161 + * an OUT transfer or SETUP transaction in Slave mode, it checks whether space
10162 + * is available in the appropriate Tx FIFO.
10163 + *
10164 + * @param hcd The HCD state structure.
10165 + * @param hc Host channel descriptor associated with either a periodic or
10166 + * non-periodic transfer.
10167 + * @param fifo_dwords_avail Number of DWORDs available in the periodic Tx
10168 + * FIFO for periodic transfers or the non-periodic Tx FIFO for non-periodic
10169 + * transfers.
10170 + *
10171 + * @return 1 if a request is queued and more requests may be needed to
10172 + * complete the transfer, 0 if no more requests are required for this
10173 + * transfer, -1 if there is insufficient space in the Tx FIFO.
10174 + */
10175 +static int queue_transaction(dwc_otg_hcd_t *hcd,
10176 + dwc_hc_t *hc,
10177 + uint16_t fifo_dwords_avail)
10178 +{
10179 + int retval;
10180 +
10181 + if (hcd->core_if->dma_enable) {
10182 + if (!hc->xfer_started) {
10183 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10184 + hc->qh->ping_state = 0;
10185 + }
10186 + retval = 0;
10187 + } else if (hc->halt_pending) {
10188 + /* Don't queue a request if the channel has been halted. */
10189 + retval = 0;
10190 + } else if (hc->halt_on_queue) {
10191 + dwc_otg_hc_halt(hcd->core_if, hc, hc->halt_status);
10192 + retval = 0;
10193 + } else if (hc->do_ping) {
10194 + if (!hc->xfer_started) {
10195 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10196 + }
10197 + retval = 0;
10198 + } else if (!hc->ep_is_in ||
10199 + hc->data_pid_start == DWC_OTG_HC_PID_SETUP) {
10200 + if ((fifo_dwords_avail * 4) >= hc->max_packet) {
10201 + if (!hc->xfer_started) {
10202 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10203 + retval = 1;
10204 + } else {
10205 + retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
10206 + }
10207 + } else {
10208 + retval = -1;
10209 + }
10210 + } else {
10211 + if (!hc->xfer_started) {
10212 + dwc_otg_hc_start_transfer(hcd->core_if, hc);
10213 + retval = 1;
10214 + } else {
10215 + retval = dwc_otg_hc_continue_transfer(hcd->core_if, hc);
10216 + }
10217 + }
10218 +
10219 + return retval;
10220 +}
10221 +
10222 +/**
10223 + * Processes active non-periodic channels and queues transactions for these
10224 + * channels to the DWC_otg controller. After queueing transactions, the NP Tx
10225 + * FIFO Empty interrupt is enabled if there are more transactions to queue as
10226 + * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
10227 + * FIFO Empty interrupt is disabled.
10228 + */
10229 +static void process_non_periodic_channels(dwc_otg_hcd_t *hcd)
10230 +{
10231 + gnptxsts_data_t tx_status;
10232 + struct list_head *orig_qh_ptr;
10233 + dwc_otg_qh_t *qh;
10234 + int status;
10235 + int no_queue_space = 0;
10236 + int no_fifo_space = 0;
10237 + int more_to_do = 0;
10238 +
10239 + dwc_otg_core_global_regs_t *global_regs = hcd->core_if->core_global_regs;
10240 +
10241 + DWC_DEBUGPL(DBG_HCDV, "Queue non-periodic transactions\n");
10242 +#ifdef DEBUG
10243 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10244 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (before queue): %d\n",
10245 + tx_status.b.nptxqspcavail);
10246 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (before queue): %d\n",
10247 + tx_status.b.nptxfspcavail);
10248 +#endif
10249 + /*
10250 + * Keep track of the starting point. Skip over the start-of-list
10251 + * entry.
10252 + */
10253 + if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
10254 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10255 + }
10256 + orig_qh_ptr = hcd->non_periodic_qh_ptr;
10257 +
10258 + /*
10259 + * Process once through the active list or until no more space is
10260 + * available in the request queue or the Tx FIFO.
10261 + */
10262 + do {
10263 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10264 + if (!hcd->core_if->dma_enable && tx_status.b.nptxqspcavail == 0) {
10265 + no_queue_space = 1;
10266 + break;
10267 + }
10268 +
10269 + qh = list_entry(hcd->non_periodic_qh_ptr, dwc_otg_qh_t, qh_list_entry);
10270 + status = queue_transaction(hcd, qh->channel, tx_status.b.nptxfspcavail);
10271 +
10272 + if (status > 0) {
10273 + more_to_do = 1;
10274 + } else if (status < 0) {
10275 + no_fifo_space = 1;
10276 + break;
10277 + }
10278 +
10279 + /* Advance to next QH, skipping start-of-list entry. */
10280 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10281 + if (hcd->non_periodic_qh_ptr == &hcd->non_periodic_sched_active) {
10282 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
10283 + }
10284 +
10285 + } while (hcd->non_periodic_qh_ptr != orig_qh_ptr);
10286 +
10287 + if (!hcd->core_if->dma_enable) {
10288 + gintmsk_data_t intr_mask = {.d32 = 0};
10289 + intr_mask.b.nptxfempty = 1;
10290 +
10291 +#ifdef DEBUG
10292 + tx_status.d32 = dwc_read_reg32(&global_regs->gnptxsts);
10293 + DWC_DEBUGPL(DBG_HCDV, " NP Tx Req Queue Space Avail (after queue): %d\n",
10294 + tx_status.b.nptxqspcavail);
10295 + DWC_DEBUGPL(DBG_HCDV, " NP Tx FIFO Space Avail (after queue): %d\n",
10296 + tx_status.b.nptxfspcavail);
10297 +#endif
10298 + if (more_to_do || no_queue_space || no_fifo_space) {
10299 + /*
10300 + * May need to queue more transactions as the request
10301 + * queue or Tx FIFO empties. Enable the non-periodic
10302 + * Tx FIFO empty interrupt. (Always use the half-empty
10303 + * level to ensure that new requests are loaded as
10304 + * soon as possible.)
10305 + */
10306 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
10307 + } else {
10308 + /*
10309 + * Disable the Tx FIFO empty interrupt since there are
10310 + * no more transactions that need to be queued right
10311 + * now. This function is called from interrupt
10312 + * handlers to queue more transactions as transfer
10313 + * states change.
10314 + */
10315 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
10316 + }
10317 + }
10318 +}
10319 +
10320 +/**
10321 + * Processes periodic channels for the next frame and queues transactions for
10322 + * these channels to the DWC_otg controller. After queueing transactions, the
10323 + * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
10324 + * to queue as Periodic Tx FIFO or request queue space becomes available.
10325 + * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
10326 + */
10327 +static void process_periodic_channels(dwc_otg_hcd_t *hcd)
10328 +{
10329 + hptxsts_data_t tx_status;
10330 + struct list_head *qh_ptr;
10331 + dwc_otg_qh_t *qh;
10332 + int status;
10333 + int no_queue_space = 0;
10334 + int no_fifo_space = 0;
10335 +
10336 + dwc_otg_host_global_regs_t *host_regs;
10337 + host_regs = hcd->core_if->host_if->host_global_regs;
10338 +
10339 + DWC_DEBUGPL(DBG_HCDV, "Queue periodic transactions\n");
10340 +#ifdef DEBUG
10341 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10342 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (before queue): %d\n",
10343 + tx_status.b.ptxqspcavail);
10344 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (before queue): %d\n",
10345 + tx_status.b.ptxfspcavail);
10346 +#endif
10347 +
10348 + qh_ptr = hcd->periodic_sched_assigned.next;
10349 + while (qh_ptr != &hcd->periodic_sched_assigned) {
10350 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10351 + if (tx_status.b.ptxqspcavail == 0) {
10352 + no_queue_space = 1;
10353 + break;
10354 + }
10355 +
10356 + qh = list_entry(qh_ptr, dwc_otg_qh_t, qh_list_entry);
10357 +
10358 + /*
10359 + * Set a flag if we're queuing high-bandwidth in slave mode.
10360 + * The flag prevents any halts to get into the request queue in
10361 + * the middle of multiple high-bandwidth packets getting queued.
10362 + */
10363 + if (!hcd->core_if->dma_enable &&
10364 + qh->channel->multi_count > 1)
10365 + {
10366 + hcd->core_if->queuing_high_bandwidth = 1;
10367 + }
10368 +
10369 + status = queue_transaction(hcd, qh->channel, tx_status.b.ptxfspcavail);
10370 + if (status < 0) {
10371 + no_fifo_space = 1;
10372 + break;
10373 + }
10374 +
10375 + /*
10376 + * In Slave mode, stay on the current transfer until there is
10377 + * nothing more to do or the high-bandwidth request count is
10378 + * reached. In DMA mode, only need to queue one request. The
10379 + * controller automatically handles multiple packets for
10380 + * high-bandwidth transfers.
10381 + */
10382 + if (hcd->core_if->dma_enable || status == 0 ||
10383 + qh->channel->requests == qh->channel->multi_count) {
10384 + qh_ptr = qh_ptr->next;
10385 + /*
10386 + * Move the QH from the periodic assigned schedule to
10387 + * the periodic queued schedule.
10388 + */
10389 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_queued);
10390 +
10391 + /* done queuing high bandwidth */
10392 + hcd->core_if->queuing_high_bandwidth = 0;
10393 + }
10394 + }
10395 +
10396 + if (!hcd->core_if->dma_enable) {
10397 + dwc_otg_core_global_regs_t *global_regs;
10398 + gintmsk_data_t intr_mask = {.d32 = 0};
10399 +
10400 + global_regs = hcd->core_if->core_global_regs;
10401 + intr_mask.b.ptxfempty = 1;
10402 +#ifdef DEBUG
10403 + tx_status.d32 = dwc_read_reg32(&host_regs->hptxsts);
10404 + DWC_DEBUGPL(DBG_HCDV, " P Tx Req Queue Space Avail (after queue): %d\n",
10405 + tx_status.b.ptxqspcavail);
10406 + DWC_DEBUGPL(DBG_HCDV, " P Tx FIFO Space Avail (after queue): %d\n",
10407 + tx_status.b.ptxfspcavail);
10408 +#endif
10409 + if (!list_empty(&hcd->periodic_sched_assigned) ||
10410 + no_queue_space || no_fifo_space) {
10411 + /*
10412 + * May need to queue more transactions as the request
10413 + * queue or Tx FIFO empties. Enable the periodic Tx
10414 + * FIFO empty interrupt. (Always use the half-empty
10415 + * level to ensure that new requests are loaded as
10416 + * soon as possible.)
10417 + */
10418 + dwc_modify_reg32(&global_regs->gintmsk, 0, intr_mask.d32);
10419 + } else {
10420 + /*
10421 + * Disable the Tx FIFO empty interrupt since there are
10422 + * no more transactions that need to be queued right
10423 + * now. This function is called from interrupt
10424 + * handlers to queue more transactions as transfer
10425 + * states change.
10426 + */
10427 + dwc_modify_reg32(&global_regs->gintmsk, intr_mask.d32, 0);
10428 + }
10429 + }
10430 +}
10431 +
10432 +/**
10433 + * This function processes the currently active host channels and queues
10434 + * transactions for these channels to the DWC_otg controller. It is called
10435 + * from HCD interrupt handler functions.
10436 + *
10437 + * @param hcd The HCD state structure.
10438 + * @param tr_type The type(s) of transactions to queue (non-periodic,
10439 + * periodic, or both).
10440 + */
10441 +void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
10442 + dwc_otg_transaction_type_e tr_type)
10443 +{
10444 +#ifdef DEBUG_SOF
10445 + DWC_DEBUGPL(DBG_HCD, "Queue Transactions\n");
10446 +#endif
10447 + /* Process host channels associated with periodic transfers. */
10448 + if ((tr_type == DWC_OTG_TRANSACTION_PERIODIC ||
10449 + tr_type == DWC_OTG_TRANSACTION_ALL) &&
10450 + !list_empty(&hcd->periodic_sched_assigned)) {
10451 +
10452 + process_periodic_channels(hcd);
10453 + }
10454 +
10455 + /* Process host channels associated with non-periodic transfers. */
10456 + if (tr_type == DWC_OTG_TRANSACTION_NON_PERIODIC ||
10457 + tr_type == DWC_OTG_TRANSACTION_ALL) {
10458 + if (!list_empty(&hcd->non_periodic_sched_active)) {
10459 + process_non_periodic_channels(hcd);
10460 + } else {
10461 + /*
10462 + * Ensure NP Tx FIFO empty interrupt is disabled when
10463 + * there are no non-periodic transfers to process.
10464 + */
10465 + gintmsk_data_t gintmsk = {.d32 = 0};
10466 + gintmsk.b.nptxfempty = 1;
10467 + dwc_modify_reg32(&hcd->core_if->core_global_regs->gintmsk,
10468 + gintmsk.d32, 0);
10469 + }
10470 + }
10471 +}
10472 +
10473 +/**
10474 + * Sets the final status of an URB and returns it to the device driver. Any
10475 + * required cleanup of the URB is performed.
10476 + */
10477 +void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *hcd, struct urb *urb, int status)
10478 +{
10479 +#ifdef DEBUG
10480 + if (CHK_DEBUG_LEVEL(DBG_HCDV | DBG_HCD_URB)) {
10481 + DWC_PRINT("%s: urb %p, device %d, ep %d %s, status=%d\n",
10482 + __func__, urb, usb_pipedevice(urb->pipe),
10483 + usb_pipeendpoint(urb->pipe),
10484 + usb_pipein(urb->pipe) ? "IN" : "OUT", status);
10485 + if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
10486 + int i;
10487 + for (i = 0; i < urb->number_of_packets; i++) {
10488 + DWC_PRINT(" ISO Desc %d status: %d\n",
10489 + i, urb->iso_frame_desc[i].status);
10490 + }
10491 + }
10492 + }
10493 +#endif
10494 +
10495 + //if we use the aligned buffer instead of the original unaligned buffer,
10496 + //for IN data, we have to move the data to the original buffer
10497 + if((urb->transfer_dma==urb->aligned_transfer_dma)&&((urb->transfer_flags & URB_DIR_MASK)==URB_DIR_IN)){
10498 + dma_sync_single_for_device(NULL,urb->transfer_dma,urb->actual_length,DMA_FROM_DEVICE);
10499 + memcpy(urb->transfer_buffer,urb->aligned_transfer_buffer,urb->actual_length);
10500 + }
10501 +
10502 +
10503 + urb->status = status;
10504 + urb->hcpriv = NULL;
10505 + usb_hcd_giveback_urb(dwc_otg_hcd_to_hcd(hcd), urb, status);
10506 +}
10507 +
10508 +/*
10509 + * Returns the Queue Head for an URB.
10510 + */
10511 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb)
10512 +{
10513 + struct usb_host_endpoint *ep = dwc_urb_to_endpoint(urb);
10514 + return (dwc_otg_qh_t *)ep->hcpriv;
10515 +}
10516 +
10517 +#ifdef DEBUG
10518 +void dwc_print_setup_data(uint8_t *setup)
10519 +{
10520 + int i;
10521 + if (CHK_DEBUG_LEVEL(DBG_HCD)){
10522 + DWC_PRINT("Setup Data = MSB ");
10523 + for (i = 7; i >= 0; i--) DWC_PRINT("%02x ", setup[i]);
10524 + DWC_PRINT("\n");
10525 + DWC_PRINT(" bmRequestType Tranfer = %s\n", (setup[0] & 0x80) ? "Device-to-Host" : "Host-to-Device");
10526 + DWC_PRINT(" bmRequestType Type = ");
10527 + switch ((setup[0] & 0x60) >> 5) {
10528 + case 0: DWC_PRINT("Standard\n"); break;
10529 + case 1: DWC_PRINT("Class\n"); break;
10530 + case 2: DWC_PRINT("Vendor\n"); break;
10531 + case 3: DWC_PRINT("Reserved\n"); break;
10532 + }
10533 + DWC_PRINT(" bmRequestType Recipient = ");
10534 + switch (setup[0] & 0x1f) {
10535 + case 0: DWC_PRINT("Device\n"); break;
10536 + case 1: DWC_PRINT("Interface\n"); break;
10537 + case 2: DWC_PRINT("Endpoint\n"); break;
10538 + case 3: DWC_PRINT("Other\n"); break;
10539 + default: DWC_PRINT("Reserved\n"); break;
10540 + }
10541 + DWC_PRINT(" bRequest = 0x%0x\n", setup[1]);
10542 + DWC_PRINT(" wValue = 0x%0x\n", *((uint16_t *)&setup[2]));
10543 + DWC_PRINT(" wIndex = 0x%0x\n", *((uint16_t *)&setup[4]));
10544 + DWC_PRINT(" wLength = 0x%0x\n\n", *((uint16_t *)&setup[6]));
10545 + }
10546 +}
10547 +#endif
10548 +
10549 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd) {
10550 +}
10551 +
10552 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd)
10553 +{
10554 +#ifdef DEBUG
10555 + int num_channels;
10556 + int i;
10557 + gnptxsts_data_t np_tx_status;
10558 + hptxsts_data_t p_tx_status;
10559 +
10560 + num_channels = hcd->core_if->core_params->host_channels;
10561 + DWC_PRINT("\n");
10562 + DWC_PRINT("************************************************************\n");
10563 + DWC_PRINT("HCD State:\n");
10564 + DWC_PRINT(" Num channels: %d\n", num_channels);
10565 + for (i = 0; i < num_channels; i++) {
10566 + dwc_hc_t *hc = hcd->hc_ptr_array[i];
10567 + DWC_PRINT(" Channel %d:\n", i);
10568 + DWC_PRINT(" dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
10569 + hc->dev_addr, hc->ep_num, hc->ep_is_in);
10570 + DWC_PRINT(" speed: %d\n", hc->speed);
10571 + DWC_PRINT(" ep_type: %d\n", hc->ep_type);
10572 + DWC_PRINT(" max_packet: %d\n", hc->max_packet);
10573 + DWC_PRINT(" data_pid_start: %d\n", hc->data_pid_start);
10574 + DWC_PRINT(" multi_count: %d\n", hc->multi_count);
10575 + DWC_PRINT(" xfer_started: %d\n", hc->xfer_started);
10576 + DWC_PRINT(" xfer_buff: %p\n", hc->xfer_buff);
10577 + DWC_PRINT(" xfer_len: %d\n", hc->xfer_len);
10578 + DWC_PRINT(" xfer_count: %d\n", hc->xfer_count);
10579 + DWC_PRINT(" halt_on_queue: %d\n", hc->halt_on_queue);
10580 + DWC_PRINT(" halt_pending: %d\n", hc->halt_pending);
10581 + DWC_PRINT(" halt_status: %d\n", hc->halt_status);
10582 + DWC_PRINT(" do_split: %d\n", hc->do_split);
10583 + DWC_PRINT(" complete_split: %d\n", hc->complete_split);
10584 + DWC_PRINT(" hub_addr: %d\n", hc->hub_addr);
10585 + DWC_PRINT(" port_addr: %d\n", hc->port_addr);
10586 + DWC_PRINT(" xact_pos: %d\n", hc->xact_pos);
10587 + DWC_PRINT(" requests: %d\n", hc->requests);
10588 + DWC_PRINT(" qh: %p\n", hc->qh);
10589 + if (hc->xfer_started) {
10590 + hfnum_data_t hfnum;
10591 + hcchar_data_t hcchar;
10592 + hctsiz_data_t hctsiz;
10593 + hcint_data_t hcint;
10594 + hcintmsk_data_t hcintmsk;
10595 + hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
10596 + hcchar.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcchar);
10597 + hctsiz.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hctsiz);
10598 + hcint.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcint);
10599 + hcintmsk.d32 = dwc_read_reg32(&hcd->core_if->host_if->hc_regs[i]->hcintmsk);
10600 + DWC_PRINT(" hfnum: 0x%08x\n", hfnum.d32);
10601 + DWC_PRINT(" hcchar: 0x%08x\n", hcchar.d32);
10602 + DWC_PRINT(" hctsiz: 0x%08x\n", hctsiz.d32);
10603 + DWC_PRINT(" hcint: 0x%08x\n", hcint.d32);
10604 + DWC_PRINT(" hcintmsk: 0x%08x\n", hcintmsk.d32);
10605 + }
10606 + if (hc->xfer_started && hc->qh && hc->qh->qtd_in_process) {
10607 + dwc_otg_qtd_t *qtd;
10608 + struct urb *urb;
10609 + qtd = hc->qh->qtd_in_process;
10610 + urb = qtd->urb;
10611 + DWC_PRINT(" URB Info:\n");
10612 + DWC_PRINT(" qtd: %p, urb: %p\n", qtd, urb);
10613 + if (urb) {
10614 + DWC_PRINT(" Dev: %d, EP: %d %s\n",
10615 + usb_pipedevice(urb->pipe), usb_pipeendpoint(urb->pipe),
10616 + usb_pipein(urb->pipe) ? "IN" : "OUT");
10617 + DWC_PRINT(" Max packet size: %d\n",
10618 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
10619 + DWC_PRINT(" transfer_buffer: %p\n", urb->transfer_buffer);
10620 + DWC_PRINT(" transfer_dma: %p\n", (void *)urb->transfer_dma);
10621 + DWC_PRINT(" transfer_buffer_length: %d\n", urb->transfer_buffer_length);
10622 + DWC_PRINT(" actual_length: %d\n", urb->actual_length);
10623 + }
10624 + }
10625 + }
10626 + DWC_PRINT(" non_periodic_channels: %d\n", hcd->non_periodic_channels);
10627 + DWC_PRINT(" periodic_channels: %d\n", hcd->periodic_channels);
10628 + DWC_PRINT(" periodic_usecs: %d\n", hcd->periodic_usecs);
10629 + np_tx_status.d32 = dwc_read_reg32(&hcd->core_if->core_global_regs->gnptxsts);
10630 + DWC_PRINT(" NP Tx Req Queue Space Avail: %d\n", np_tx_status.b.nptxqspcavail);
10631 + DWC_PRINT(" NP Tx FIFO Space Avail: %d\n", np_tx_status.b.nptxfspcavail);
10632 + p_tx_status.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hptxsts);
10633 + DWC_PRINT(" P Tx Req Queue Space Avail: %d\n", p_tx_status.b.ptxqspcavail);
10634 + DWC_PRINT(" P Tx FIFO Space Avail: %d\n", p_tx_status.b.ptxfspcavail);
10635 + dwc_otg_hcd_dump_frrem(hcd);
10636 + dwc_otg_dump_global_registers(hcd->core_if);
10637 + dwc_otg_dump_host_registers(hcd->core_if);
10638 + DWC_PRINT("************************************************************\n");
10639 + DWC_PRINT("\n");
10640 +#endif
10641 +}
10642 +#endif /* DWC_DEVICE_ONLY */
10643 --- /dev/null
10644 +++ b/drivers/usb/dwc/otg_hcd.h
10645 @@ -0,0 +1,652 @@
10646 +/* ==========================================================================
10647 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd.h $
10648 + * $Revision: #45 $
10649 + * $Date: 2008/07/15 $
10650 + * $Change: 1064918 $
10651 + *
10652 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
10653 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
10654 + * otherwise expressly agreed to in writing between Synopsys and you.
10655 + *
10656 + * The Software IS NOT an item of Licensed Software or Licensed Product under
10657 + * any End User Software License Agreement or Agreement for Licensed Product
10658 + * with Synopsys or any supplement thereto. You are permitted to use and
10659 + * redistribute this Software in source and binary forms, with or without
10660 + * modification, provided that redistributions of source code must retain this
10661 + * notice. You may not view, use, disclose, copy or distribute this file or
10662 + * any information contained herein except pursuant to this license grant from
10663 + * Synopsys. If you do not agree with this notice, including the disclaimer
10664 + * below, then you are not authorized to use the Software.
10665 + *
10666 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
10667 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
10668 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
10669 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
10670 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
10671 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
10672 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
10673 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
10674 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
10675 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
10676 + * DAMAGE.
10677 + * ========================================================================== */
10678 +#ifndef DWC_DEVICE_ONLY
10679 +#ifndef __DWC_HCD_H__
10680 +#define __DWC_HCD_H__
10681 +
10682 +#include <linux/list.h>
10683 +#include <linux/usb.h>
10684 +#include <linux/usb/hcd.h>
10685 +
10686 +struct dwc_otg_device;
10687 +
10688 +#include "otg_cil.h"
10689 +
10690 +/**
10691 + * @file
10692 + *
10693 + * This file contains the structures, constants, and interfaces for
10694 + * the Host Contoller Driver (HCD).
10695 + *
10696 + * The Host Controller Driver (HCD) is responsible for translating requests
10697 + * from the USB Driver into the appropriate actions on the DWC_otg controller.
10698 + * It isolates the USBD from the specifics of the controller by providing an
10699 + * API to the USBD.
10700 + */
10701 +
10702 +/**
10703 + * Phases for control transfers.
10704 + */
10705 +typedef enum dwc_otg_control_phase {
10706 + DWC_OTG_CONTROL_SETUP,
10707 + DWC_OTG_CONTROL_DATA,
10708 + DWC_OTG_CONTROL_STATUS
10709 +} dwc_otg_control_phase_e;
10710 +
10711 +/** Transaction types. */
10712 +typedef enum dwc_otg_transaction_type {
10713 + DWC_OTG_TRANSACTION_NONE,
10714 + DWC_OTG_TRANSACTION_PERIODIC,
10715 + DWC_OTG_TRANSACTION_NON_PERIODIC,
10716 + DWC_OTG_TRANSACTION_ALL
10717 +} dwc_otg_transaction_type_e;
10718 +
10719 +/**
10720 + * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
10721 + * interrupt, or isochronous transfer. A single QTD is created for each URB
10722 + * (of one of these types) submitted to the HCD. The transfer associated with
10723 + * a QTD may require one or multiple transactions.
10724 + *
10725 + * A QTD is linked to a Queue Head, which is entered in either the
10726 + * non-periodic or periodic schedule for execution. When a QTD is chosen for
10727 + * execution, some or all of its transactions may be executed. After
10728 + * execution, the state of the QTD is updated. The QTD may be retired if all
10729 + * its transactions are complete or if an error occurred. Otherwise, it
10730 + * remains in the schedule so more transactions can be executed later.
10731 + */
10732 +typedef struct dwc_otg_qtd {
10733 + /**
10734 + * Determines the PID of the next data packet for the data phase of
10735 + * control transfers. Ignored for other transfer types.<br>
10736 + * One of the following values:
10737 + * - DWC_OTG_HC_PID_DATA0
10738 + * - DWC_OTG_HC_PID_DATA1
10739 + */
10740 + uint8_t data_toggle;
10741 +
10742 + /** Current phase for control transfers (Setup, Data, or Status). */
10743 + dwc_otg_control_phase_e control_phase;
10744 +
10745 + /** Keep track of the current split type
10746 + * for FS/LS endpoints on a HS Hub */
10747 + uint8_t complete_split;
10748 +
10749 + /** How many bytes transferred during SSPLIT OUT */
10750 + uint32_t ssplit_out_xfer_count;
10751 +
10752 + /**
10753 + * Holds the number of bus errors that have occurred for a transaction
10754 + * within this transfer.
10755 + */
10756 + uint8_t error_count;
10757 +
10758 + /**
10759 + * Index of the next frame descriptor for an isochronous transfer. A
10760 + * frame descriptor describes the buffer position and length of the
10761 + * data to be transferred in the next scheduled (micro)frame of an
10762 + * isochronous transfer. It also holds status for that transaction.
10763 + * The frame index starts at 0.
10764 + */
10765 + int isoc_frame_index;
10766 +
10767 + /** Position of the ISOC split on full/low speed */
10768 + uint8_t isoc_split_pos;
10769 +
10770 + /** Position of the ISOC split in the buffer for the current frame */
10771 + uint16_t isoc_split_offset;
10772 +
10773 + /** URB for this transfer */
10774 + struct urb *urb;
10775 +
10776 + /** This list of QTDs */
10777 + struct list_head qtd_list_entry;
10778 +
10779 +} dwc_otg_qtd_t;
10780 +
10781 +/**
10782 + * A Queue Head (QH) holds the static characteristics of an endpoint and
10783 + * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
10784 + * be entered in either the non-periodic or periodic schedule.
10785 + */
10786 +typedef struct dwc_otg_qh {
10787 + /**
10788 + * Endpoint type.
10789 + * One of the following values:
10790 + * - USB_ENDPOINT_XFER_CONTROL
10791 + * - USB_ENDPOINT_XFER_ISOC
10792 + * - USB_ENDPOINT_XFER_BULK
10793 + * - USB_ENDPOINT_XFER_INT
10794 + */
10795 + uint8_t ep_type;
10796 + uint8_t ep_is_in;
10797 +
10798 + /** wMaxPacketSize Field of Endpoint Descriptor. */
10799 + uint16_t maxp;
10800 +
10801 + /**
10802 + * Determines the PID of the next data packet for non-control
10803 + * transfers. Ignored for control transfers.<br>
10804 + * One of the following values:
10805 + * - DWC_OTG_HC_PID_DATA0
10806 + * - DWC_OTG_HC_PID_DATA1
10807 + */
10808 + uint8_t data_toggle;
10809 +
10810 + /** Ping state if 1. */
10811 + uint8_t ping_state;
10812 +
10813 + /**
10814 + * List of QTDs for this QH.
10815 + */
10816 + struct list_head qtd_list;
10817 +
10818 + /** Host channel currently processing transfers for this QH. */
10819 + dwc_hc_t *channel;
10820 +
10821 + /** QTD currently assigned to a host channel for this QH. */
10822 + dwc_otg_qtd_t *qtd_in_process;
10823 +
10824 + /** Full/low speed endpoint on high-speed hub requires split. */
10825 + uint8_t do_split;
10826 +
10827 + /** @name Periodic schedule information */
10828 + /** @{ */
10829 +
10830 + /** Bandwidth in microseconds per (micro)frame. */
10831 + uint8_t usecs;
10832 +
10833 + /** Interval between transfers in (micro)frames. */
10834 + uint16_t interval;
10835 +
10836 + /**
10837 + * (micro)frame to initialize a periodic transfer. The transfer
10838 + * executes in the following (micro)frame.
10839 + */
10840 + uint16_t sched_frame;
10841 +
10842 + /** (micro)frame at which last start split was initialized. */
10843 + uint16_t start_split_frame;
10844 +
10845 + u16 speed;
10846 + u16 frame_usecs[8];
10847 +
10848 + /** @} */
10849 +
10850 + /** Entry for QH in either the periodic or non-periodic schedule. */
10851 + struct list_head qh_list_entry;
10852 +} dwc_otg_qh_t;
10853 +
10854 +/**
10855 + * This structure holds the state of the HCD, including the non-periodic and
10856 + * periodic schedules.
10857 + */
10858 +typedef struct dwc_otg_hcd {
10859 + /** The DWC otg device pointer */
10860 + struct dwc_otg_device *otg_dev;
10861 +
10862 + /** DWC OTG Core Interface Layer */
10863 + dwc_otg_core_if_t *core_if;
10864 +
10865 + /** Internal DWC HCD Flags */
10866 + volatile union dwc_otg_hcd_internal_flags {
10867 + uint32_t d32;
10868 + struct {
10869 + unsigned port_connect_status_change : 1;
10870 + unsigned port_connect_status : 1;
10871 + unsigned port_reset_change : 1;
10872 + unsigned port_enable_change : 1;
10873 + unsigned port_suspend_change : 1;
10874 + unsigned port_over_current_change : 1;
10875 + unsigned reserved : 27;
10876 + } b;
10877 + } flags;
10878 +
10879 + /**
10880 + * Inactive items in the non-periodic schedule. This is a list of
10881 + * Queue Heads. Transfers associated with these Queue Heads are not
10882 + * currently assigned to a host channel.
10883 + */
10884 + struct list_head non_periodic_sched_inactive;
10885 +
10886 + /**
10887 + * Active items in the non-periodic schedule. This is a list of
10888 + * Queue Heads. Transfers associated with these Queue Heads are
10889 + * currently assigned to a host channel.
10890 + */
10891 + struct list_head non_periodic_sched_active;
10892 +
10893 + /**
10894 + * Pointer to the next Queue Head to process in the active
10895 + * non-periodic schedule.
10896 + */
10897 + struct list_head *non_periodic_qh_ptr;
10898 +
10899 + /**
10900 + * Inactive items in the periodic schedule. This is a list of QHs for
10901 + * periodic transfers that are _not_ scheduled for the next frame.
10902 + * Each QH in the list has an interval counter that determines when it
10903 + * needs to be scheduled for execution. This scheduling mechanism
10904 + * allows only a simple calculation for periodic bandwidth used (i.e.
10905 + * must assume that all periodic transfers may need to execute in the
10906 + * same frame). However, it greatly simplifies scheduling and should
10907 + * be sufficient for the vast majority of OTG hosts, which need to
10908 + * connect to a small number of peripherals at one time.
10909 + *
10910 + * Items move from this list to periodic_sched_ready when the QH
10911 + * interval counter is 0 at SOF.
10912 + */
10913 + struct list_head periodic_sched_inactive;
10914 +
10915 + /**
10916 + * List of periodic QHs that are ready for execution in the next
10917 + * frame, but have not yet been assigned to host channels.
10918 + *
10919 + * Items move from this list to periodic_sched_assigned as host
10920 + * channels become available during the current frame.
10921 + */
10922 + struct list_head periodic_sched_ready;
10923 +
10924 + /**
10925 + * List of periodic QHs to be executed in the next frame that are
10926 + * assigned to host channels.
10927 + *
10928 + * Items move from this list to periodic_sched_queued as the
10929 + * transactions for the QH are queued to the DWC_otg controller.
10930 + */
10931 + struct list_head periodic_sched_assigned;
10932 +
10933 + /**
10934 + * List of periodic QHs that have been queued for execution.
10935 + *
10936 + * Items move from this list to either periodic_sched_inactive or
10937 + * periodic_sched_ready when the channel associated with the transfer
10938 + * is released. If the interval for the QH is 1, the item moves to
10939 + * periodic_sched_ready because it must be rescheduled for the next
10940 + * frame. Otherwise, the item moves to periodic_sched_inactive.
10941 + */
10942 + struct list_head periodic_sched_queued;
10943 +
10944 + /**
10945 + * Total bandwidth claimed so far for periodic transfers. This value
10946 + * is in microseconds per (micro)frame. The assumption is that all
10947 + * periodic transfers may occur in the same (micro)frame.
10948 + */
10949 + uint16_t periodic_usecs;
10950 +
10951 + /*
10952 + * Total bandwidth claimed so far for all periodic transfers
10953 + * in a frame.
10954 + * This will include a mixture of HS and FS transfers.
10955 + * Units are microseconds per (micro)frame.
10956 + * We have a budget per frame and have to schedule
10957 + * transactions accordingly.
10958 + * Watch out for the fact that things are actually scheduled for the
10959 + * "next frame".
10960 + */
10961 + u16 frame_usecs[8];
10962 +
10963 + /**
10964 + * Frame number read from the core at SOF. The value ranges from 0 to
10965 + * DWC_HFNUM_MAX_FRNUM.
10966 + */
10967 + uint16_t frame_number;
10968 +
10969 + /**
10970 + * Free host channels in the controller. This is a list of
10971 + * dwc_hc_t items.
10972 + */
10973 + struct list_head free_hc_list;
10974 +
10975 + /**
10976 + * Number of host channels assigned to periodic transfers. Currently
10977 + * assuming that there is a dedicated host channel for each periodic
10978 + * transaction and at least one host channel available for
10979 + * non-periodic transactions.
10980 + */
10981 + int periodic_channels;
10982 +
10983 + /**
10984 + * Number of host channels assigned to non-periodic transfers.
10985 + */
10986 + int non_periodic_channels;
10987 +
10988 + /**
10989 + * Array of pointers to the host channel descriptors. Allows accessing
10990 + * a host channel descriptor given the host channel number. This is
10991 + * useful in interrupt handlers.
10992 + */
10993 + dwc_hc_t *hc_ptr_array[MAX_EPS_CHANNELS];
10994 +
10995 + /**
10996 + * Buffer to use for any data received during the status phase of a
10997 + * control transfer. Normally no data is transferred during the status
10998 + * phase. This buffer is used as a bit bucket.
10999 + */
11000 + uint8_t *status_buf;
11001 +
11002 + /**
11003 + * DMA address for status_buf.
11004 + */
11005 + dma_addr_t status_buf_dma;
11006 +#define DWC_OTG_HCD_STATUS_BUF_SIZE 64
11007 +
11008 + /**
11009 + * Structure to allow starting the HCD in a non-interrupt context
11010 + * during an OTG role change.
11011 + */
11012 + struct delayed_work start_work;
11013 +
11014 + /**
11015 + * Connection timer. An OTG host must display a message if the device
11016 + * does not connect. Started when the VBus power is turned on via
11017 + * sysfs attribute "buspower".
11018 + */
11019 + struct timer_list conn_timer;
11020 +
11021 + /* Tasket to do a reset */
11022 + struct tasklet_struct *reset_tasklet;
11023 +
11024 + /* */
11025 + spinlock_t lock;
11026 +
11027 +#ifdef DEBUG
11028 + uint32_t frrem_samples;
11029 + uint64_t frrem_accum;
11030 +
11031 + uint32_t hfnum_7_samples_a;
11032 + uint64_t hfnum_7_frrem_accum_a;
11033 + uint32_t hfnum_0_samples_a;
11034 + uint64_t hfnum_0_frrem_accum_a;
11035 + uint32_t hfnum_other_samples_a;
11036 + uint64_t hfnum_other_frrem_accum_a;
11037 +
11038 + uint32_t hfnum_7_samples_b;
11039 + uint64_t hfnum_7_frrem_accum_b;
11040 + uint32_t hfnum_0_samples_b;
11041 + uint64_t hfnum_0_frrem_accum_b;
11042 + uint32_t hfnum_other_samples_b;
11043 + uint64_t hfnum_other_frrem_accum_b;
11044 +#endif
11045 +} dwc_otg_hcd_t;
11046 +
11047 +/** Gets the dwc_otg_hcd from a struct usb_hcd */
11048 +static inline dwc_otg_hcd_t *hcd_to_dwc_otg_hcd(struct usb_hcd *hcd)
11049 +{
11050 + return (dwc_otg_hcd_t *)(hcd->hcd_priv);
11051 +}
11052 +
11053 +/** Gets the struct usb_hcd that contains a dwc_otg_hcd_t. */
11054 +static inline struct usb_hcd *dwc_otg_hcd_to_hcd(dwc_otg_hcd_t *dwc_otg_hcd)
11055 +{
11056 + return container_of((void *)dwc_otg_hcd, struct usb_hcd, hcd_priv);
11057 +}
11058 +
11059 +/** @name HCD Create/Destroy Functions */
11060 +/** @{ */
11061 +extern int dwc_otg_hcd_init(struct platform_device *pdev);
11062 +extern void dwc_otg_hcd_remove(struct platform_device *pdev);
11063 +/** @} */
11064 +
11065 +/** @name Linux HC Driver API Functions */
11066 +/** @{ */
11067 +
11068 +extern int dwc_otg_hcd_start(struct usb_hcd *hcd);
11069 +extern void dwc_otg_hcd_stop(struct usb_hcd *hcd);
11070 +extern int dwc_otg_hcd_get_frame_number(struct usb_hcd *hcd);
11071 +extern void dwc_otg_hcd_free(struct usb_hcd *hcd);
11072 +extern int dwc_otg_hcd_urb_enqueue(struct usb_hcd *hcd,
11073 + // struct usb_host_endpoint *ep,
11074 + struct urb *urb,
11075 + gfp_t mem_flags
11076 + );
11077 +extern int dwc_otg_hcd_urb_dequeue(struct usb_hcd *hcd,
11078 + struct urb *urb, int status);
11079 +extern void dwc_otg_hcd_endpoint_disable(struct usb_hcd *hcd,
11080 + struct usb_host_endpoint *ep);
11081 +extern irqreturn_t dwc_otg_hcd_irq(struct usb_hcd *hcd);
11082 +extern int dwc_otg_hcd_hub_status_data(struct usb_hcd *hcd,
11083 + char *buf);
11084 +extern int dwc_otg_hcd_hub_control(struct usb_hcd *hcd,
11085 + u16 typeReq,
11086 + u16 wValue,
11087 + u16 wIndex,
11088 + char *buf,
11089 + u16 wLength);
11090 +
11091 +/** @} */
11092 +
11093 +/** @name Transaction Execution Functions */
11094 +/** @{ */
11095 +extern dwc_otg_transaction_type_e dwc_otg_hcd_select_transactions(dwc_otg_hcd_t *hcd);
11096 +extern void dwc_otg_hcd_queue_transactions(dwc_otg_hcd_t *hcd,
11097 + dwc_otg_transaction_type_e tr_type);
11098 +extern void dwc_otg_hcd_complete_urb(dwc_otg_hcd_t *_hcd, struct urb *urb,
11099 + int status);
11100 +/** @} */
11101 +
11102 +/** @name Interrupt Handler Functions */
11103 +/** @{ */
11104 +extern int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11105 +extern int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11106 +extern int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11107 +extern int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11108 +extern int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11109 +extern int32_t dwc_otg_hcd_handle_incomplete_periodic_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11110 +extern int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11111 +extern int32_t dwc_otg_hcd_handle_conn_id_status_change_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11112 +extern int32_t dwc_otg_hcd_handle_disconnect_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11113 +extern int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11114 +extern int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num);
11115 +extern int32_t dwc_otg_hcd_handle_session_req_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11116 +extern int32_t dwc_otg_hcd_handle_wakeup_detected_intr(dwc_otg_hcd_t *dwc_otg_hcd);
11117 +/** @} */
11118 +
11119 +
11120 +/** @name Schedule Queue Functions */
11121 +/** @{ */
11122 +
11123 +/* Implemented in dwc_otg_hcd_queue.c */
11124 +extern int init_hcd_usecs(dwc_otg_hcd_t *hcd);
11125 +extern dwc_otg_qh_t *dwc_otg_hcd_qh_create(dwc_otg_hcd_t *hcd, struct urb *urb);
11126 +extern void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb);
11127 +extern void dwc_otg_hcd_qh_free(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
11128 +extern int dwc_otg_hcd_qh_add(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
11129 +extern void dwc_otg_hcd_qh_remove(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh);
11130 +extern void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_csplit);
11131 +
11132 +/** Remove and free a QH */
11133 +static inline void dwc_otg_hcd_qh_remove_and_free(dwc_otg_hcd_t *hcd,
11134 + dwc_otg_qh_t *qh)
11135 +{
11136 + dwc_otg_hcd_qh_remove(hcd, qh);
11137 + dwc_otg_hcd_qh_free(hcd, qh);
11138 +}
11139 +
11140 +/** Allocates memory for a QH structure.
11141 + * @return Returns the memory allocate or NULL on error. */
11142 +static inline dwc_otg_qh_t *dwc_otg_hcd_qh_alloc(void)
11143 +{
11144 + return (dwc_otg_qh_t *) kmalloc(sizeof(dwc_otg_qh_t), GFP_KERNEL);
11145 +}
11146 +
11147 +extern dwc_otg_qtd_t *dwc_otg_hcd_qtd_create(struct urb *urb);
11148 +extern void dwc_otg_hcd_qtd_init(dwc_otg_qtd_t *qtd, struct urb *urb);
11149 +extern int dwc_otg_hcd_qtd_add(dwc_otg_qtd_t *qtd, dwc_otg_hcd_t *dwc_otg_hcd);
11150 +
11151 +/** Allocates memory for a QTD structure.
11152 + * @return Returns the memory allocate or NULL on error. */
11153 +static inline dwc_otg_qtd_t *dwc_otg_hcd_qtd_alloc(void)
11154 +{
11155 + return (dwc_otg_qtd_t *) kmalloc(sizeof(dwc_otg_qtd_t), GFP_KERNEL);
11156 +}
11157 +
11158 +/** Frees the memory for a QTD structure. QTD should already be removed from
11159 + * list.
11160 + * @param[in] qtd QTD to free.*/
11161 +static inline void dwc_otg_hcd_qtd_free(dwc_otg_qtd_t *qtd)
11162 +{
11163 + kfree(qtd);
11164 +}
11165 +
11166 +/** Remove and free a QTD */
11167 +static inline void dwc_otg_hcd_qtd_remove_and_free(dwc_otg_hcd_t *hcd, dwc_otg_qtd_t *qtd)
11168 +{
11169 + list_del(&qtd->qtd_list_entry);
11170 + dwc_otg_hcd_qtd_free(qtd);
11171 +}
11172 +
11173 +/** @} */
11174 +
11175 +
11176 +/** @name Internal Functions */
11177 +/** @{ */
11178 +dwc_otg_qh_t *dwc_urb_to_qh(struct urb *urb);
11179 +void dwc_otg_hcd_dump_frrem(dwc_otg_hcd_t *hcd);
11180 +void dwc_otg_hcd_dump_state(dwc_otg_hcd_t *hcd);
11181 +/** @} */
11182 +
11183 +/** Gets the usb_host_endpoint associated with an URB. */
11184 +static inline struct usb_host_endpoint *dwc_urb_to_endpoint(struct urb *urb)
11185 +{
11186 + struct usb_device *dev = urb->dev;
11187 + int ep_num = usb_pipeendpoint(urb->pipe);
11188 +
11189 + if (usb_pipein(urb->pipe))
11190 + return dev->ep_in[ep_num];
11191 + else
11192 + return dev->ep_out[ep_num];
11193 +}
11194 +
11195 +/**
11196 + * Gets the endpoint number from a _bEndpointAddress argument. The endpoint is
11197 + * qualified with its direction (possible 32 endpoints per device).
11198 + */
11199 +#define dwc_ep_addr_to_endpoint(_bEndpointAddress_) ((_bEndpointAddress_ & USB_ENDPOINT_NUMBER_MASK) | \
11200 + ((_bEndpointAddress_ & USB_DIR_IN) != 0) << 4)
11201 +
11202 +/** Gets the QH that contains the list_head */
11203 +#define dwc_list_to_qh(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qh_t, qh_list_entry)
11204 +
11205 +/** Gets the QTD that contains the list_head */
11206 +#define dwc_list_to_qtd(_list_head_ptr_) container_of(_list_head_ptr_, dwc_otg_qtd_t, qtd_list_entry)
11207 +
11208 +/** Check if QH is non-periodic */
11209 +#define dwc_qh_is_non_per(_qh_ptr_) ((_qh_ptr_->ep_type == USB_ENDPOINT_XFER_BULK) || \
11210 + (_qh_ptr_->ep_type == USB_ENDPOINT_XFER_CONTROL))
11211 +
11212 +/** High bandwidth multiplier as encoded in highspeed endpoint descriptors */
11213 +#define dwc_hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
11214 +
11215 +/** Packet size for any kind of endpoint descriptor */
11216 +#define dwc_max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
11217 +
11218 +/**
11219 + * Returns true if _frame1 is less than or equal to _frame2. The comparison is
11220 + * done modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the
11221 + * frame number when the max frame number is reached.
11222 + */
11223 +static inline int dwc_frame_num_le(uint16_t frame1, uint16_t frame2)
11224 +{
11225 + return ((frame2 - frame1) & DWC_HFNUM_MAX_FRNUM) <=
11226 + (DWC_HFNUM_MAX_FRNUM >> 1);
11227 +}
11228 +
11229 +/**
11230 + * Returns true if _frame1 is greater than _frame2. The comparison is done
11231 + * modulo DWC_HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
11232 + * number when the max frame number is reached.
11233 + */
11234 +static inline int dwc_frame_num_gt(uint16_t frame1, uint16_t frame2)
11235 +{
11236 + return (frame1 != frame2) &&
11237 + (((frame1 - frame2) & DWC_HFNUM_MAX_FRNUM) <
11238 + (DWC_HFNUM_MAX_FRNUM >> 1));
11239 +}
11240 +
11241 +/**
11242 + * Increments _frame by the amount specified by _inc. The addition is done
11243 + * modulo DWC_HFNUM_MAX_FRNUM. Returns the incremented value.
11244 + */
11245 +static inline uint16_t dwc_frame_num_inc(uint16_t frame, uint16_t inc)
11246 +{
11247 + return (frame + inc) & DWC_HFNUM_MAX_FRNUM;
11248 +}
11249 +
11250 +static inline uint16_t dwc_full_frame_num(uint16_t frame)
11251 +{
11252 + return (frame & DWC_HFNUM_MAX_FRNUM) >> 3;
11253 +}
11254 +
11255 +static inline uint16_t dwc_micro_frame_num(uint16_t frame)
11256 +{
11257 + return frame & 0x7;
11258 +}
11259 +
11260 +#ifdef DEBUG
11261 +/**
11262 + * Macro to sample the remaining PHY clocks left in the current frame. This
11263 + * may be used during debugging to determine the average time it takes to
11264 + * execute sections of code. There are two possible sample points, "a" and
11265 + * "b", so the _letter argument must be one of these values.
11266 + *
11267 + * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
11268 + * example, "cat /sys/devices/lm0/hcd_frrem".
11269 + */
11270 +#define dwc_sample_frrem(_hcd, _qh, _letter) \
11271 +{ \
11272 + hfnum_data_t hfnum; \
11273 + dwc_otg_qtd_t *qtd; \
11274 + qtd = list_entry(_qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry); \
11275 + if (usb_pipeint(qtd->urb->pipe) && _qh->start_split_frame != 0 && !qtd->complete_split) { \
11276 + hfnum.d32 = dwc_read_reg32(&_hcd->core_if->host_if->host_global_regs->hfnum); \
11277 + switch (hfnum.b.frnum & 0x7) { \
11278 + case 7: \
11279 + _hcd->hfnum_7_samples_##_letter++; \
11280 + _hcd->hfnum_7_frrem_accum_##_letter += hfnum.b.frrem; \
11281 + break; \
11282 + case 0: \
11283 + _hcd->hfnum_0_samples_##_letter++; \
11284 + _hcd->hfnum_0_frrem_accum_##_letter += hfnum.b.frrem; \
11285 + break; \
11286 + default: \
11287 + _hcd->hfnum_other_samples_##_letter++; \
11288 + _hcd->hfnum_other_frrem_accum_##_letter += hfnum.b.frrem; \
11289 + break; \
11290 + } \
11291 + } \
11292 +}
11293 +#else
11294 +#define dwc_sample_frrem(_hcd, _qh, _letter)
11295 +#endif
11296 +#endif
11297 +#endif /* DWC_DEVICE_ONLY */
11298 --- /dev/null
11299 +++ b/drivers/usb/dwc/otg_hcd_intr.c
11300 @@ -0,0 +1,1828 @@
11301 +/* ==========================================================================
11302 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_intr.c $
11303 + * $Revision: #70 $
11304 + * $Date: 2008/10/16 $
11305 + * $Change: 1117667 $
11306 + *
11307 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
11308 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
11309 + * otherwise expressly agreed to in writing between Synopsys and you.
11310 + *
11311 + * The Software IS NOT an item of Licensed Software or Licensed Product under
11312 + * any End User Software License Agreement or Agreement for Licensed Product
11313 + * with Synopsys or any supplement thereto. You are permitted to use and
11314 + * redistribute this Software in source and binary forms, with or without
11315 + * modification, provided that redistributions of source code must retain this
11316 + * notice. You may not view, use, disclose, copy or distribute this file or
11317 + * any information contained herein except pursuant to this license grant from
11318 + * Synopsys. If you do not agree with this notice, including the disclaimer
11319 + * below, then you are not authorized to use the Software.
11320 + *
11321 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
11322 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
11323 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
11324 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
11325 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
11326 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
11327 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
11328 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
11329 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
11330 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
11331 + * DAMAGE.
11332 + * ========================================================================== */
11333 +#ifndef DWC_DEVICE_ONLY
11334 +
11335 +#include <linux/version.h>
11336 +
11337 +#include "otg_driver.h"
11338 +#include "otg_hcd.h"
11339 +#include "otg_regs.h"
11340 +
11341 +/** @file
11342 + * This file contains the implementation of the HCD Interrupt handlers.
11343 + */
11344 +
11345 +/** This function handles interrupts for the HCD. */
11346 +int32_t dwc_otg_hcd_handle_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11347 +{
11348 + int retval = 0;
11349 +
11350 + dwc_otg_core_if_t *core_if = dwc_otg_hcd->core_if;
11351 + gintsts_data_t gintsts;
11352 +#ifdef DEBUG
11353 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
11354 +#endif
11355 +
11356 + /* Check if HOST Mode */
11357 + if (dwc_otg_is_host_mode(core_if)) {
11358 + gintsts.d32 = dwc_otg_read_core_intr(core_if);
11359 + if (!gintsts.d32) {
11360 + return 0;
11361 + }
11362 +
11363 +#ifdef DEBUG
11364 + /* Don't print debug message in the interrupt handler on SOF */
11365 +# ifndef DEBUG_SOF
11366 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11367 +# endif
11368 + DWC_DEBUGPL(DBG_HCD, "\n");
11369 +#endif
11370 +
11371 +#ifdef DEBUG
11372 +# ifndef DEBUG_SOF
11373 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11374 +# endif
11375 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Interrupt Detected gintsts&gintmsk=0x%08x\n", gintsts.d32);
11376 +#endif
11377 + if (gintsts.b.usbreset) {
11378 + DWC_PRINT("Usb Reset In Host Mode\n");
11379 + }
11380 + if (gintsts.b.sofintr) {
11381 + retval |= dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd);
11382 + }
11383 + if (gintsts.b.rxstsqlvl) {
11384 + retval |= dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd);
11385 + }
11386 + if (gintsts.b.nptxfempty) {
11387 + retval |= dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd);
11388 + }
11389 + if (gintsts.b.i2cintr) {
11390 + /** @todo Implement i2cintr handler. */
11391 + }
11392 + if (gintsts.b.portintr) {
11393 + retval |= dwc_otg_hcd_handle_port_intr(dwc_otg_hcd);
11394 + }
11395 + if (gintsts.b.hcintr) {
11396 + retval |= dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd);
11397 + }
11398 + if (gintsts.b.ptxfempty) {
11399 + retval |= dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd);
11400 + }
11401 +#ifdef DEBUG
11402 +# ifndef DEBUG_SOF
11403 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11404 +# endif
11405 + {
11406 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD Finished Servicing Interrupts\n");
11407 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintsts=0x%08x\n",
11408 + dwc_read_reg32(&global_regs->gintsts));
11409 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD gintmsk=0x%08x\n",
11410 + dwc_read_reg32(&global_regs->gintmsk));
11411 + }
11412 +#endif
11413 +
11414 +#ifdef DEBUG
11415 +# ifndef DEBUG_SOF
11416 + if (gintsts.d32 != DWC_SOF_INTR_MASK)
11417 +# endif
11418 + DWC_DEBUGPL(DBG_HCD, "\n");
11419 +#endif
11420 +
11421 + }
11422 + S3C2410X_CLEAR_EINTPEND();
11423 +
11424 + return retval;
11425 +}
11426 +
11427 +#ifdef DWC_TRACK_MISSED_SOFS
11428 +#warning Compiling code to track missed SOFs
11429 +#define FRAME_NUM_ARRAY_SIZE 1000
11430 +/**
11431 + * This function is for debug only.
11432 + */
11433 +static inline void track_missed_sofs(uint16_t curr_frame_number)
11434 +{
11435 + static uint16_t frame_num_array[FRAME_NUM_ARRAY_SIZE];
11436 + static uint16_t last_frame_num_array[FRAME_NUM_ARRAY_SIZE];
11437 + static int frame_num_idx = 0;
11438 + static uint16_t last_frame_num = DWC_HFNUM_MAX_FRNUM;
11439 + static int dumped_frame_num_array = 0;
11440 +
11441 + if (frame_num_idx < FRAME_NUM_ARRAY_SIZE) {
11442 + if (((last_frame_num + 1) & DWC_HFNUM_MAX_FRNUM) != curr_frame_number) {
11443 + frame_num_array[frame_num_idx] = curr_frame_number;
11444 + last_frame_num_array[frame_num_idx++] = last_frame_num;
11445 + }
11446 + } else if (!dumped_frame_num_array) {
11447 + int i;
11448 + printk(KERN_EMERG USB_DWC "Frame Last Frame\n");
11449 + printk(KERN_EMERG USB_DWC "----- ----------\n");
11450 + for (i = 0; i < FRAME_NUM_ARRAY_SIZE; i++) {
11451 + printk(KERN_EMERG USB_DWC "0x%04x 0x%04x\n",
11452 + frame_num_array[i], last_frame_num_array[i]);
11453 + }
11454 + dumped_frame_num_array = 1;
11455 + }
11456 + last_frame_num = curr_frame_number;
11457 +}
11458 +#endif
11459 +
11460 +/**
11461 + * Handles the start-of-frame interrupt in host mode. Non-periodic
11462 + * transactions may be queued to the DWC_otg controller for the current
11463 + * (micro)frame. Periodic transactions may be queued to the controller for the
11464 + * next (micro)frame.
11465 + */
11466 +int32_t dwc_otg_hcd_handle_sof_intr(dwc_otg_hcd_t *hcd)
11467 +{
11468 + hfnum_data_t hfnum;
11469 + struct list_head *qh_entry;
11470 + dwc_otg_qh_t *qh;
11471 + dwc_otg_transaction_type_e tr_type;
11472 + gintsts_data_t gintsts = {.d32 = 0};
11473 +
11474 + hfnum.d32 = dwc_read_reg32(&hcd->core_if->host_if->host_global_regs->hfnum);
11475 +
11476 +#ifdef DEBUG_SOF
11477 + DWC_DEBUGPL(DBG_HCD, "--Start of Frame Interrupt--\n");
11478 +#endif
11479 + hcd->frame_number = hfnum.b.frnum;
11480 +
11481 +#ifdef DEBUG
11482 + hcd->frrem_accum += hfnum.b.frrem;
11483 + hcd->frrem_samples++;
11484 +#endif
11485 +
11486 +#ifdef DWC_TRACK_MISSED_SOFS
11487 + track_missed_sofs(hcd->frame_number);
11488 +#endif
11489 +
11490 + /* Determine whether any periodic QHs should be executed. */
11491 + qh_entry = hcd->periodic_sched_inactive.next;
11492 + while (qh_entry != &hcd->periodic_sched_inactive) {
11493 + qh = list_entry(qh_entry, dwc_otg_qh_t, qh_list_entry);
11494 + qh_entry = qh_entry->next;
11495 + if (dwc_frame_num_le(qh->sched_frame, hcd->frame_number)) {
11496 + /*
11497 + * Move QH to the ready list to be executed next
11498 + * (micro)frame.
11499 + */
11500 + list_move(&qh->qh_list_entry, &hcd->periodic_sched_ready);
11501 + }
11502 + }
11503 +
11504 + tr_type = dwc_otg_hcd_select_transactions(hcd);
11505 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
11506 + dwc_otg_hcd_queue_transactions(hcd, tr_type);
11507 + }
11508 +
11509 + /* Clear interrupt */
11510 + gintsts.b.sofintr = 1;
11511 + dwc_write_reg32(&hcd->core_if->core_global_regs->gintsts, gintsts.d32);
11512 +
11513 + return 1;
11514 +}
11515 +
11516 +/** Handles the Rx Status Queue Level Interrupt, which indicates that there is at
11517 + * least one packet in the Rx FIFO. The packets are moved from the FIFO to
11518 + * memory if the DWC_otg controller is operating in Slave mode. */
11519 +int32_t dwc_otg_hcd_handle_rx_status_q_level_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11520 +{
11521 + host_grxsts_data_t grxsts;
11522 + dwc_hc_t *hc = NULL;
11523 +
11524 + DWC_DEBUGPL(DBG_HCD, "--RxStsQ Level Interrupt--\n");
11525 +
11526 + grxsts.d32 = dwc_read_reg32(&dwc_otg_hcd->core_if->core_global_regs->grxstsp);
11527 +
11528 + hc = dwc_otg_hcd->hc_ptr_array[grxsts.b.chnum];
11529 +
11530 + /* Packet Status */
11531 + DWC_DEBUGPL(DBG_HCDV, " Ch num = %d\n", grxsts.b.chnum);
11532 + DWC_DEBUGPL(DBG_HCDV, " Count = %d\n", grxsts.b.bcnt);
11533 + DWC_DEBUGPL(DBG_HCDV, " DPID = %d, hc.dpid = %d\n", grxsts.b.dpid, hc->data_pid_start);
11534 + DWC_DEBUGPL(DBG_HCDV, " PStatus = %d\n", grxsts.b.pktsts);
11535 +
11536 + switch (grxsts.b.pktsts) {
11537 + case DWC_GRXSTS_PKTSTS_IN:
11538 + /* Read the data into the host buffer. */
11539 + if (grxsts.b.bcnt > 0) {
11540 + dwc_otg_read_packet(dwc_otg_hcd->core_if,
11541 + hc->xfer_buff,
11542 + grxsts.b.bcnt);
11543 +
11544 + /* Update the HC fields for the next packet received. */
11545 + hc->xfer_count += grxsts.b.bcnt;
11546 + hc->xfer_buff += grxsts.b.bcnt;
11547 + }
11548 +
11549 + case DWC_GRXSTS_PKTSTS_IN_XFER_COMP:
11550 + case DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR:
11551 + case DWC_GRXSTS_PKTSTS_CH_HALTED:
11552 + /* Handled in interrupt, just ignore data */
11553 + break;
11554 + default:
11555 + DWC_ERROR("RX_STS_Q Interrupt: Unknown status %d\n", grxsts.b.pktsts);
11556 + break;
11557 + }
11558 +
11559 + return 1;
11560 +}
11561 +
11562 +/** This interrupt occurs when the non-periodic Tx FIFO is half-empty. More
11563 + * data packets may be written to the FIFO for OUT transfers. More requests
11564 + * may be written to the non-periodic request queue for IN transfers. This
11565 + * interrupt is enabled only in Slave mode. */
11566 +int32_t dwc_otg_hcd_handle_np_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11567 +{
11568 + DWC_DEBUGPL(DBG_HCD, "--Non-Periodic TxFIFO Empty Interrupt--\n");
11569 + dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
11570 + DWC_OTG_TRANSACTION_NON_PERIODIC);
11571 + return 1;
11572 +}
11573 +
11574 +/** This interrupt occurs when the periodic Tx FIFO is half-empty. More data
11575 + * packets may be written to the FIFO for OUT transfers. More requests may be
11576 + * written to the periodic request queue for IN transfers. This interrupt is
11577 + * enabled only in Slave mode. */
11578 +int32_t dwc_otg_hcd_handle_perio_tx_fifo_empty_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11579 +{
11580 + DWC_DEBUGPL(DBG_HCD, "--Periodic TxFIFO Empty Interrupt--\n");
11581 + dwc_otg_hcd_queue_transactions(dwc_otg_hcd,
11582 + DWC_OTG_TRANSACTION_PERIODIC);
11583 + return 1;
11584 +}
11585 +
11586 +/** There are multiple conditions that can cause a port interrupt. This function
11587 + * determines which interrupt conditions have occurred and handles them
11588 + * appropriately. */
11589 +int32_t dwc_otg_hcd_handle_port_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11590 +{
11591 + int retval = 0;
11592 + hprt0_data_t hprt0;
11593 + hprt0_data_t hprt0_modify;
11594 +
11595 + hprt0.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
11596 + hprt0_modify.d32 = dwc_read_reg32(dwc_otg_hcd->core_if->host_if->hprt0);
11597 +
11598 + /* Clear appropriate bits in HPRT0 to clear the interrupt bit in
11599 + * GINTSTS */
11600 +
11601 + hprt0_modify.b.prtena = 0;
11602 + hprt0_modify.b.prtconndet = 0;
11603 + hprt0_modify.b.prtenchng = 0;
11604 + hprt0_modify.b.prtovrcurrchng = 0;
11605 +
11606 + /* Port Connect Detected
11607 + * Set flag and clear if detected */
11608 + if (hprt0.b.prtconndet) {
11609 + DWC_DEBUGPL(DBG_HCD, "--Port Interrupt HPRT0=0x%08x "
11610 + "Port Connect Detected--\n", hprt0.d32);
11611 + dwc_otg_hcd->flags.b.port_connect_status_change = 1;
11612 + dwc_otg_hcd->flags.b.port_connect_status = 1;
11613 + hprt0_modify.b.prtconndet = 1;
11614 +
11615 + /* B-Device has connected, Delete the connection timer. */
11616 + del_timer( &dwc_otg_hcd->conn_timer );
11617 +
11618 + /* The Hub driver asserts a reset when it sees port connect
11619 + * status change flag */
11620 + retval |= 1;
11621 + }
11622 +
11623 + /* Port Enable Changed
11624 + * Clear if detected - Set internal flag if disabled */
11625 + if (hprt0.b.prtenchng) {
11626 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11627 + "Port Enable Changed--\n", hprt0.d32);
11628 + hprt0_modify.b.prtenchng = 1;
11629 + if (hprt0.b.prtena == 1) {
11630 + int do_reset = 0;
11631 + dwc_otg_core_params_t *params = dwc_otg_hcd->core_if->core_params;
11632 + dwc_otg_core_global_regs_t *global_regs = dwc_otg_hcd->core_if->core_global_regs;
11633 + dwc_otg_host_if_t *host_if = dwc_otg_hcd->core_if->host_if;
11634 +
11635 + /* Check if we need to adjust the PHY clock speed for
11636 + * low power and adjust it */
11637 + if (params->host_support_fs_ls_low_power) {
11638 + gusbcfg_data_t usbcfg;
11639 +
11640 + usbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
11641 +
11642 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED ||
11643 + hprt0.b.prtspd == DWC_HPRT0_PRTSPD_FULL_SPEED) {
11644 + /*
11645 + * Low power
11646 + */
11647 + hcfg_data_t hcfg;
11648 + if (usbcfg.b.phylpwrclksel == 0) {
11649 + /* Set PHY low power clock select for FS/LS devices */
11650 + usbcfg.b.phylpwrclksel = 1;
11651 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
11652 + do_reset = 1;
11653 + }
11654 +
11655 + hcfg.d32 = dwc_read_reg32(&host_if->host_global_regs->hcfg);
11656 +
11657 + if (hprt0.b.prtspd == DWC_HPRT0_PRTSPD_LOW_SPEED &&
11658 + params->host_ls_low_power_phy_clk ==
11659 + DWC_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ) {
11660 + /* 6 MHZ */
11661 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 6 MHz (Low Power)\n");
11662 + if (hcfg.b.fslspclksel != DWC_HCFG_6_MHZ) {
11663 + hcfg.b.fslspclksel = DWC_HCFG_6_MHZ;
11664 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
11665 + hcfg.d32);
11666 + do_reset = 1;
11667 + }
11668 + } else {
11669 + /* 48 MHZ */
11670 + DWC_DEBUGPL(DBG_CIL, "FS_PHY programming HCFG to 48 MHz ()\n");
11671 + if (hcfg.b.fslspclksel != DWC_HCFG_48_MHZ) {
11672 + hcfg.b.fslspclksel = DWC_HCFG_48_MHZ;
11673 + dwc_write_reg32(&host_if->host_global_regs->hcfg,
11674 + hcfg.d32);
11675 + do_reset = 1;
11676 + }
11677 + }
11678 + } else {
11679 + /*
11680 + * Not low power
11681 + */
11682 + if (usbcfg.b.phylpwrclksel == 1) {
11683 + usbcfg.b.phylpwrclksel = 0;
11684 + dwc_write_reg32(&global_regs->gusbcfg, usbcfg.d32);
11685 + do_reset = 1;
11686 + }
11687 + }
11688 +
11689 + if (do_reset) {
11690 + tasklet_schedule(dwc_otg_hcd->reset_tasklet);
11691 + }
11692 + }
11693 +
11694 + if (!do_reset) {
11695 + /* Port has been enabled set the reset change flag */
11696 + dwc_otg_hcd->flags.b.port_reset_change = 1;
11697 + }
11698 + } else {
11699 + dwc_otg_hcd->flags.b.port_enable_change = 1;
11700 + }
11701 + retval |= 1;
11702 + }
11703 +
11704 + /** Overcurrent Change Interrupt */
11705 + if (hprt0.b.prtovrcurrchng) {
11706 + DWC_DEBUGPL(DBG_HCD, " --Port Interrupt HPRT0=0x%08x "
11707 + "Port Overcurrent Changed--\n", hprt0.d32);
11708 + dwc_otg_hcd->flags.b.port_over_current_change = 1;
11709 + hprt0_modify.b.prtovrcurrchng = 1;
11710 + retval |= 1;
11711 + }
11712 +
11713 + /* Clear Port Interrupts */
11714 + dwc_write_reg32(dwc_otg_hcd->core_if->host_if->hprt0, hprt0_modify.d32);
11715 +
11716 + return retval;
11717 +}
11718 +
11719 +/** This interrupt indicates that one or more host channels has a pending
11720 + * interrupt. There are multiple conditions that can cause each host channel
11721 + * interrupt. This function determines which conditions have occurred for each
11722 + * host channel interrupt and handles them appropriately. */
11723 +int32_t dwc_otg_hcd_handle_hc_intr(dwc_otg_hcd_t *dwc_otg_hcd)
11724 +{
11725 + int i;
11726 + int retval = 0;
11727 + haint_data_t haint;
11728 +
11729 + /* Clear appropriate bits in HCINTn to clear the interrupt bit in
11730 + * GINTSTS */
11731 +
11732 + haint.d32 = dwc_otg_read_host_all_channels_intr(dwc_otg_hcd->core_if);
11733 +
11734 + for (i = 0; i < dwc_otg_hcd->core_if->core_params->host_channels; i++) {
11735 + if (haint.b2.chint & (1 << i)) {
11736 + retval |= dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd, i);
11737 + }
11738 + }
11739 +
11740 + return retval;
11741 +}
11742 +
11743 +/* Macro used to clear one channel interrupt */
11744 +#define clear_hc_int(_hc_regs_, _intr_) \
11745 +do { \
11746 + hcint_data_t hcint_clear = {.d32 = 0}; \
11747 + hcint_clear.b._intr_ = 1; \
11748 + dwc_write_reg32(&(_hc_regs_)->hcint, hcint_clear.d32); \
11749 +} while (0)
11750 +
11751 +/*
11752 + * Macro used to disable one channel interrupt. Channel interrupts are
11753 + * disabled when the channel is halted or released by the interrupt handler.
11754 + * There is no need to handle further interrupts of that type until the
11755 + * channel is re-assigned. In fact, subsequent handling may cause crashes
11756 + * because the channel structures are cleaned up when the channel is released.
11757 + */
11758 +#define disable_hc_int(_hc_regs_, _intr_) \
11759 +do { \
11760 + hcintmsk_data_t hcintmsk = {.d32 = 0}; \
11761 + hcintmsk.b._intr_ = 1; \
11762 + dwc_modify_reg32(&(_hc_regs_)->hcintmsk, hcintmsk.d32, 0); \
11763 +} while (0)
11764 +
11765 +/**
11766 + * Gets the actual length of a transfer after the transfer halts. _halt_status
11767 + * holds the reason for the halt.
11768 + *
11769 + * For IN transfers where halt_status is DWC_OTG_HC_XFER_COMPLETE,
11770 + * *short_read is set to 1 upon return if less than the requested
11771 + * number of bytes were transferred. Otherwise, *short_read is set to 0 upon
11772 + * return. short_read may also be NULL on entry, in which case it remains
11773 + * unchanged.
11774 + */
11775 +static uint32_t get_actual_xfer_length(dwc_hc_t *hc,
11776 + dwc_otg_hc_regs_t *hc_regs,
11777 + dwc_otg_qtd_t *qtd,
11778 + dwc_otg_halt_status_e halt_status,
11779 + int *short_read)
11780 +{
11781 + hctsiz_data_t hctsiz;
11782 + uint32_t length;
11783 +
11784 + if (short_read != NULL) {
11785 + *short_read = 0;
11786 + }
11787 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11788 +
11789 + if (halt_status == DWC_OTG_HC_XFER_COMPLETE) {
11790 + if (hc->ep_is_in) {
11791 + length = hc->xfer_len - hctsiz.b.xfersize;
11792 + if (short_read != NULL) {
11793 + *short_read = (hctsiz.b.xfersize != 0);
11794 + }
11795 + } else if (hc->qh->do_split) {
11796 + length = qtd->ssplit_out_xfer_count;
11797 + } else {
11798 + length = hc->xfer_len;
11799 + }
11800 + } else {
11801 + /*
11802 + * Must use the hctsiz.pktcnt field to determine how much data
11803 + * has been transferred. This field reflects the number of
11804 + * packets that have been transferred via the USB. This is
11805 + * always an integral number of packets if the transfer was
11806 + * halted before its normal completion. (Can't use the
11807 + * hctsiz.xfersize field because that reflects the number of
11808 + * bytes transferred via the AHB, not the USB).
11809 + */
11810 + length = (hc->start_pkt_count - hctsiz.b.pktcnt) * hc->max_packet;
11811 + }
11812 +
11813 + return length;
11814 +}
11815 +
11816 +/**
11817 + * Updates the state of the URB after a Transfer Complete interrupt on the
11818 + * host channel. Updates the actual_length field of the URB based on the
11819 + * number of bytes transferred via the host channel. Sets the URB status
11820 + * if the data transfer is finished.
11821 + *
11822 + * @return 1 if the data transfer specified by the URB is completely finished,
11823 + * 0 otherwise.
11824 + */
11825 +static int update_urb_state_xfer_comp(dwc_hc_t *hc,
11826 + dwc_otg_hc_regs_t *hc_regs,
11827 + struct urb *urb,
11828 + dwc_otg_qtd_t *qtd)
11829 +{
11830 + int xfer_done = 0;
11831 + int short_read = 0;
11832 +
11833 + urb->actual_length += get_actual_xfer_length(hc, hc_regs, qtd,
11834 + DWC_OTG_HC_XFER_COMPLETE,
11835 + &short_read);
11836 +
11837 + if (short_read || urb->actual_length == urb->transfer_buffer_length) {
11838 + xfer_done = 1;
11839 + if (short_read && (urb->transfer_flags & URB_SHORT_NOT_OK)) {
11840 + urb->status = -EREMOTEIO;
11841 + } else {
11842 + urb->status = 0;
11843 + }
11844 + }
11845 +
11846 +#ifdef DEBUG
11847 + {
11848 + hctsiz_data_t hctsiz;
11849 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11850 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
11851 + __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
11852 + DWC_DEBUGPL(DBG_HCDV, " hc->xfer_len %d\n", hc->xfer_len);
11853 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.xfersize %d\n", hctsiz.b.xfersize);
11854 + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
11855 + urb->transfer_buffer_length);
11856 + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
11857 + DWC_DEBUGPL(DBG_HCDV, " short_read %d, xfer_done %d\n",
11858 + short_read, xfer_done);
11859 + }
11860 +#endif
11861 +
11862 + return xfer_done;
11863 +}
11864 +
11865 +/*
11866 + * Save the starting data toggle for the next transfer. The data toggle is
11867 + * saved in the QH for non-control transfers and it's saved in the QTD for
11868 + * control transfers.
11869 + */
11870 +static void save_data_toggle(dwc_hc_t *hc,
11871 + dwc_otg_hc_regs_t *hc_regs,
11872 + dwc_otg_qtd_t *qtd)
11873 +{
11874 + hctsiz_data_t hctsiz;
11875 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
11876 +
11877 + if (hc->ep_type != DWC_OTG_EP_TYPE_CONTROL) {
11878 + dwc_otg_qh_t *qh = hc->qh;
11879 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11880 + qh->data_toggle = DWC_OTG_HC_PID_DATA0;
11881 + } else {
11882 + qh->data_toggle = DWC_OTG_HC_PID_DATA1;
11883 + }
11884 + } else {
11885 + if (hctsiz.b.pid == DWC_HCTSIZ_DATA0) {
11886 + qtd->data_toggle = DWC_OTG_HC_PID_DATA0;
11887 + } else {
11888 + qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
11889 + }
11890 + }
11891 +}
11892 +
11893 +/**
11894 + * Frees the first QTD in the QH's list if free_qtd is 1. For non-periodic
11895 + * QHs, removes the QH from the active non-periodic schedule. If any QTDs are
11896 + * still linked to the QH, the QH is added to the end of the inactive
11897 + * non-periodic schedule. For periodic QHs, removes the QH from the periodic
11898 + * schedule if no more QTDs are linked to the QH.
11899 + */
11900 +static void deactivate_qh(dwc_otg_hcd_t *hcd,
11901 + dwc_otg_qh_t *qh,
11902 + int free_qtd)
11903 +{
11904 + int continue_split = 0;
11905 + dwc_otg_qtd_t *qtd;
11906 +
11907 + DWC_DEBUGPL(DBG_HCDV, " %s(%p,%p,%d)\n", __func__, hcd, qh, free_qtd);
11908 +
11909 + spin_lock(&hcd->lock);
11910 + qtd = list_entry(qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
11911 +
11912 + if (qtd->complete_split) {
11913 + continue_split = 1;
11914 + } else if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_MID ||
11915 + qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_END) {
11916 + continue_split = 1;
11917 + }
11918 +
11919 + if (free_qtd) {
11920 + dwc_otg_hcd_qtd_remove_and_free(hcd, qtd);
11921 + continue_split = 0;
11922 + }
11923 +
11924 + qh->channel = NULL;
11925 + qh->qtd_in_process = NULL;
11926 + spin_unlock(&hcd->lock);
11927 + dwc_otg_hcd_qh_deactivate(hcd, qh, continue_split);
11928 +}
11929 +
11930 +/**
11931 + * Updates the state of an Isochronous URB when the transfer is stopped for
11932 + * any reason. The fields of the current entry in the frame descriptor array
11933 + * are set based on the transfer state and the input _halt_status. Completes
11934 + * the Isochronous URB if all the URB frames have been completed.
11935 + *
11936 + * @return DWC_OTG_HC_XFER_COMPLETE if there are more frames remaining to be
11937 + * transferred in the URB. Otherwise return DWC_OTG_HC_XFER_URB_COMPLETE.
11938 + */
11939 +static dwc_otg_halt_status_e
11940 +update_isoc_urb_state(dwc_otg_hcd_t *hcd,
11941 + dwc_hc_t *hc,
11942 + dwc_otg_hc_regs_t *hc_regs,
11943 + dwc_otg_qtd_t *qtd,
11944 + dwc_otg_halt_status_e halt_status)
11945 +{
11946 + struct urb *urb = qtd->urb;
11947 + dwc_otg_halt_status_e ret_val = halt_status;
11948 + struct usb_iso_packet_descriptor *frame_desc;
11949 +
11950 + frame_desc = &urb->iso_frame_desc[qtd->isoc_frame_index];
11951 + switch (halt_status) {
11952 + case DWC_OTG_HC_XFER_COMPLETE:
11953 + frame_desc->status = 0;
11954 + frame_desc->actual_length =
11955 + get_actual_xfer_length(hc, hc_regs, qtd,
11956 + halt_status, NULL);
11957 + break;
11958 + case DWC_OTG_HC_XFER_FRAME_OVERRUN:
11959 + urb->error_count++;
11960 + if (hc->ep_is_in) {
11961 + frame_desc->status = -ENOSR;
11962 + } else {
11963 + frame_desc->status = -ECOMM;
11964 + }
11965 + frame_desc->actual_length = 0;
11966 + break;
11967 + case DWC_OTG_HC_XFER_BABBLE_ERR:
11968 + urb->error_count++;
11969 + frame_desc->status = -EOVERFLOW;
11970 + /* Don't need to update actual_length in this case. */
11971 + break;
11972 + case DWC_OTG_HC_XFER_XACT_ERR:
11973 + urb->error_count++;
11974 + frame_desc->status = -EPROTO;
11975 + frame_desc->actual_length =
11976 + get_actual_xfer_length(hc, hc_regs, qtd,
11977 + halt_status, NULL);
11978 + default:
11979 + DWC_ERROR("%s: Unhandled _halt_status (%d)\n", __func__,
11980 + halt_status);
11981 + BUG();
11982 + break;
11983 + }
11984 +
11985 + if (++qtd->isoc_frame_index == urb->number_of_packets) {
11986 + /*
11987 + * urb->status is not used for isoc transfers.
11988 + * The individual frame_desc statuses are used instead.
11989 + */
11990 + dwc_otg_hcd_complete_urb(hcd, urb, 0);
11991 + ret_val = DWC_OTG_HC_XFER_URB_COMPLETE;
11992 + } else {
11993 + ret_val = DWC_OTG_HC_XFER_COMPLETE;
11994 + }
11995 +
11996 + return ret_val;
11997 +}
11998 +
11999 +/**
12000 + * Releases a host channel for use by other transfers. Attempts to select and
12001 + * queue more transactions since at least one host channel is available.
12002 + *
12003 + * @param hcd The HCD state structure.
12004 + * @param hc The host channel to release.
12005 + * @param qtd The QTD associated with the host channel. This QTD may be freed
12006 + * if the transfer is complete or an error has occurred.
12007 + * @param halt_status Reason the channel is being released. This status
12008 + * determines the actions taken by this function.
12009 + */
12010 +static void release_channel(dwc_otg_hcd_t *hcd,
12011 + dwc_hc_t *hc,
12012 + dwc_otg_qtd_t *qtd,
12013 + dwc_otg_halt_status_e halt_status)
12014 +{
12015 + dwc_otg_transaction_type_e tr_type;
12016 + int free_qtd;
12017 +
12018 + DWC_DEBUGPL(DBG_HCDV, " %s: channel %d, halt_status %d\n",
12019 + __func__, hc->hc_num, halt_status);
12020 +
12021 + switch (halt_status) {
12022 + case DWC_OTG_HC_XFER_URB_COMPLETE:
12023 + free_qtd = 1;
12024 + break;
12025 + case DWC_OTG_HC_XFER_AHB_ERR:
12026 + case DWC_OTG_HC_XFER_STALL:
12027 + case DWC_OTG_HC_XFER_BABBLE_ERR:
12028 + free_qtd = 1;
12029 + break;
12030 + case DWC_OTG_HC_XFER_XACT_ERR:
12031 + if (qtd->error_count >= 3) {
12032 + DWC_DEBUGPL(DBG_HCDV, " Complete URB with transaction error\n");
12033 + free_qtd = 1;
12034 + qtd->urb->status = -EPROTO;
12035 + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EPROTO);
12036 + } else {
12037 + free_qtd = 0;
12038 + }
12039 + break;
12040 + case DWC_OTG_HC_XFER_URB_DEQUEUE:
12041 + /*
12042 + * The QTD has already been removed and the QH has been
12043 + * deactivated. Don't want to do anything except release the
12044 + * host channel and try to queue more transfers.
12045 + */
12046 + goto cleanup;
12047 + case DWC_OTG_HC_XFER_NO_HALT_STATUS:
12048 + DWC_ERROR("%s: No halt_status, channel %d\n", __func__, hc->hc_num);
12049 + free_qtd = 0;
12050 + break;
12051 + default:
12052 + free_qtd = 0;
12053 + break;
12054 + }
12055 +
12056 + deactivate_qh(hcd, hc->qh, free_qtd);
12057 +
12058 + cleanup:
12059 + /*
12060 + * Release the host channel for use by other transfers. The cleanup
12061 + * function clears the channel interrupt enables and conditions, so
12062 + * there's no need to clear the Channel Halted interrupt separately.
12063 + */
12064 + dwc_otg_hc_cleanup(hcd->core_if, hc);
12065 + list_add_tail(&hc->hc_list_entry, &hcd->free_hc_list);
12066 +
12067 + switch (hc->ep_type) {
12068 + case DWC_OTG_EP_TYPE_CONTROL:
12069 + case DWC_OTG_EP_TYPE_BULK:
12070 + hcd->non_periodic_channels--;
12071 + break;
12072 +
12073 + default:
12074 + /*
12075 + * Don't release reservations for periodic channels here.
12076 + * That's done when a periodic transfer is descheduled (i.e.
12077 + * when the QH is removed from the periodic schedule).
12078 + */
12079 + break;
12080 + }
12081 +
12082 + /* Try to queue more transfers now that there's a free channel. */
12083 + tr_type = dwc_otg_hcd_select_transactions(hcd);
12084 + if (tr_type != DWC_OTG_TRANSACTION_NONE) {
12085 + dwc_otg_hcd_queue_transactions(hcd, tr_type);
12086 + }
12087 +}
12088 +
12089 +/**
12090 + * Halts a host channel. If the channel cannot be halted immediately because
12091 + * the request queue is full, this function ensures that the FIFO empty
12092 + * interrupt for the appropriate queue is enabled so that the halt request can
12093 + * be queued when there is space in the request queue.
12094 + *
12095 + * This function may also be called in DMA mode. In that case, the channel is
12096 + * simply released since the core always halts the channel automatically in
12097 + * DMA mode.
12098 + */
12099 +static void halt_channel(dwc_otg_hcd_t *hcd,
12100 + dwc_hc_t *hc,
12101 + dwc_otg_qtd_t *qtd,
12102 + dwc_otg_halt_status_e halt_status)
12103 +{
12104 + if (hcd->core_if->dma_enable) {
12105 + release_channel(hcd, hc, qtd, halt_status);
12106 + return;
12107 + }
12108 +
12109 + /* Slave mode processing... */
12110 + dwc_otg_hc_halt(hcd->core_if, hc, halt_status);
12111 +
12112 + if (hc->halt_on_queue) {
12113 + gintmsk_data_t gintmsk = {.d32 = 0};
12114 + dwc_otg_core_global_regs_t *global_regs;
12115 + global_regs = hcd->core_if->core_global_regs;
12116 +
12117 + if (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
12118 + hc->ep_type == DWC_OTG_EP_TYPE_BULK) {
12119 + /*
12120 + * Make sure the Non-periodic Tx FIFO empty interrupt
12121 + * is enabled so that the non-periodic schedule will
12122 + * be processed.
12123 + */
12124 + gintmsk.b.nptxfempty = 1;
12125 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
12126 + } else {
12127 + /*
12128 + * Move the QH from the periodic queued schedule to
12129 + * the periodic assigned schedule. This allows the
12130 + * halt to be queued when the periodic schedule is
12131 + * processed.
12132 + */
12133 + list_move(&hc->qh->qh_list_entry,
12134 + &hcd->periodic_sched_assigned);
12135 +
12136 + /*
12137 + * Make sure the Periodic Tx FIFO Empty interrupt is
12138 + * enabled so that the periodic schedule will be
12139 + * processed.
12140 + */
12141 + gintmsk.b.ptxfempty = 1;
12142 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmsk.d32);
12143 + }
12144 + }
12145 +}
12146 +
12147 +/**
12148 + * Performs common cleanup for non-periodic transfers after a Transfer
12149 + * Complete interrupt. This function should be called after any endpoint type
12150 + * specific handling is finished to release the host channel.
12151 + */
12152 +static void complete_non_periodic_xfer(dwc_otg_hcd_t *hcd,
12153 + dwc_hc_t *hc,
12154 + dwc_otg_hc_regs_t *hc_regs,
12155 + dwc_otg_qtd_t *qtd,
12156 + dwc_otg_halt_status_e halt_status)
12157 +{
12158 + hcint_data_t hcint;
12159 +
12160 + qtd->error_count = 0;
12161 +
12162 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12163 + if (hcint.b.nyet) {
12164 + /*
12165 + * Got a NYET on the last transaction of the transfer. This
12166 + * means that the endpoint should be in the PING state at the
12167 + * beginning of the next transfer.
12168 + */
12169 + hc->qh->ping_state = 1;
12170 + clear_hc_int(hc_regs, nyet);
12171 + }
12172 +
12173 + /*
12174 + * Always halt and release the host channel to make it available for
12175 + * more transfers. There may still be more phases for a control
12176 + * transfer or more data packets for a bulk transfer at this point,
12177 + * but the host channel is still halted. A channel will be reassigned
12178 + * to the transfer when the non-periodic schedule is processed after
12179 + * the channel is released. This allows transactions to be queued
12180 + * properly via dwc_otg_hcd_queue_transactions, which also enables the
12181 + * Tx FIFO Empty interrupt if necessary.
12182 + */
12183 + if (hc->ep_is_in) {
12184 + /*
12185 + * IN transfers in Slave mode require an explicit disable to
12186 + * halt the channel. (In DMA mode, this call simply releases
12187 + * the channel.)
12188 + */
12189 + halt_channel(hcd, hc, qtd, halt_status);
12190 + } else {
12191 + /*
12192 + * The channel is automatically disabled by the core for OUT
12193 + * transfers in Slave mode.
12194 + */
12195 + release_channel(hcd, hc, qtd, halt_status);
12196 + }
12197 +}
12198 +
12199 +/**
12200 + * Performs common cleanup for periodic transfers after a Transfer Complete
12201 + * interrupt. This function should be called after any endpoint type specific
12202 + * handling is finished to release the host channel.
12203 + */
12204 +static void complete_periodic_xfer(dwc_otg_hcd_t *hcd,
12205 + dwc_hc_t *hc,
12206 + dwc_otg_hc_regs_t *hc_regs,
12207 + dwc_otg_qtd_t *qtd,
12208 + dwc_otg_halt_status_e halt_status)
12209 +{
12210 + hctsiz_data_t hctsiz;
12211 + qtd->error_count = 0;
12212 +
12213 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12214 + if (!hc->ep_is_in || hctsiz.b.pktcnt == 0) {
12215 + /* Core halts channel in these cases. */
12216 + release_channel(hcd, hc, qtd, halt_status);
12217 + } else {
12218 + /* Flush any outstanding requests from the Tx queue. */
12219 + halt_channel(hcd, hc, qtd, halt_status);
12220 + }
12221 +}
12222 +
12223 +/**
12224 + * Handles a host channel Transfer Complete interrupt. This handler may be
12225 + * called in either DMA mode or Slave mode.
12226 + */
12227 +static int32_t handle_hc_xfercomp_intr(dwc_otg_hcd_t *hcd,
12228 + dwc_hc_t *hc,
12229 + dwc_otg_hc_regs_t *hc_regs,
12230 + dwc_otg_qtd_t *qtd)
12231 +{
12232 + int urb_xfer_done;
12233 + dwc_otg_halt_status_e halt_status = DWC_OTG_HC_XFER_COMPLETE;
12234 + struct urb *urb = qtd->urb;
12235 + int pipe_type = usb_pipetype(urb->pipe);
12236 +
12237 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12238 + "Transfer Complete--\n", hc->hc_num);
12239 +
12240 + /*
12241 + * Handle xfer complete on CSPLIT.
12242 + */
12243 + if (hc->qh->do_split) {
12244 + qtd->complete_split = 0;
12245 + }
12246 +
12247 + /* Update the QTD and URB states. */
12248 + switch (pipe_type) {
12249 + case PIPE_CONTROL:
12250 + switch (qtd->control_phase) {
12251 + case DWC_OTG_CONTROL_SETUP:
12252 + if (urb->transfer_buffer_length > 0) {
12253 + qtd->control_phase = DWC_OTG_CONTROL_DATA;
12254 + } else {
12255 + qtd->control_phase = DWC_OTG_CONTROL_STATUS;
12256 + }
12257 + DWC_DEBUGPL(DBG_HCDV, " Control setup transaction done\n");
12258 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
12259 + break;
12260 + case DWC_OTG_CONTROL_DATA: {
12261 + urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12262 + if (urb_xfer_done) {
12263 + qtd->control_phase = DWC_OTG_CONTROL_STATUS;
12264 + DWC_DEBUGPL(DBG_HCDV, " Control data transfer done\n");
12265 + } else {
12266 + save_data_toggle(hc, hc_regs, qtd);
12267 + }
12268 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
12269 + break;
12270 + }
12271 + case DWC_OTG_CONTROL_STATUS:
12272 + DWC_DEBUGPL(DBG_HCDV, " Control transfer complete\n");
12273 + if (urb->status == -EINPROGRESS) {
12274 + urb->status = 0;
12275 + }
12276 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12277 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
12278 + break;
12279 + }
12280 +
12281 + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
12282 + break;
12283 + case PIPE_BULK:
12284 + DWC_DEBUGPL(DBG_HCDV, " Bulk transfer complete\n");
12285 + urb_xfer_done = update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12286 + if (urb_xfer_done) {
12287 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12288 + halt_status = DWC_OTG_HC_XFER_URB_COMPLETE;
12289 + } else {
12290 + halt_status = DWC_OTG_HC_XFER_COMPLETE;
12291 + }
12292 +
12293 + save_data_toggle(hc, hc_regs, qtd);
12294 + complete_non_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
12295 + break;
12296 + case PIPE_INTERRUPT:
12297 + DWC_DEBUGPL(DBG_HCDV, " Interrupt transfer complete\n");
12298 + update_urb_state_xfer_comp(hc, hc_regs, urb, qtd);
12299 +
12300 + /*
12301 + * Interrupt URB is done on the first transfer complete
12302 + * interrupt.
12303 + */
12304 + dwc_otg_hcd_complete_urb(hcd, urb, urb->status);
12305 + save_data_toggle(hc, hc_regs, qtd);
12306 + complete_periodic_xfer(hcd, hc, hc_regs, qtd,
12307 + DWC_OTG_HC_XFER_URB_COMPLETE);
12308 + break;
12309 + case PIPE_ISOCHRONOUS:
12310 + DWC_DEBUGPL(DBG_HCDV, " Isochronous transfer complete\n");
12311 + if (qtd->isoc_split_pos == DWC_HCSPLIT_XACTPOS_ALL) {
12312 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12313 + DWC_OTG_HC_XFER_COMPLETE);
12314 + }
12315 + complete_periodic_xfer(hcd, hc, hc_regs, qtd, halt_status);
12316 + break;
12317 + }
12318 +
12319 + disable_hc_int(hc_regs, xfercompl);
12320 +
12321 + return 1;
12322 +}
12323 +
12324 +/**
12325 + * Handles a host channel STALL interrupt. This handler may be called in
12326 + * either DMA mode or Slave mode.
12327 + */
12328 +static int32_t handle_hc_stall_intr(dwc_otg_hcd_t *hcd,
12329 + dwc_hc_t *hc,
12330 + dwc_otg_hc_regs_t *hc_regs,
12331 + dwc_otg_qtd_t *qtd)
12332 +{
12333 + struct urb *urb = qtd->urb;
12334 + int pipe_type = usb_pipetype(urb->pipe);
12335 +
12336 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12337 + "STALL Received--\n", hc->hc_num);
12338 +
12339 + if (pipe_type == PIPE_CONTROL) {
12340 + dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
12341 + }
12342 +
12343 + if (pipe_type == PIPE_BULK || pipe_type == PIPE_INTERRUPT) {
12344 + dwc_otg_hcd_complete_urb(hcd, urb, -EPIPE);
12345 + /*
12346 + * USB protocol requires resetting the data toggle for bulk
12347 + * and interrupt endpoints when a CLEAR_FEATURE(ENDPOINT_HALT)
12348 + * setup command is issued to the endpoint. Anticipate the
12349 + * CLEAR_FEATURE command since a STALL has occurred and reset
12350 + * the data toggle now.
12351 + */
12352 + hc->qh->data_toggle = 0;
12353 + }
12354 +
12355 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_STALL);
12356 +
12357 + disable_hc_int(hc_regs, stall);
12358 +
12359 + return 1;
12360 +}
12361 +
12362 +/*
12363 + * Updates the state of the URB when a transfer has been stopped due to an
12364 + * abnormal condition before the transfer completes. Modifies the
12365 + * actual_length field of the URB to reflect the number of bytes that have
12366 + * actually been transferred via the host channel.
12367 + */
12368 +static void update_urb_state_xfer_intr(dwc_hc_t *hc,
12369 + dwc_otg_hc_regs_t *hc_regs,
12370 + struct urb *urb,
12371 + dwc_otg_qtd_t *qtd,
12372 + dwc_otg_halt_status_e halt_status)
12373 +{
12374 + uint32_t bytes_transferred = get_actual_xfer_length(hc, hc_regs, qtd,
12375 + halt_status, NULL);
12376 + urb->actual_length += bytes_transferred;
12377 +
12378 +#ifdef DEBUG
12379 + {
12380 + hctsiz_data_t hctsiz;
12381 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12382 + DWC_DEBUGPL(DBG_HCDV, "DWC_otg: %s: %s, channel %d\n",
12383 + __func__, (hc->ep_is_in ? "IN" : "OUT"), hc->hc_num);
12384 + DWC_DEBUGPL(DBG_HCDV, " hc->start_pkt_count %d\n", hc->start_pkt_count);
12385 + DWC_DEBUGPL(DBG_HCDV, " hctsiz.pktcnt %d\n", hctsiz.b.pktcnt);
12386 + DWC_DEBUGPL(DBG_HCDV, " hc->max_packet %d\n", hc->max_packet);
12387 + DWC_DEBUGPL(DBG_HCDV, " bytes_transferred %d\n", bytes_transferred);
12388 + DWC_DEBUGPL(DBG_HCDV, " urb->actual_length %d\n", urb->actual_length);
12389 + DWC_DEBUGPL(DBG_HCDV, " urb->transfer_buffer_length %d\n",
12390 + urb->transfer_buffer_length);
12391 + }
12392 +#endif
12393 +}
12394 +
12395 +/**
12396 + * Handles a host channel NAK interrupt. This handler may be called in either
12397 + * DMA mode or Slave mode.
12398 + */
12399 +static int32_t handle_hc_nak_intr(dwc_otg_hcd_t *hcd,
12400 + dwc_hc_t *hc,
12401 + dwc_otg_hc_regs_t *hc_regs,
12402 + dwc_otg_qtd_t *qtd)
12403 +{
12404 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12405 + "NAK Received--\n", hc->hc_num);
12406 +
12407 + /*
12408 + * Handle NAK for IN/OUT SSPLIT/CSPLIT transfers, bulk, control, and
12409 + * interrupt. Re-start the SSPLIT transfer.
12410 + */
12411 + if (hc->do_split) {
12412 + if (hc->complete_split) {
12413 + qtd->error_count = 0;
12414 + }
12415 + qtd->complete_split = 0;
12416 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12417 + goto handle_nak_done;
12418 + }
12419 +
12420 + switch (usb_pipetype(qtd->urb->pipe)) {
12421 + case PIPE_CONTROL:
12422 + case PIPE_BULK:
12423 + if (hcd->core_if->dma_enable && hc->ep_is_in) {
12424 + /*
12425 + * NAK interrupts are enabled on bulk/control IN
12426 + * transfers in DMA mode for the sole purpose of
12427 + * resetting the error count after a transaction error
12428 + * occurs. The core will continue transferring data.
12429 + */
12430 + qtd->error_count = 0;
12431 + goto handle_nak_done;
12432 + }
12433 +
12434 + /*
12435 + * NAK interrupts normally occur during OUT transfers in DMA
12436 + * or Slave mode. For IN transfers, more requests will be
12437 + * queued as request queue space is available.
12438 + */
12439 + qtd->error_count = 0;
12440 +
12441 + if (!hc->qh->ping_state) {
12442 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
12443 + qtd, DWC_OTG_HC_XFER_NAK);
12444 + save_data_toggle(hc, hc_regs, qtd);
12445 + if (qtd->urb->dev->speed == USB_SPEED_HIGH) {
12446 + hc->qh->ping_state = 1;
12447 + }
12448 + }
12449 +
12450 + /*
12451 + * Halt the channel so the transfer can be re-started from
12452 + * the appropriate point or the PING protocol will
12453 + * start/continue.
12454 + */
12455 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12456 + break;
12457 + case PIPE_INTERRUPT:
12458 + qtd->error_count = 0;
12459 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NAK);
12460 + break;
12461 + case PIPE_ISOCHRONOUS:
12462 + /* Should never get called for isochronous transfers. */
12463 + BUG();
12464 + break;
12465 + }
12466 +
12467 + handle_nak_done:
12468 + disable_hc_int(hc_regs, nak);
12469 +
12470 + return 1;
12471 +}
12472 +
12473 +/**
12474 + * Handles a host channel ACK interrupt. This interrupt is enabled when
12475 + * performing the PING protocol in Slave mode, when errors occur during
12476 + * either Slave mode or DMA mode, and during Start Split transactions.
12477 + */
12478 +static int32_t handle_hc_ack_intr(dwc_otg_hcd_t *hcd,
12479 + dwc_hc_t *hc,
12480 + dwc_otg_hc_regs_t *hc_regs,
12481 + dwc_otg_qtd_t *qtd)
12482 +{
12483 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12484 + "ACK Received--\n", hc->hc_num);
12485 +
12486 + if (hc->do_split) {
12487 + /*
12488 + * Handle ACK on SSPLIT.
12489 + * ACK should not occur in CSPLIT.
12490 + */
12491 + if (!hc->ep_is_in && hc->data_pid_start != DWC_OTG_HC_PID_SETUP) {
12492 + qtd->ssplit_out_xfer_count = hc->xfer_len;
12493 + }
12494 + if (!(hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in)) {
12495 + /* Don't need complete for isochronous out transfers. */
12496 + qtd->complete_split = 1;
12497 + }
12498 +
12499 + /* ISOC OUT */
12500 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
12501 + switch (hc->xact_pos) {
12502 + case DWC_HCSPLIT_XACTPOS_ALL:
12503 + break;
12504 + case DWC_HCSPLIT_XACTPOS_END:
12505 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
12506 + qtd->isoc_split_offset = 0;
12507 + break;
12508 + case DWC_HCSPLIT_XACTPOS_BEGIN:
12509 + case DWC_HCSPLIT_XACTPOS_MID:
12510 + /*
12511 + * For BEGIN or MID, calculate the length for
12512 + * the next microframe to determine the correct
12513 + * SSPLIT token, either MID or END.
12514 + */
12515 + {
12516 + struct usb_iso_packet_descriptor *frame_desc;
12517 +
12518 + frame_desc = &qtd->urb->iso_frame_desc[qtd->isoc_frame_index];
12519 + qtd->isoc_split_offset += 188;
12520 +
12521 + if ((frame_desc->length - qtd->isoc_split_offset) <= 188) {
12522 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_END;
12523 + } else {
12524 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_MID;
12525 + }
12526 +
12527 + }
12528 + break;
12529 + }
12530 + } else {
12531 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
12532 + }
12533 + } else {
12534 + qtd->error_count = 0;
12535 +
12536 + if (hc->qh->ping_state) {
12537 + hc->qh->ping_state = 0;
12538 + /*
12539 + * Halt the channel so the transfer can be re-started
12540 + * from the appropriate point. This only happens in
12541 + * Slave mode. In DMA mode, the ping_state is cleared
12542 + * when the transfer is started because the core
12543 + * automatically executes the PING, then the transfer.
12544 + */
12545 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_ACK);
12546 + }
12547 + }
12548 +
12549 + /*
12550 + * If the ACK occurred when _not_ in the PING state, let the channel
12551 + * continue transferring data after clearing the error count.
12552 + */
12553 +
12554 + disable_hc_int(hc_regs, ack);
12555 +
12556 + return 1;
12557 +}
12558 +
12559 +/**
12560 + * Handles a host channel NYET interrupt. This interrupt should only occur on
12561 + * Bulk and Control OUT endpoints and for complete split transactions. If a
12562 + * NYET occurs at the same time as a Transfer Complete interrupt, it is
12563 + * handled in the xfercomp interrupt handler, not here. This handler may be
12564 + * called in either DMA mode or Slave mode.
12565 + */
12566 +static int32_t handle_hc_nyet_intr(dwc_otg_hcd_t *hcd,
12567 + dwc_hc_t *hc,
12568 + dwc_otg_hc_regs_t *hc_regs,
12569 + dwc_otg_qtd_t *qtd)
12570 +{
12571 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12572 + "NYET Received--\n", hc->hc_num);
12573 +
12574 + /*
12575 + * NYET on CSPLIT
12576 + * re-do the CSPLIT immediately on non-periodic
12577 + */
12578 + if (hc->do_split && hc->complete_split) {
12579 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
12580 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
12581 + int frnum = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
12582 +
12583 + if (dwc_full_frame_num(frnum) !=
12584 + dwc_full_frame_num(hc->qh->sched_frame)) {
12585 + /*
12586 + * No longer in the same full speed frame.
12587 + * Treat this as a transaction error.
12588 + */
12589 +#if 0
12590 + /** @todo Fix system performance so this can
12591 + * be treated as an error. Right now complete
12592 + * splits cannot be scheduled precisely enough
12593 + * due to other system activity, so this error
12594 + * occurs regularly in Slave mode.
12595 + */
12596 + qtd->error_count++;
12597 +#endif
12598 + qtd->complete_split = 0;
12599 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12600 + /** @todo add support for isoc release */
12601 + goto handle_nyet_done;
12602 + }
12603 + }
12604 +
12605 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
12606 + goto handle_nyet_done;
12607 + }
12608 +
12609 + hc->qh->ping_state = 1;
12610 + qtd->error_count = 0;
12611 +
12612 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb, qtd,
12613 + DWC_OTG_HC_XFER_NYET);
12614 + save_data_toggle(hc, hc_regs, qtd);
12615 +
12616 + /*
12617 + * Halt the channel and re-start the transfer so the PING
12618 + * protocol will start.
12619 + */
12620 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_NYET);
12621 +
12622 +handle_nyet_done:
12623 + disable_hc_int(hc_regs, nyet);
12624 + return 1;
12625 +}
12626 +
12627 +/**
12628 + * Handles a host channel babble interrupt. This handler may be called in
12629 + * either DMA mode or Slave mode.
12630 + */
12631 +static int32_t handle_hc_babble_intr(dwc_otg_hcd_t *hcd,
12632 + dwc_hc_t *hc,
12633 + dwc_otg_hc_regs_t *hc_regs,
12634 + dwc_otg_qtd_t *qtd)
12635 +{
12636 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12637 + "Babble Error--\n", hc->hc_num);
12638 + if (hc->ep_type != DWC_OTG_EP_TYPE_ISOC) {
12639 + dwc_otg_hcd_complete_urb(hcd, qtd->urb, -EOVERFLOW);
12640 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_BABBLE_ERR);
12641 + } else {
12642 + dwc_otg_halt_status_e halt_status;
12643 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12644 + DWC_OTG_HC_XFER_BABBLE_ERR);
12645 + halt_channel(hcd, hc, qtd, halt_status);
12646 + }
12647 + disable_hc_int(hc_regs, bblerr);
12648 + return 1;
12649 +}
12650 +
12651 +/**
12652 + * Handles a host channel AHB error interrupt. This handler is only called in
12653 + * DMA mode.
12654 + */
12655 +static int32_t handle_hc_ahberr_intr(dwc_otg_hcd_t *hcd,
12656 + dwc_hc_t *hc,
12657 + dwc_otg_hc_regs_t *hc_regs,
12658 + dwc_otg_qtd_t *qtd)
12659 +{
12660 + hcchar_data_t hcchar;
12661 + hcsplt_data_t hcsplt;
12662 + hctsiz_data_t hctsiz;
12663 + uint32_t hcdma;
12664 + struct urb *urb = qtd->urb;
12665 +
12666 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12667 + "AHB Error--\n", hc->hc_num);
12668 +
12669 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12670 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
12671 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12672 + hcdma = dwc_read_reg32(&hc_regs->hcdma);
12673 +
12674 + DWC_ERROR("AHB ERROR, Channel %d\n", hc->hc_num);
12675 + DWC_ERROR(" hcchar 0x%08x, hcsplt 0x%08x\n", hcchar.d32, hcsplt.d32);
12676 + DWC_ERROR(" hctsiz 0x%08x, hcdma 0x%08x\n", hctsiz.d32, hcdma);
12677 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD URB Enqueue\n");
12678 + DWC_ERROR(" Device address: %d\n", usb_pipedevice(urb->pipe));
12679 + DWC_ERROR(" Endpoint: %d, %s\n", usb_pipeendpoint(urb->pipe),
12680 + (usb_pipein(urb->pipe) ? "IN" : "OUT"));
12681 + DWC_ERROR(" Endpoint type: %s\n",
12682 + ({char *pipetype;
12683 + switch (usb_pipetype(urb->pipe)) {
12684 + case PIPE_CONTROL: pipetype = "CONTROL"; break;
12685 + case PIPE_BULK: pipetype = "BULK"; break;
12686 + case PIPE_INTERRUPT: pipetype = "INTERRUPT"; break;
12687 + case PIPE_ISOCHRONOUS: pipetype = "ISOCHRONOUS"; break;
12688 + default: pipetype = "UNKNOWN"; break;
12689 + }; pipetype;}));
12690 + DWC_ERROR(" Speed: %s\n",
12691 + ({char *speed;
12692 + switch (urb->dev->speed) {
12693 + case USB_SPEED_HIGH: speed = "HIGH"; break;
12694 + case USB_SPEED_FULL: speed = "FULL"; break;
12695 + case USB_SPEED_LOW: speed = "LOW"; break;
12696 + default: speed = "UNKNOWN"; break;
12697 + }; speed;}));
12698 + DWC_ERROR(" Max packet size: %d\n",
12699 + usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
12700 + DWC_ERROR(" Data buffer length: %d\n", urb->transfer_buffer_length);
12701 + DWC_ERROR(" Transfer buffer: %p, Transfer DMA: %p\n",
12702 + urb->transfer_buffer, (void *)urb->transfer_dma);
12703 + DWC_ERROR(" Setup buffer: %p, Setup DMA: %p\n",
12704 + urb->setup_packet, (void *)urb->setup_dma);
12705 + DWC_ERROR(" Interval: %d\n", urb->interval);
12706 +
12707 + dwc_otg_hcd_complete_urb(hcd, urb, -EIO);
12708 +
12709 + /*
12710 + * Force a channel halt. Don't call halt_channel because that won't
12711 + * write to the HCCHARn register in DMA mode to force the halt.
12712 + */
12713 + dwc_otg_hc_halt(hcd->core_if, hc, DWC_OTG_HC_XFER_AHB_ERR);
12714 +
12715 + disable_hc_int(hc_regs, ahberr);
12716 + return 1;
12717 +}
12718 +
12719 +/**
12720 + * Handles a host channel transaction error interrupt. This handler may be
12721 + * called in either DMA mode or Slave mode.
12722 + */
12723 +static int32_t handle_hc_xacterr_intr(dwc_otg_hcd_t *hcd,
12724 + dwc_hc_t *hc,
12725 + dwc_otg_hc_regs_t *hc_regs,
12726 + dwc_otg_qtd_t *qtd)
12727 +{
12728 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12729 + "Transaction Error--\n", hc->hc_num);
12730 +
12731 + switch (usb_pipetype(qtd->urb->pipe)) {
12732 + case PIPE_CONTROL:
12733 + case PIPE_BULK:
12734 + qtd->error_count++;
12735 + if (!hc->qh->ping_state) {
12736 + update_urb_state_xfer_intr(hc, hc_regs, qtd->urb,
12737 + qtd, DWC_OTG_HC_XFER_XACT_ERR);
12738 + save_data_toggle(hc, hc_regs, qtd);
12739 + if (!hc->ep_is_in && qtd->urb->dev->speed == USB_SPEED_HIGH) {
12740 + hc->qh->ping_state = 1;
12741 + }
12742 + }
12743 +
12744 + /*
12745 + * Halt the channel so the transfer can be re-started from
12746 + * the appropriate point or the PING protocol will start.
12747 + */
12748 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12749 + break;
12750 + case PIPE_INTERRUPT:
12751 + qtd->error_count++;
12752 + if (hc->do_split && hc->complete_split) {
12753 + qtd->complete_split = 0;
12754 + }
12755 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_XACT_ERR);
12756 + break;
12757 + case PIPE_ISOCHRONOUS:
12758 + {
12759 + dwc_otg_halt_status_e halt_status;
12760 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12761 + DWC_OTG_HC_XFER_XACT_ERR);
12762 +
12763 + halt_channel(hcd, hc, qtd, halt_status);
12764 + }
12765 + break;
12766 + }
12767 +
12768 + disable_hc_int(hc_regs, xacterr);
12769 +
12770 + return 1;
12771 +}
12772 +
12773 +/**
12774 + * Handles a host channel frame overrun interrupt. This handler may be called
12775 + * in either DMA mode or Slave mode.
12776 + */
12777 +static int32_t handle_hc_frmovrun_intr(dwc_otg_hcd_t *hcd,
12778 + dwc_hc_t *hc,
12779 + dwc_otg_hc_regs_t *hc_regs,
12780 + dwc_otg_qtd_t *qtd)
12781 +{
12782 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12783 + "Frame Overrun--\n", hc->hc_num);
12784 +
12785 + switch (usb_pipetype(qtd->urb->pipe)) {
12786 + case PIPE_CONTROL:
12787 + case PIPE_BULK:
12788 + break;
12789 + case PIPE_INTERRUPT:
12790 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_FRAME_OVERRUN);
12791 + break;
12792 + case PIPE_ISOCHRONOUS:
12793 + {
12794 + dwc_otg_halt_status_e halt_status;
12795 + halt_status = update_isoc_urb_state(hcd, hc, hc_regs, qtd,
12796 + DWC_OTG_HC_XFER_FRAME_OVERRUN);
12797 +
12798 + halt_channel(hcd, hc, qtd, halt_status);
12799 + }
12800 + break;
12801 + }
12802 +
12803 + disable_hc_int(hc_regs, frmovrun);
12804 +
12805 + return 1;
12806 +}
12807 +
12808 +/**
12809 + * Handles a host channel data toggle error interrupt. This handler may be
12810 + * called in either DMA mode or Slave mode.
12811 + */
12812 +static int32_t handle_hc_datatglerr_intr(dwc_otg_hcd_t *hcd,
12813 + dwc_hc_t *hc,
12814 + dwc_otg_hc_regs_t *hc_regs,
12815 + dwc_otg_qtd_t *qtd)
12816 +{
12817 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
12818 + "Data Toggle Error--\n", hc->hc_num);
12819 +
12820 + if (hc->ep_is_in) {
12821 + qtd->error_count = 0;
12822 + } else {
12823 + DWC_ERROR("Data Toggle Error on OUT transfer,"
12824 + "channel %d\n", hc->hc_num);
12825 + }
12826 +
12827 + disable_hc_int(hc_regs, datatglerr);
12828 +
12829 + return 1;
12830 +}
12831 +
12832 +#ifdef DEBUG
12833 +/**
12834 + * This function is for debug only. It checks that a valid halt status is set
12835 + * and that HCCHARn.chdis is clear. If there's a problem, corrective action is
12836 + * taken and a warning is issued.
12837 + * @return 1 if halt status is ok, 0 otherwise.
12838 + */
12839 +static inline int halt_status_ok(dwc_otg_hcd_t *hcd,
12840 + dwc_hc_t *hc,
12841 + dwc_otg_hc_regs_t *hc_regs,
12842 + dwc_otg_qtd_t *qtd)
12843 +{
12844 + hcchar_data_t hcchar;
12845 + hctsiz_data_t hctsiz;
12846 + hcint_data_t hcint;
12847 + hcintmsk_data_t hcintmsk;
12848 + hcsplt_data_t hcsplt;
12849 +
12850 + if (hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS) {
12851 + /*
12852 + * This code is here only as a check. This condition should
12853 + * never happen. Ignore the halt if it does occur.
12854 + */
12855 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12856 + hctsiz.d32 = dwc_read_reg32(&hc_regs->hctsiz);
12857 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12858 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12859 + hcsplt.d32 = dwc_read_reg32(&hc_regs->hcsplt);
12860 + DWC_WARN("%s: hc->halt_status == DWC_OTG_HC_XFER_NO_HALT_STATUS, "
12861 + "channel %d, hcchar 0x%08x, hctsiz 0x%08x, "
12862 + "hcint 0x%08x, hcintmsk 0x%08x, "
12863 + "hcsplt 0x%08x, qtd->complete_split %d\n",
12864 + __func__, hc->hc_num, hcchar.d32, hctsiz.d32,
12865 + hcint.d32, hcintmsk.d32,
12866 + hcsplt.d32, qtd->complete_split);
12867 +
12868 + DWC_WARN("%s: no halt status, channel %d, ignoring interrupt\n",
12869 + __func__, hc->hc_num);
12870 + DWC_WARN("\n");
12871 + clear_hc_int(hc_regs, chhltd);
12872 + return 0;
12873 + }
12874 +
12875 + /*
12876 + * This code is here only as a check. hcchar.chdis should
12877 + * never be set when the halt interrupt occurs. Halt the
12878 + * channel again if it does occur.
12879 + */
12880 + hcchar.d32 = dwc_read_reg32(&hc_regs->hcchar);
12881 + if (hcchar.b.chdis) {
12882 + DWC_WARN("%s: hcchar.chdis set unexpectedly, "
12883 + "hcchar 0x%08x, trying to halt again\n",
12884 + __func__, hcchar.d32);
12885 + clear_hc_int(hc_regs, chhltd);
12886 + hc->halt_pending = 0;
12887 + halt_channel(hcd, hc, qtd, hc->halt_status);
12888 + return 0;
12889 + }
12890 +
12891 + return 1;
12892 +}
12893 +#endif
12894 +
12895 +/**
12896 + * Handles a host Channel Halted interrupt in DMA mode. This handler
12897 + * determines the reason the channel halted and proceeds accordingly.
12898 + */
12899 +static void handle_hc_chhltd_intr_dma(dwc_otg_hcd_t *hcd,
12900 + dwc_hc_t *hc,
12901 + dwc_otg_hc_regs_t *hc_regs,
12902 + dwc_otg_qtd_t *qtd)
12903 +{
12904 + hcint_data_t hcint;
12905 + hcintmsk_data_t hcintmsk;
12906 + int out_nak_enh = 0;
12907 +
12908 + /* For core with OUT NAK enhancement, the flow for high-
12909 + * speed CONTROL/BULK OUT is handled a little differently.
12910 + */
12911 + if (hcd->core_if->snpsid >= 0x4F54271A) {
12912 + if (hc->speed == DWC_OTG_EP_SPEED_HIGH && !hc->ep_is_in &&
12913 + (hc->ep_type == DWC_OTG_EP_TYPE_CONTROL ||
12914 + hc->ep_type == DWC_OTG_EP_TYPE_BULK)) {
12915 + DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement enabled\n");
12916 + out_nak_enh = 1;
12917 + } else {
12918 + DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, not HS Ctrl/Bulk OUT EP\n");
12919 + }
12920 + } else {
12921 + DWC_DEBUGPL(DBG_HCD, "OUT NAK enhancement disabled, no core support\n");
12922 + }
12923 +
12924 + if (hc->halt_status == DWC_OTG_HC_XFER_URB_DEQUEUE ||
12925 + hc->halt_status == DWC_OTG_HC_XFER_AHB_ERR) {
12926 + /*
12927 + * Just release the channel. A dequeue can happen on a
12928 + * transfer timeout. In the case of an AHB Error, the channel
12929 + * was forced to halt because there's no way to gracefully
12930 + * recover.
12931 + */
12932 + release_channel(hcd, hc, qtd, hc->halt_status);
12933 + return;
12934 + }
12935 +
12936 + /* Read the HCINTn register to determine the cause for the halt. */
12937 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
12938 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
12939 +
12940 + if (hcint.b.xfercomp) {
12941 + /** @todo This is here because of a possible hardware bug. Spec
12942 + * says that on SPLIT-ISOC OUT transfers in DMA mode that a HALT
12943 + * interrupt w/ACK bit set should occur, but I only see the
12944 + * XFERCOMP bit, even with it masked out. This is a workaround
12945 + * for that behavior. Should fix this when hardware is fixed.
12946 + */
12947 + if (hc->ep_type == DWC_OTG_EP_TYPE_ISOC && !hc->ep_is_in) {
12948 + handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
12949 + }
12950 + handle_hc_xfercomp_intr(hcd, hc, hc_regs, qtd);
12951 + } else if (hcint.b.stall) {
12952 + handle_hc_stall_intr(hcd, hc, hc_regs, qtd);
12953 + } else if (hcint.b.xacterr) {
12954 + if (out_nak_enh) {
12955 + if (hcint.b.nyet || hcint.b.nak || hcint.b.ack) {
12956 + printk(KERN_DEBUG "XactErr with NYET/NAK/ACK\n");
12957 + qtd->error_count = 0;
12958 + } else {
12959 + printk(KERN_DEBUG "XactErr without NYET/NAK/ACK\n");
12960 + }
12961 + }
12962 +
12963 + /*
12964 + * Must handle xacterr before nak or ack. Could get a xacterr
12965 + * at the same time as either of these on a BULK/CONTROL OUT
12966 + * that started with a PING. The xacterr takes precedence.
12967 + */
12968 + handle_hc_xacterr_intr(hcd, hc, hc_regs, qtd);
12969 + } else if (!out_nak_enh) {
12970 + if (hcint.b.nyet) {
12971 + /*
12972 + * Must handle nyet before nak or ack. Could get a nyet at the
12973 + * same time as either of those on a BULK/CONTROL OUT that
12974 + * started with a PING. The nyet takes precedence.
12975 + */
12976 + handle_hc_nyet_intr(hcd, hc, hc_regs, qtd);
12977 + } else if (hcint.b.bblerr) {
12978 + handle_hc_babble_intr(hcd, hc, hc_regs, qtd);
12979 + } else if (hcint.b.frmovrun) {
12980 + handle_hc_frmovrun_intr(hcd, hc, hc_regs, qtd);
12981 + } else if (hcint.b.nak && !hcintmsk.b.nak) {
12982 + /*
12983 + * If nak is not masked, it's because a non-split IN transfer
12984 + * is in an error state. In that case, the nak is handled by
12985 + * the nak interrupt handler, not here. Handle nak here for
12986 + * BULK/CONTROL OUT transfers, which halt on a NAK to allow
12987 + * rewinding the buffer pointer.
12988 + */
12989 + handle_hc_nak_intr(hcd, hc, hc_regs, qtd);
12990 + } else if (hcint.b.ack && !hcintmsk.b.ack) {
12991 + /*
12992 + * If ack is not masked, it's because a non-split IN transfer
12993 + * is in an error state. In that case, the ack is handled by
12994 + * the ack interrupt handler, not here. Handle ack here for
12995 + * split transfers. Start splits halt on ACK.
12996 + */
12997 + handle_hc_ack_intr(hcd, hc, hc_regs, qtd);
12998 + } else {
12999 + if (hc->ep_type == DWC_OTG_EP_TYPE_INTR ||
13000 + hc->ep_type == DWC_OTG_EP_TYPE_ISOC) {
13001 + /*
13002 + * A periodic transfer halted with no other channel
13003 + * interrupts set. Assume it was halted by the core
13004 + * because it could not be completed in its scheduled
13005 + * (micro)frame.
13006 + */
13007 +#ifdef DEBUG
13008 + DWC_PRINT("%s: Halt channel %d (assume incomplete periodic transfer)\n",
13009 + __func__, hc->hc_num);
13010 +#endif
13011 + halt_channel(hcd, hc, qtd, DWC_OTG_HC_XFER_PERIODIC_INCOMPLETE);
13012 + } else {
13013 + DWC_ERROR("%s: Channel %d, DMA Mode -- ChHltd set, but reason "
13014 + "for halting is unknown, hcint 0x%08x, intsts 0x%08x\n",
13015 + __func__, hc->hc_num, hcint.d32,
13016 + dwc_read_reg32(&hcd->core_if->core_global_regs->gintsts));
13017 + }
13018 + }
13019 + } else {
13020 + printk(KERN_DEBUG "NYET/NAK/ACK/other in non-error case, 0x%08x\n", hcint.d32);
13021 + }
13022 +}
13023 +
13024 +/**
13025 + * Handles a host channel Channel Halted interrupt.
13026 + *
13027 + * In slave mode, this handler is called only when the driver specifically
13028 + * requests a halt. This occurs during handling other host channel interrupts
13029 + * (e.g. nak, xacterr, stall, nyet, etc.).
13030 + *
13031 + * In DMA mode, this is the interrupt that occurs when the core has finished
13032 + * processing a transfer on a channel. Other host channel interrupts (except
13033 + * ahberr) are disabled in DMA mode.
13034 + */
13035 +static int32_t handle_hc_chhltd_intr(dwc_otg_hcd_t *hcd,
13036 + dwc_hc_t *hc,
13037 + dwc_otg_hc_regs_t *hc_regs,
13038 + dwc_otg_qtd_t *qtd)
13039 +{
13040 + DWC_DEBUGPL(DBG_HCD, "--Host Channel %d Interrupt: "
13041 + "Channel Halted--\n", hc->hc_num);
13042 +
13043 + if (hcd->core_if->dma_enable) {
13044 + handle_hc_chhltd_intr_dma(hcd, hc, hc_regs, qtd);
13045 + } else {
13046 +#ifdef DEBUG
13047 + if (!halt_status_ok(hcd, hc, hc_regs, qtd)) {
13048 + return 1;
13049 + }
13050 +#endif
13051 + release_channel(hcd, hc, qtd, hc->halt_status);
13052 + }
13053 +
13054 + return 1;
13055 +}
13056 +
13057 +/** Handles interrupt for a specific Host Channel */
13058 +int32_t dwc_otg_hcd_handle_hc_n_intr(dwc_otg_hcd_t *dwc_otg_hcd, uint32_t num)
13059 +{
13060 + int retval = 0;
13061 + hcint_data_t hcint;
13062 + hcintmsk_data_t hcintmsk;
13063 + dwc_hc_t *hc;
13064 + dwc_otg_hc_regs_t *hc_regs;
13065 + dwc_otg_qtd_t *qtd;
13066 +
13067 + DWC_DEBUGPL(DBG_HCDV, "--Host Channel Interrupt--, Channel %d\n", num);
13068 +
13069 + hc = dwc_otg_hcd->hc_ptr_array[num];
13070 + hc_regs = dwc_otg_hcd->core_if->host_if->hc_regs[num];
13071 + qtd = list_entry(hc->qh->qtd_list.next, dwc_otg_qtd_t, qtd_list_entry);
13072 +
13073 + hcint.d32 = dwc_read_reg32(&hc_regs->hcint);
13074 + hcintmsk.d32 = dwc_read_reg32(&hc_regs->hcintmsk);
13075 + DWC_DEBUGPL(DBG_HCDV, " hcint 0x%08x, hcintmsk 0x%08x, hcint&hcintmsk 0x%08x\n",
13076 + hcint.d32, hcintmsk.d32, (hcint.d32 & hcintmsk.d32));
13077 + hcint.d32 = hcint.d32 & hcintmsk.d32;
13078 +
13079 + if (!dwc_otg_hcd->core_if->dma_enable) {
13080 + if (hcint.b.chhltd && hcint.d32 != 0x2) {
13081 + hcint.b.chhltd = 0;
13082 + }
13083 + }
13084 +
13085 + if (hcint.b.xfercomp) {
13086 + retval |= handle_hc_xfercomp_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13087 + /*
13088 + * If NYET occurred at same time as Xfer Complete, the NYET is
13089 + * handled by the Xfer Complete interrupt handler. Don't want
13090 + * to call the NYET interrupt handler in this case.
13091 + */
13092 + hcint.b.nyet = 0;
13093 + }
13094 + if (hcint.b.chhltd) {
13095 + retval |= handle_hc_chhltd_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13096 + }
13097 + if (hcint.b.ahberr) {
13098 + retval |= handle_hc_ahberr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13099 + }
13100 + if (hcint.b.stall) {
13101 + retval |= handle_hc_stall_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13102 + }
13103 + if (hcint.b.nak) {
13104 + retval |= handle_hc_nak_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13105 + }
13106 + if (hcint.b.ack) {
13107 + retval |= handle_hc_ack_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13108 + }
13109 + if (hcint.b.nyet) {
13110 + retval |= handle_hc_nyet_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13111 + }
13112 + if (hcint.b.xacterr) {
13113 + retval |= handle_hc_xacterr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13114 + }
13115 + if (hcint.b.bblerr) {
13116 + retval |= handle_hc_babble_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13117 + }
13118 + if (hcint.b.frmovrun) {
13119 + retval |= handle_hc_frmovrun_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13120 + }
13121 + if (hcint.b.datatglerr) {
13122 + retval |= handle_hc_datatglerr_intr(dwc_otg_hcd, hc, hc_regs, qtd);
13123 + }
13124 +
13125 + return retval;
13126 +}
13127 +
13128 +#endif /* DWC_DEVICE_ONLY */
13129 --- /dev/null
13130 +++ b/drivers/usb/dwc/otg_hcd_queue.c
13131 @@ -0,0 +1,794 @@
13132 +/* ==========================================================================
13133 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_hcd_queue.c $
13134 + * $Revision: #33 $
13135 + * $Date: 2008/07/15 $
13136 + * $Change: 1064918 $
13137 + *
13138 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13139 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13140 + * otherwise expressly agreed to in writing between Synopsys and you.
13141 + *
13142 + * The Software IS NOT an item of Licensed Software or Licensed Product under
13143 + * any End User Software License Agreement or Agreement for Licensed Product
13144 + * with Synopsys or any supplement thereto. You are permitted to use and
13145 + * redistribute this Software in source and binary forms, with or without
13146 + * modification, provided that redistributions of source code must retain this
13147 + * notice. You may not view, use, disclose, copy or distribute this file or
13148 + * any information contained herein except pursuant to this license grant from
13149 + * Synopsys. If you do not agree with this notice, including the disclaimer
13150 + * below, then you are not authorized to use the Software.
13151 + *
13152 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13153 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13154 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13155 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13156 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13157 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13158 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13159 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13160 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13161 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13162 + * DAMAGE.
13163 + * ========================================================================== */
13164 +#ifndef DWC_DEVICE_ONLY
13165 +
13166 +/**
13167 + * @file
13168 + *
13169 + * This file contains the functions to manage Queue Heads and Queue
13170 + * Transfer Descriptors.
13171 + */
13172 +#include <linux/kernel.h>
13173 +#include <linux/module.h>
13174 +#include <linux/moduleparam.h>
13175 +#include <linux/init.h>
13176 +#include <linux/device.h>
13177 +#include <linux/errno.h>
13178 +#include <linux/list.h>
13179 +#include <linux/interrupt.h>
13180 +#include <linux/string.h>
13181 +#include <linux/version.h>
13182 +
13183 +#include <mach/irqs.h>
13184 +
13185 +#include "otg_driver.h"
13186 +#include "otg_hcd.h"
13187 +#include "otg_regs.h"
13188 +
13189 +/**
13190 + * This function allocates and initializes a QH.
13191 + *
13192 + * @param hcd The HCD state structure for the DWC OTG controller.
13193 + * @param[in] urb Holds the information about the device/endpoint that we need
13194 + * to initialize the QH.
13195 + *
13196 + * @return Returns pointer to the newly allocated QH, or NULL on error. */
13197 +dwc_otg_qh_t *dwc_otg_hcd_qh_create (dwc_otg_hcd_t *hcd, struct urb *urb)
13198 +{
13199 + dwc_otg_qh_t *qh;
13200 +
13201 + /* Allocate memory */
13202 + /** @todo add memflags argument */
13203 + qh = dwc_otg_hcd_qh_alloc ();
13204 + if (qh == NULL) {
13205 + return NULL;
13206 + }
13207 +
13208 + dwc_otg_hcd_qh_init (hcd, qh, urb);
13209 + return qh;
13210 +}
13211 +
13212 +/** Free each QTD in the QH's QTD-list then free the QH. QH should already be
13213 + * removed from a list. QTD list should already be empty if called from URB
13214 + * Dequeue.
13215 + *
13216 + * @param[in] hcd HCD instance.
13217 + * @param[in] qh The QH to free.
13218 + */
13219 +void dwc_otg_hcd_qh_free (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13220 +{
13221 + dwc_otg_qtd_t *qtd;
13222 + struct list_head *pos;
13223 + //unsigned long flags;
13224 +
13225 + /* Free each QTD in the QTD list */
13226 +
13227 +#ifdef CONFIG_SMP
13228 + //the spinlock is locked before this function get called,
13229 + //but in case the lock is needed, the check function is preserved
13230 +
13231 + //but in non-SMP mode, all spinlock is lockable.
13232 + //don't do the test in non-SMP mode
13233 +
13234 + if(spin_trylock(&hcd->lock)) {
13235 + printk("%s: It is not supposed to be lockable!!\n",__func__);
13236 + BUG();
13237 + }
13238 +#endif
13239 +// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
13240 + for (pos = qh->qtd_list.next;
13241 + pos != &qh->qtd_list;
13242 + pos = qh->qtd_list.next)
13243 + {
13244 + list_del (pos);
13245 + qtd = dwc_list_to_qtd (pos);
13246 + dwc_otg_hcd_qtd_free (qtd);
13247 + }
13248 +// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
13249 +
13250 + kfree (qh);
13251 + return;
13252 +}
13253 +
13254 +/** Initializes a QH structure.
13255 + *
13256 + * @param[in] hcd The HCD state structure for the DWC OTG controller.
13257 + * @param[in] qh The QH to init.
13258 + * @param[in] urb Holds the information about the device/endpoint that we need
13259 + * to initialize the QH. */
13260 +#define SCHEDULE_SLOP 10
13261 +void dwc_otg_hcd_qh_init(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, struct urb *urb)
13262 +{
13263 + char *speed, *type;
13264 + memset (qh, 0, sizeof (dwc_otg_qh_t));
13265 +
13266 + /* Initialize QH */
13267 + switch (usb_pipetype(urb->pipe)) {
13268 + case PIPE_CONTROL:
13269 + qh->ep_type = USB_ENDPOINT_XFER_CONTROL;
13270 + break;
13271 + case PIPE_BULK:
13272 + qh->ep_type = USB_ENDPOINT_XFER_BULK;
13273 + break;
13274 + case PIPE_ISOCHRONOUS:
13275 + qh->ep_type = USB_ENDPOINT_XFER_ISOC;
13276 + break;
13277 + case PIPE_INTERRUPT:
13278 + qh->ep_type = USB_ENDPOINT_XFER_INT;
13279 + break;
13280 + }
13281 +
13282 + qh->ep_is_in = usb_pipein(urb->pipe) ? 1 : 0;
13283 +
13284 + qh->data_toggle = DWC_OTG_HC_PID_DATA0;
13285 + qh->maxp = usb_maxpacket(urb->dev, urb->pipe, !(usb_pipein(urb->pipe)));
13286 + INIT_LIST_HEAD(&qh->qtd_list);
13287 + INIT_LIST_HEAD(&qh->qh_list_entry);
13288 + qh->channel = NULL;
13289 + qh->speed = urb->dev->speed;
13290 +
13291 + /* FS/LS Enpoint on HS Hub
13292 + * NOT virtual root hub */
13293 + qh->do_split = 0;
13294 + if (((urb->dev->speed == USB_SPEED_LOW) ||
13295 + (urb->dev->speed == USB_SPEED_FULL)) &&
13296 + (urb->dev->tt) && (urb->dev->tt->hub) && (urb->dev->tt->hub->devnum != 1))
13297 + {
13298 + DWC_DEBUGPL(DBG_HCD, "QH init: EP %d: TT found at hub addr %d, for port %d\n",
13299 + usb_pipeendpoint(urb->pipe), urb->dev->tt->hub->devnum,
13300 + urb->dev->ttport);
13301 + qh->do_split = 1;
13302 + }
13303 +
13304 + if (qh->ep_type == USB_ENDPOINT_XFER_INT ||
13305 + qh->ep_type == USB_ENDPOINT_XFER_ISOC) {
13306 + /* Compute scheduling parameters once and save them. */
13307 + hprt0_data_t hprt;
13308 +
13309 + /** @todo Account for split transfers in the bus time. */
13310 + int bytecount = dwc_hb_mult(qh->maxp) * dwc_max_packet(qh->maxp);
13311 + qh->usecs = NS_TO_US(usb_calc_bus_time(urb->dev->speed,
13312 + usb_pipein(urb->pipe),
13313 + (qh->ep_type == USB_ENDPOINT_XFER_ISOC),
13314 + bytecount));
13315 +
13316 + /* Start in a slightly future (micro)frame. */
13317 + qh->sched_frame = dwc_frame_num_inc(hcd->frame_number,
13318 + SCHEDULE_SLOP);
13319 + qh->interval = urb->interval;
13320 +#if 0
13321 + /* Increase interrupt polling rate for debugging. */
13322 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13323 + qh->interval = 8;
13324 + }
13325 +#endif
13326 + hprt.d32 = dwc_read_reg32(hcd->core_if->host_if->hprt0);
13327 + if ((hprt.b.prtspd == DWC_HPRT0_PRTSPD_HIGH_SPEED) &&
13328 + ((urb->dev->speed == USB_SPEED_LOW) ||
13329 + (urb->dev->speed == USB_SPEED_FULL))) {
13330 + qh->interval *= 8;
13331 + qh->sched_frame |= 0x7;
13332 + qh->start_split_frame = qh->sched_frame;
13333 + }
13334 +
13335 + }
13336 +
13337 + DWC_DEBUGPL(DBG_HCD, "DWC OTG HCD QH Initialized\n");
13338 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - qh = %p\n", qh);
13339 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Device Address = %d\n",
13340 + urb->dev->devnum);
13341 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Endpoint %d, %s\n",
13342 + usb_pipeendpoint(urb->pipe),
13343 + usb_pipein(urb->pipe) == USB_DIR_IN ? "IN" : "OUT");
13344 +
13345 + switch(urb->dev->speed) {
13346 + case USB_SPEED_LOW:
13347 + speed = "low";
13348 + break;
13349 + case USB_SPEED_FULL:
13350 + speed = "full";
13351 + break;
13352 + case USB_SPEED_HIGH:
13353 + speed = "high";
13354 + break;
13355 + default:
13356 + speed = "?";
13357 + break;
13358 + }
13359 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Speed = %s\n", speed);
13360 +
13361 + switch (qh->ep_type) {
13362 + case USB_ENDPOINT_XFER_ISOC:
13363 + type = "isochronous";
13364 + break;
13365 + case USB_ENDPOINT_XFER_INT:
13366 + type = "interrupt";
13367 + break;
13368 + case USB_ENDPOINT_XFER_CONTROL:
13369 + type = "control";
13370 + break;
13371 + case USB_ENDPOINT_XFER_BULK:
13372 + type = "bulk";
13373 + break;
13374 + default:
13375 + type = "?";
13376 + break;
13377 + }
13378 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - Type = %s\n",type);
13379 +
13380 +#ifdef DEBUG
13381 + if (qh->ep_type == USB_ENDPOINT_XFER_INT) {
13382 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - usecs = %d\n",
13383 + qh->usecs);
13384 + DWC_DEBUGPL(DBG_HCDV, "DWC OTG HCD QH - interval = %d\n",
13385 + qh->interval);
13386 + }
13387 +#endif
13388 +
13389 + return;
13390 +}
13391 +
13392 +/**
13393 + * Microframe scheduler
13394 + * track the total use in hcd->frame_usecs
13395 + * keep each qh use in qh->frame_usecs
13396 + * when surrendering the qh then donate the time back
13397 + */
13398 +static const u16 max_uframe_usecs[] = { 100, 100, 100, 100, 100, 100, 30, 0 };
13399 +
13400 +/*
13401 + * called from dwc_otg_hcd.c:dwc_otg_hcd_init
13402 + */
13403 +int init_hcd_usecs(dwc_otg_hcd_t *hcd)
13404 +{
13405 + int i;
13406 +
13407 + for (i = 0; i < 8; i++)
13408 + hcd->frame_usecs[i] = max_uframe_usecs[i];
13409 +
13410 + return 0;
13411 +}
13412 +
13413 +static int find_single_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13414 +{
13415 + int i;
13416 + u16 utime;
13417 + int t_left;
13418 + int ret;
13419 + int done;
13420 +
13421 + ret = -1;
13422 + utime = qh->usecs;
13423 + t_left = utime;
13424 + i = 0;
13425 + done = 0;
13426 + while (done == 0) {
13427 + /* At the start hcd->frame_usecs[i] = max_uframe_usecs[i]; */
13428 + if (utime <= hcd->frame_usecs[i]) {
13429 + hcd->frame_usecs[i] -= utime;
13430 + qh->frame_usecs[i] += utime;
13431 + t_left -= utime;
13432 + ret = i;
13433 + done = 1;
13434 + return ret;
13435 + } else {
13436 + i++;
13437 + if (i == 8) {
13438 + done = 1;
13439 + ret = -1;
13440 + }
13441 + }
13442 + }
13443 + return ret;
13444 +}
13445 +
13446 +/*
13447 + * use this for FS apps that can span multiple uframes
13448 + */
13449 +static int find_multi_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13450 +{
13451 + int i;
13452 + int j;
13453 + u16 utime;
13454 + int t_left;
13455 + int ret;
13456 + int done;
13457 + u16 xtime;
13458 +
13459 + ret = -1;
13460 + utime = qh->usecs;
13461 + t_left = utime;
13462 + i = 0;
13463 + done = 0;
13464 +loop:
13465 + while (done == 0) {
13466 + if (hcd->frame_usecs[i] <= 0) {
13467 + i++;
13468 + if (i == 8) {
13469 + done = 1;
13470 + ret = -1;
13471 + }
13472 + goto loop;
13473 + }
13474 +
13475 + /*
13476 + * We need n consequtive slots so use j as a start slot.
13477 + * j plus j+1 must be enough time (for now)
13478 + */
13479 + xtime = hcd->frame_usecs[i];
13480 + for (j = i + 1; j < 8; j++) {
13481 + /*
13482 + * if we add this frame remaining time to xtime we may
13483 + * be OK, if not we need to test j for a complete frame.
13484 + */
13485 + if ((xtime + hcd->frame_usecs[j]) < utime) {
13486 + if (hcd->frame_usecs[j] < max_uframe_usecs[j]) {
13487 + j = 8;
13488 + ret = -1;
13489 + continue;
13490 + }
13491 + }
13492 + if (xtime >= utime) {
13493 + ret = i;
13494 + j = 8; /* stop loop with a good value ret */
13495 + continue;
13496 + }
13497 + /* add the frame time to x time */
13498 + xtime += hcd->frame_usecs[j];
13499 + /* we must have a fully available next frame or break */
13500 + if ((xtime < utime) &&
13501 + (hcd->frame_usecs[j] == max_uframe_usecs[j])) {
13502 + ret = -1;
13503 + j = 8; /* stop loop with a bad value ret */
13504 + continue;
13505 + }
13506 + }
13507 + if (ret >= 0) {
13508 + t_left = utime;
13509 + for (j = i; (t_left > 0) && (j < 8); j++) {
13510 + t_left -= hcd->frame_usecs[j];
13511 + if (t_left <= 0) {
13512 + qh->frame_usecs[j] +=
13513 + hcd->frame_usecs[j] + t_left;
13514 + hcd->frame_usecs[j] = -t_left;
13515 + ret = i;
13516 + done = 1;
13517 + } else {
13518 + qh->frame_usecs[j] +=
13519 + hcd->frame_usecs[j];
13520 + hcd->frame_usecs[j] = 0;
13521 + }
13522 + }
13523 + } else {
13524 + i++;
13525 + if (i == 8) {
13526 + done = 1;
13527 + ret = -1;
13528 + }
13529 + }
13530 + }
13531 + return ret;
13532 +}
13533 +
13534 +static int find_uframe(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13535 +{
13536 + int ret = -1;
13537 +
13538 + if (qh->speed == USB_SPEED_HIGH)
13539 + /* if this is a hs transaction we need a full frame */
13540 + ret = find_single_uframe(hcd, qh);
13541 + else
13542 + /* FS transaction may need a sequence of frames */
13543 + ret = find_multi_uframe(hcd, qh);
13544 +
13545 + return ret;
13546 +}
13547 +
13548 +/**
13549 + * Checks that the max transfer size allowed in a host channel is large enough
13550 + * to handle the maximum data transfer in a single (micro)frame for a periodic
13551 + * transfer.
13552 + *
13553 + * @param hcd The HCD state structure for the DWC OTG controller.
13554 + * @param qh QH for a periodic endpoint.
13555 + *
13556 + * @return 0 if successful, negative error code otherwise.
13557 + */
13558 +static int check_max_xfer_size(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13559 +{
13560 + int status;
13561 + uint32_t max_xfer_size;
13562 + uint32_t max_channel_xfer_size;
13563 +
13564 + status = 0;
13565 +
13566 + max_xfer_size = dwc_max_packet(qh->maxp) * dwc_hb_mult(qh->maxp);
13567 + max_channel_xfer_size = hcd->core_if->core_params->max_transfer_size;
13568 +
13569 + if (max_xfer_size > max_channel_xfer_size) {
13570 + DWC_NOTICE("%s: Periodic xfer length %d > "
13571 + "max xfer length for channel %d\n",
13572 + __func__, max_xfer_size, max_channel_xfer_size);
13573 + status = -ENOSPC;
13574 + }
13575 +
13576 + return status;
13577 +}
13578 +
13579 +/**
13580 + * Schedules an interrupt or isochronous transfer in the periodic schedule.
13581 + */
13582 +static int schedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13583 +{
13584 + int status;
13585 + struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
13586 + int frame;
13587 +
13588 + status = find_uframe(hcd, qh);
13589 + frame = -1;
13590 + if (status == 0) {
13591 + frame = 7;
13592 + } else {
13593 + if (status > 0)
13594 + frame = status - 1;
13595 + }
13596 + /* Set the new frame up */
13597 + if (frame > -1) {
13598 + qh->sched_frame &= ~0x7;
13599 + qh->sched_frame |= (frame & 7);
13600 + }
13601 + if (status != -1)
13602 + status = 0;
13603 + if (status) {
13604 + pr_notice("%s: Insufficient periodic bandwidth for "
13605 + "periodic transfer.\n", __func__);
13606 + return status;
13607 + }
13608 + status = check_max_xfer_size(hcd, qh);
13609 + if (status) {
13610 + pr_notice("%s: Channel max transfer size too small "
13611 + "for periodic transfer.\n", __func__);
13612 + return status;
13613 + }
13614 + /* Always start in the inactive schedule. */
13615 + list_add_tail(&qh->qh_list_entry, &hcd->periodic_sched_inactive);
13616 +
13617 + /* Update claimed usecs per (micro)frame. */
13618 + hcd->periodic_usecs += qh->usecs;
13619 +
13620 + /*
13621 + * Update average periodic bandwidth claimed and # periodic reqs for
13622 + * usbfs.
13623 + */
13624 + bus->bandwidth_allocated += qh->usecs / qh->interval;
13625 +
13626 + if (qh->ep_type == USB_ENDPOINT_XFER_INT)
13627 + bus->bandwidth_int_reqs++;
13628 + else
13629 + bus->bandwidth_isoc_reqs++;
13630 +
13631 + return status;
13632 +}
13633 +
13634 +/**
13635 + * This function adds a QH to either the non periodic or periodic schedule if
13636 + * it is not already in the schedule. If the QH is already in the schedule, no
13637 + * action is taken.
13638 + *
13639 + * @return 0 if successful, negative error code otherwise.
13640 + */
13641 +int dwc_otg_hcd_qh_add (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13642 +{
13643 + //unsigned long flags;
13644 + int status = 0;
13645 +
13646 +#ifdef CONFIG_SMP
13647 + //the spinlock is locked before this function get called,
13648 + //but in case the lock is needed, the check function is preserved
13649 + //but in non-SMP mode, all spinlock is lockable.
13650 + //don't do the test in non-SMP mode
13651 +
13652 + if(spin_trylock(&hcd->lock)) {
13653 + printk("%s: It is not supposed to be lockable!!\n",__func__);
13654 + BUG();
13655 + }
13656 +#endif
13657 +// SPIN_LOCK_IRQSAVE(&hcd->lock, flags)
13658 +
13659 + if (!list_empty(&qh->qh_list_entry)) {
13660 + /* QH already in a schedule. */
13661 + goto done;
13662 + }
13663 +
13664 + /* Add the new QH to the appropriate schedule */
13665 + if (dwc_qh_is_non_per(qh)) {
13666 + /* Always start in the inactive schedule. */
13667 + list_add_tail(&qh->qh_list_entry, &hcd->non_periodic_sched_inactive);
13668 + } else {
13669 + status = schedule_periodic(hcd, qh);
13670 + }
13671 +
13672 + done:
13673 +// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags)
13674 +
13675 + return status;
13676 +}
13677 +
13678 +/**
13679 + * Removes an interrupt or isochronous transfer from the periodic schedule.
13680 + */
13681 +static void deschedule_periodic(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13682 +{
13683 + struct usb_bus *bus = hcd_to_bus(dwc_otg_hcd_to_hcd(hcd));
13684 + int i;
13685 +
13686 + list_del_init(&qh->qh_list_entry);
13687 + /* Update claimed usecs per (micro)frame. */
13688 + hcd->periodic_usecs -= qh->usecs;
13689 + for (i = 0; i < 8; i++) {
13690 + hcd->frame_usecs[i] += qh->frame_usecs[i];
13691 + qh->frame_usecs[i] = 0;
13692 + }
13693 + /*
13694 + * Update average periodic bandwidth claimed and # periodic reqs for
13695 + * usbfs.
13696 + */
13697 + bus->bandwidth_allocated -= qh->usecs / qh->interval;
13698 +
13699 + if (qh->ep_type == USB_ENDPOINT_XFER_INT)
13700 + bus->bandwidth_int_reqs--;
13701 + else
13702 + bus->bandwidth_isoc_reqs--;
13703 +}
13704 +
13705 +/**
13706 + * Removes a QH from either the non-periodic or periodic schedule. Memory is
13707 + * not freed.
13708 + *
13709 + * @param[in] hcd The HCD state structure.
13710 + * @param[in] qh QH to remove from schedule. */
13711 +void dwc_otg_hcd_qh_remove (dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh)
13712 +{
13713 + //unsigned long flags;
13714 +
13715 +#ifdef CONFIG_SMP
13716 + //the spinlock is locked before this function get called,
13717 + //but in case the lock is needed, the check function is preserved
13718 + //but in non-SMP mode, all spinlock is lockable.
13719 + //don't do the test in non-SMP mode
13720 +
13721 + if(spin_trylock(&hcd->lock)) {
13722 + printk("%s: It is not supposed to be lockable!!\n",__func__);
13723 + BUG();
13724 + }
13725 +#endif
13726 +// SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
13727 +
13728 + if (list_empty(&qh->qh_list_entry)) {
13729 + /* QH is not in a schedule. */
13730 + goto done;
13731 + }
13732 +
13733 + if (dwc_qh_is_non_per(qh)) {
13734 + if (hcd->non_periodic_qh_ptr == &qh->qh_list_entry) {
13735 + hcd->non_periodic_qh_ptr = hcd->non_periodic_qh_ptr->next;
13736 + }
13737 + list_del_init(&qh->qh_list_entry);
13738 + } else {
13739 + deschedule_periodic(hcd, qh);
13740 + }
13741 +
13742 + done:
13743 +// SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
13744 + return;
13745 +}
13746 +
13747 +/**
13748 + * Deactivates a QH. For non-periodic QHs, removes the QH from the active
13749 + * non-periodic schedule. The QH is added to the inactive non-periodic
13750 + * schedule if any QTDs are still attached to the QH.
13751 + *
13752 + * For periodic QHs, the QH is removed from the periodic queued schedule. If
13753 + * there are any QTDs still attached to the QH, the QH is added to either the
13754 + * periodic inactive schedule or the periodic ready schedule and its next
13755 + * scheduled frame is calculated. The QH is placed in the ready schedule if
13756 + * the scheduled frame has been reached already. Otherwise it's placed in the
13757 + * inactive schedule. If there are no QTDs attached to the QH, the QH is
13758 + * completely removed from the periodic schedule.
13759 + */
13760 +void dwc_otg_hcd_qh_deactivate(dwc_otg_hcd_t *hcd, dwc_otg_qh_t *qh, int sched_next_periodic_split)
13761 +{
13762 + unsigned long flags;
13763 + SPIN_LOCK_IRQSAVE(&hcd->lock, flags);
13764 +
13765 + if (dwc_qh_is_non_per(qh)) {
13766 + dwc_otg_hcd_qh_remove(hcd, qh);
13767 + if (!list_empty(&qh->qtd_list)) {
13768 + /* Add back to inactive non-periodic schedule. */
13769 + dwc_otg_hcd_qh_add(hcd, qh);
13770 + }
13771 + } else {
13772 + uint16_t frame_number = dwc_otg_hcd_get_frame_number(dwc_otg_hcd_to_hcd(hcd));
13773 +
13774 + if (qh->do_split) {
13775 + /* Schedule the next continuing periodic split transfer */
13776 + if (sched_next_periodic_split) {
13777 +
13778 + qh->sched_frame = frame_number;
13779 + if (dwc_frame_num_le(frame_number,
13780 + dwc_frame_num_inc(qh->start_split_frame, 1))) {
13781 + /*
13782 + * Allow one frame to elapse after start
13783 + * split microframe before scheduling
13784 + * complete split, but DONT if we are
13785 + * doing the next start split in the
13786 + * same frame for an ISOC out.
13787 + */
13788 + if ((qh->ep_type != USB_ENDPOINT_XFER_ISOC) || (qh->ep_is_in != 0)) {
13789 + qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, 1);
13790 + }
13791 + }
13792 + } else {
13793 + qh->sched_frame = dwc_frame_num_inc(qh->start_split_frame,
13794 + qh->interval);
13795 + if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
13796 + qh->sched_frame = frame_number;
13797 + }
13798 + qh->sched_frame |= 0x7;
13799 + qh->start_split_frame = qh->sched_frame;
13800 + }
13801 + } else {
13802 + qh->sched_frame = dwc_frame_num_inc(qh->sched_frame, qh->interval);
13803 + if (dwc_frame_num_le(qh->sched_frame, frame_number)) {
13804 + qh->sched_frame = frame_number;
13805 + }
13806 + }
13807 +
13808 + if (list_empty(&qh->qtd_list)) {
13809 + dwc_otg_hcd_qh_remove(hcd, qh);
13810 + } else {
13811 + /*
13812 + * Remove from periodic_sched_queued and move to
13813 + * appropriate queue.
13814 + */
13815 + if (qh->sched_frame == frame_number) {
13816 + list_move(&qh->qh_list_entry,
13817 + &hcd->periodic_sched_ready);
13818 + } else {
13819 + list_move(&qh->qh_list_entry,
13820 + &hcd->periodic_sched_inactive);
13821 + }
13822 + }
13823 + }
13824 +
13825 + SPIN_UNLOCK_IRQRESTORE(&hcd->lock, flags);
13826 +}
13827 +
13828 +/**
13829 + * This function allocates and initializes a QTD.
13830 + *
13831 + * @param[in] urb The URB to create a QTD from. Each URB-QTD pair will end up
13832 + * pointing to each other so each pair should have a unique correlation.
13833 + *
13834 + * @return Returns pointer to the newly allocated QTD, or NULL on error. */
13835 +dwc_otg_qtd_t *dwc_otg_hcd_qtd_create (struct urb *urb)
13836 +{
13837 + dwc_otg_qtd_t *qtd;
13838 +
13839 + qtd = dwc_otg_hcd_qtd_alloc ();
13840 + if (qtd == NULL) {
13841 + return NULL;
13842 + }
13843 +
13844 + dwc_otg_hcd_qtd_init (qtd, urb);
13845 + return qtd;
13846 +}
13847 +
13848 +/**
13849 + * Initializes a QTD structure.
13850 + *
13851 + * @param[in] qtd The QTD to initialize.
13852 + * @param[in] urb The URB to use for initialization. */
13853 +void dwc_otg_hcd_qtd_init (dwc_otg_qtd_t *qtd, struct urb *urb)
13854 +{
13855 + memset (qtd, 0, sizeof (dwc_otg_qtd_t));
13856 + qtd->urb = urb;
13857 + if (usb_pipecontrol(urb->pipe)) {
13858 + /*
13859 + * The only time the QTD data toggle is used is on the data
13860 + * phase of control transfers. This phase always starts with
13861 + * DATA1.
13862 + */
13863 + qtd->data_toggle = DWC_OTG_HC_PID_DATA1;
13864 + qtd->control_phase = DWC_OTG_CONTROL_SETUP;
13865 + }
13866 +
13867 + /* start split */
13868 + qtd->complete_split = 0;
13869 + qtd->isoc_split_pos = DWC_HCSPLIT_XACTPOS_ALL;
13870 + qtd->isoc_split_offset = 0;
13871 +
13872 + /* Store the qtd ptr in the urb to reference what QTD. */
13873 + urb->hcpriv = qtd;
13874 + return;
13875 +}
13876 +
13877 +/**
13878 + * This function adds a QTD to the QTD-list of a QH. It will find the correct
13879 + * QH to place the QTD into. If it does not find a QH, then it will create a
13880 + * new QH. If the QH to which the QTD is added is not currently scheduled, it
13881 + * is placed into the proper schedule based on its EP type.
13882 + *
13883 + * @param[in] qtd The QTD to add
13884 + * @param[in] dwc_otg_hcd The DWC HCD structure
13885 + *
13886 + * @return 0 if successful, negative error code otherwise.
13887 + */
13888 +int dwc_otg_hcd_qtd_add (dwc_otg_qtd_t *qtd,
13889 + dwc_otg_hcd_t *dwc_otg_hcd)
13890 +{
13891 + struct usb_host_endpoint *ep;
13892 + dwc_otg_qh_t *qh;
13893 + unsigned long flags;
13894 + int retval = 0;
13895 +
13896 + struct urb *urb = qtd->urb;
13897 +
13898 + SPIN_LOCK_IRQSAVE(&dwc_otg_hcd->lock, flags);
13899 +
13900 + /*
13901 + * Get the QH which holds the QTD-list to insert to. Create QH if it
13902 + * doesn't exist.
13903 + */
13904 + ep = dwc_urb_to_endpoint(urb);
13905 + qh = (dwc_otg_qh_t *)ep->hcpriv;
13906 + if (qh == NULL) {
13907 + qh = dwc_otg_hcd_qh_create (dwc_otg_hcd, urb);
13908 + if (qh == NULL) {
13909 + goto done;
13910 + }
13911 + ep->hcpriv = qh;
13912 + }
13913 +
13914 + retval = dwc_otg_hcd_qh_add(dwc_otg_hcd, qh);
13915 + if (retval == 0) {
13916 + list_add_tail(&qtd->qtd_list_entry, &qh->qtd_list);
13917 + }
13918 +
13919 + done:
13920 + SPIN_UNLOCK_IRQRESTORE(&dwc_otg_hcd->lock, flags);
13921 +
13922 + return retval;
13923 +}
13924 +
13925 +#endif /* DWC_DEVICE_ONLY */
13926 --- /dev/null
13927 +++ b/drivers/usb/dwc/otg_pcd.c
13928 @@ -0,0 +1,2502 @@
13929 +/* ==========================================================================
13930 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.c $
13931 + * $Revision: #70 $
13932 + * $Date: 2008/10/14 $
13933 + * $Change: 1115682 $
13934 + *
13935 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
13936 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
13937 + * otherwise expressly agreed to in writing between Synopsys and you.
13938 + *
13939 + * The Software IS NOT an item of Licensed Software or Licensed Product under
13940 + * any End User Software License Agreement or Agreement for Licensed Product
13941 + * with Synopsys or any supplement thereto. You are permitted to use and
13942 + * redistribute this Software in source and binary forms, with or without
13943 + * modification, provided that redistributions of source code must retain this
13944 + * notice. You may not view, use, disclose, copy or distribute this file or
13945 + * any information contained herein except pursuant to this license grant from
13946 + * Synopsys. If you do not agree with this notice, including the disclaimer
13947 + * below, then you are not authorized to use the Software.
13948 + *
13949 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
13950 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
13951 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
13952 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
13953 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
13954 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
13955 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
13956 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
13957 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
13958 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
13959 + * DAMAGE.
13960 + * ========================================================================== */
13961 +#ifndef DWC_HOST_ONLY
13962 +
13963 +/** @file
13964 + * This file implements the Peripheral Controller Driver.
13965 + *
13966 + * The Peripheral Controller Driver (PCD) is responsible for
13967 + * translating requests from the Function Driver into the appropriate
13968 + * actions on the DWC_otg controller. It isolates the Function Driver
13969 + * from the specifics of the controller by providing an API to the
13970 + * Function Driver.
13971 + *
13972 + * The Peripheral Controller Driver for Linux will implement the
13973 + * Gadget API, so that the existing Gadget drivers can be used.
13974 + * (Gadget Driver is the Linux terminology for a Function Driver.)
13975 + *
13976 + * The Linux Gadget API is defined in the header file
13977 + * <code><linux/usb_gadget.h></code>. The USB EP operations API is
13978 + * defined in the structure <code>usb_ep_ops</code> and the USB
13979 + * Controller API is defined in the structure
13980 + * <code>usb_gadget_ops</code>.
13981 + *
13982 + * An important function of the PCD is managing interrupts generated
13983 + * by the DWC_otg controller. The implementation of the DWC_otg device
13984 + * mode interrupt service routines is in dwc_otg_pcd_intr.c.
13985 + *
13986 + * @todo Add Device Mode test modes (Test J mode, Test K mode, etc).
13987 + * @todo Does it work when the request size is greater than DEPTSIZ
13988 + * transfer size
13989 + *
13990 + */
13991 +
13992 +
13993 +#include <linux/kernel.h>
13994 +#include <linux/module.h>
13995 +#include <linux/moduleparam.h>
13996 +#include <linux/init.h>
13997 +#include <linux/device.h>
13998 +#include <linux/platform_device.h>
13999 +#include <linux/errno.h>
14000 +#include <linux/list.h>
14001 +#include <linux/interrupt.h>
14002 +#include <linux/string.h>
14003 +#include <linux/dma-mapping.h>
14004 +#include <linux/version.h>
14005 +
14006 +#include <mach/irqs.h>
14007 +#include <linux/usb/ch9.h>
14008 +
14009 +//#include <linux/usb_gadget.h>
14010 +
14011 +#include "otg_driver.h"
14012 +#include "otg_pcd.h"
14013 +
14014 +
14015 +
14016 +/**
14017 + * Static PCD pointer for use in usb_gadget_register_driver and
14018 + * usb_gadget_unregister_driver. Initialized in dwc_otg_pcd_init.
14019 + */
14020 +static dwc_otg_pcd_t *s_pcd = 0;
14021 +
14022 +
14023 +/* Display the contents of the buffer */
14024 +extern void dump_msg(const u8 *buf, unsigned int length);
14025 +
14026 +
14027 +/**
14028 + * This function completes a request. It call's the request call back.
14029 + */
14030 +void dwc_otg_request_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_request_t *req,
14031 + int status)
14032 +{
14033 + unsigned stopped = ep->stopped;
14034 +
14035 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, ep);
14036 + list_del_init(&req->queue);
14037 +
14038 + if (req->req.status == -EINPROGRESS) {
14039 + req->req.status = status;
14040 + } else {
14041 + status = req->req.status;
14042 + }
14043 +
14044 + /* don't modify queue heads during completion callback */
14045 + ep->stopped = 1;
14046 + SPIN_UNLOCK(&ep->pcd->lock);
14047 + req->req.complete(&ep->ep, &req->req);
14048 + SPIN_LOCK(&ep->pcd->lock);
14049 +
14050 + if (ep->pcd->request_pending > 0) {
14051 + --ep->pcd->request_pending;
14052 + }
14053 +
14054 + ep->stopped = stopped;
14055 +}
14056 +
14057 +/**
14058 + * This function terminates all the requsts in the EP request queue.
14059 + */
14060 +void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *ep)
14061 +{
14062 + dwc_otg_pcd_request_t *req;
14063 +
14064 + ep->stopped = 1;
14065 +
14066 + /* called with irqs blocked?? */
14067 + while (!list_empty(&ep->queue)) {
14068 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
14069 + queue);
14070 + dwc_otg_request_done(ep, req, -ESHUTDOWN);
14071 + }
14072 +}
14073 +
14074 +/* USB Endpoint Operations */
14075 +/*
14076 + * The following sections briefly describe the behavior of the Gadget
14077 + * API endpoint operations implemented in the DWC_otg driver
14078 + * software. Detailed descriptions of the generic behavior of each of
14079 + * these functions can be found in the Linux header file
14080 + * include/linux/usb_gadget.h.
14081 + *
14082 + * The Gadget API provides wrapper functions for each of the function
14083 + * pointers defined in usb_ep_ops. The Gadget Driver calls the wrapper
14084 + * function, which then calls the underlying PCD function. The
14085 + * following sections are named according to the wrapper
14086 + * functions. Within each section, the corresponding DWC_otg PCD
14087 + * function name is specified.
14088 + *
14089 + */
14090 +
14091 +/**
14092 + * This function assigns periodic Tx FIFO to an periodic EP
14093 + * in shared Tx FIFO mode
14094 + */
14095 +static uint32_t assign_perio_tx_fifo(dwc_otg_core_if_t *core_if)
14096 +{
14097 + uint32_t PerTxMsk = 1;
14098 + int i;
14099 + for(i = 0; i < core_if->hwcfg4.b.num_dev_perio_in_ep; ++i)
14100 + {
14101 + if((PerTxMsk & core_if->p_tx_msk) == 0) {
14102 + core_if->p_tx_msk |= PerTxMsk;
14103 + return i + 1;
14104 + }
14105 + PerTxMsk <<= 1;
14106 + }
14107 + return 0;
14108 +}
14109 +/**
14110 + * This function releases periodic Tx FIFO
14111 + * in shared Tx FIFO mode
14112 + */
14113 +static void release_perio_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
14114 +{
14115 + core_if->p_tx_msk = (core_if->p_tx_msk & (1 << (fifo_num - 1))) ^ core_if->p_tx_msk;
14116 +}
14117 +/**
14118 + * This function assigns periodic Tx FIFO to an periodic EP
14119 + * in shared Tx FIFO mode
14120 + */
14121 +static uint32_t assign_tx_fifo(dwc_otg_core_if_t *core_if)
14122 +{
14123 + uint32_t TxMsk = 1;
14124 + int i;
14125 +
14126 + for(i = 0; i < core_if->hwcfg4.b.num_in_eps; ++i)
14127 + {
14128 + if((TxMsk & core_if->tx_msk) == 0) {
14129 + core_if->tx_msk |= TxMsk;
14130 + return i + 1;
14131 + }
14132 + TxMsk <<= 1;
14133 + }
14134 + return 0;
14135 +}
14136 +/**
14137 + * This function releases periodic Tx FIFO
14138 + * in shared Tx FIFO mode
14139 + */
14140 +static void release_tx_fifo(dwc_otg_core_if_t *core_if, uint32_t fifo_num)
14141 +{
14142 + core_if->tx_msk = (core_if->tx_msk & (1 << (fifo_num - 1))) ^ core_if->tx_msk;
14143 +}
14144 +
14145 +/**
14146 + * This function is called by the Gadget Driver for each EP to be
14147 + * configured for the current configuration (SET_CONFIGURATION).
14148 + *
14149 + * This function initializes the dwc_otg_ep_t data structure, and then
14150 + * calls dwc_otg_ep_activate.
14151 + */
14152 +static int dwc_otg_pcd_ep_enable(struct usb_ep *usb_ep,
14153 + const struct usb_endpoint_descriptor *ep_desc)
14154 +{
14155 + dwc_otg_pcd_ep_t *ep = 0;
14156 + dwc_otg_pcd_t *pcd = 0;
14157 + unsigned long flags;
14158 +
14159 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, ep_desc);
14160 +
14161 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14162 + if (!usb_ep || !ep_desc || ep->desc ||
14163 + ep_desc->bDescriptorType != USB_DT_ENDPOINT) {
14164 + DWC_WARN("%s, bad ep or descriptor\n", __func__);
14165 + return -EINVAL;
14166 + }
14167 + if (ep == &ep->pcd->ep0) {
14168 + DWC_WARN("%s, bad ep(0)\n", __func__);
14169 + return -EINVAL;
14170 + }
14171 +
14172 + /* Check FIFO size? */
14173 + if (!ep_desc->wMaxPacketSize) {
14174 + DWC_WARN("%s, bad %s maxpacket\n", __func__, usb_ep->name);
14175 + return -ERANGE;
14176 + }
14177 +
14178 + pcd = ep->pcd;
14179 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
14180 + DWC_WARN("%s, bogus device state\n", __func__);
14181 + return -ESHUTDOWN;
14182 + }
14183 +
14184 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
14185 +
14186 + ep->desc = ep_desc;
14187 + ep->ep.maxpacket = le16_to_cpu (ep_desc->wMaxPacketSize);
14188 +
14189 + /*
14190 + * Activate the EP
14191 + */
14192 + ep->stopped = 0;
14193 +
14194 + ep->dwc_ep.is_in = (USB_DIR_IN & ep_desc->bEndpointAddress) != 0;
14195 + ep->dwc_ep.maxpacket = ep->ep.maxpacket;
14196 +
14197 + ep->dwc_ep.type = ep_desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
14198 +
14199 + if(ep->dwc_ep.is_in) {
14200 + if(!pcd->otg_dev->core_if->en_multiple_tx_fifo) {
14201 + ep->dwc_ep.tx_fifo_num = 0;
14202 +
14203 + if (ep->dwc_ep.type == USB_ENDPOINT_XFER_ISOC) {
14204 + /*
14205 + * if ISOC EP then assign a Periodic Tx FIFO.
14206 + */
14207 + ep->dwc_ep.tx_fifo_num = assign_perio_tx_fifo(pcd->otg_dev->core_if);
14208 + }
14209 + } else {
14210 + /*
14211 + * if Dedicated FIFOs mode is on then assign a Tx FIFO.
14212 + */
14213 + ep->dwc_ep.tx_fifo_num = assign_tx_fifo(pcd->otg_dev->core_if);
14214 +
14215 + }
14216 + }
14217 + /* Set initial data PID. */
14218 + if (ep->dwc_ep.type == USB_ENDPOINT_XFER_BULK) {
14219 + ep->dwc_ep.data_pid_start = 0;
14220 + }
14221 +
14222 + DWC_DEBUGPL(DBG_PCD, "Activate %s-%s: type=%d, mps=%d desc=%p\n",
14223 + ep->ep.name, (ep->dwc_ep.is_in ?"IN":"OUT"),
14224 + ep->dwc_ep.type, ep->dwc_ep.maxpacket, ep->desc);
14225 +
14226 + if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC) {
14227 + ep->dwc_ep.desc_addr = dwc_otg_ep_alloc_desc_chain(&ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
14228 + }
14229 +
14230 + dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
14231 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14232 +
14233 + return 0;
14234 +}
14235 +
14236 +/**
14237 + * This function is called when an EP is disabled due to disconnect or
14238 + * change in configuration. Any pending requests will terminate with a
14239 + * status of -ESHUTDOWN.
14240 + *
14241 + * This function modifies the dwc_otg_ep_t data structure for this EP,
14242 + * and then calls dwc_otg_ep_deactivate.
14243 + */
14244 +static int dwc_otg_pcd_ep_disable(struct usb_ep *usb_ep)
14245 +{
14246 + dwc_otg_pcd_ep_t *ep;
14247 + dwc_otg_pcd_t *pcd = 0;
14248 + unsigned long flags;
14249 +
14250 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, usb_ep);
14251 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14252 + if (!usb_ep || !ep->desc) {
14253 + DWC_DEBUGPL(DBG_PCD, "%s, %s not enabled\n", __func__,
14254 + usb_ep ? ep->ep.name : NULL);
14255 + return -EINVAL;
14256 + }
14257 +
14258 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
14259 +
14260 + dwc_otg_request_nuke(ep);
14261 +
14262 + dwc_otg_ep_deactivate(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
14263 + ep->desc = 0;
14264 + ep->stopped = 1;
14265 +
14266 + if(ep->dwc_ep.is_in) {
14267 + dwc_otg_flush_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
14268 + release_perio_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
14269 + release_tx_fifo(GET_CORE_IF(ep->pcd), ep->dwc_ep.tx_fifo_num);
14270 + }
14271 +
14272 + /* Free DMA Descriptors */
14273 + pcd = ep->pcd;
14274 +
14275 + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
14276 +
14277 + if(ep->dwc_ep.type != USB_ENDPOINT_XFER_ISOC && ep->dwc_ep.desc_addr) {
14278 + dwc_otg_ep_free_desc_chain(ep->dwc_ep.desc_addr, ep->dwc_ep.dma_desc_addr, MAX_DMA_DESC_CNT);
14279 + }
14280 +
14281 + DWC_DEBUGPL(DBG_PCD, "%s disabled\n", usb_ep->name);
14282 + return 0;
14283 +}
14284 +
14285 +
14286 +/**
14287 + * This function allocates a request object to use with the specified
14288 + * endpoint.
14289 + *
14290 + * @param ep The endpoint to be used with with the request
14291 + * @param gfp_flags the GFP_* flags to use.
14292 + */
14293 +static struct usb_request *dwc_otg_pcd_alloc_request(struct usb_ep *ep,
14294 + gfp_t gfp_flags)
14295 +{
14296 + dwc_otg_pcd_request_t *req;
14297 +
14298 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d)\n", __func__, ep, gfp_flags);
14299 + if (0 == ep) {
14300 + DWC_WARN("%s() %s\n", __func__, "Invalid EP!\n");
14301 + return 0;
14302 + }
14303 + req = kmalloc(sizeof(dwc_otg_pcd_request_t), gfp_flags);
14304 + if (0 == req) {
14305 + DWC_WARN("%s() %s\n", __func__,
14306 + "request allocation failed!\n");
14307 + return 0;
14308 + }
14309 + memset(req, 0, sizeof(dwc_otg_pcd_request_t));
14310 + req->req.dma = DMA_ADDR_INVALID;
14311 + INIT_LIST_HEAD(&req->queue);
14312 + return &req->req;
14313 +}
14314 +
14315 +/**
14316 + * This function frees a request object.
14317 + *
14318 + * @param ep The endpoint associated with the request
14319 + * @param req The request being freed
14320 + */
14321 +static void dwc_otg_pcd_free_request(struct usb_ep *ep,
14322 + struct usb_request *req)
14323 +{
14324 + dwc_otg_pcd_request_t *request;
14325 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, ep, req);
14326 +
14327 + if (0 == ep || 0 == req) {
14328 + DWC_WARN("%s() %s\n", __func__,
14329 + "Invalid ep or req argument!\n");
14330 + return;
14331 + }
14332 +
14333 + request = container_of(req, dwc_otg_pcd_request_t, req);
14334 + kfree(request);
14335 +}
14336 +
14337 +#if 0
14338 +/**
14339 + * This function allocates an I/O buffer to be used for a transfer
14340 + * to/from the specified endpoint.
14341 + *
14342 + * @param usb_ep The endpoint to be used with with the request
14343 + * @param bytes The desired number of bytes for the buffer
14344 + * @param dma Pointer to the buffer's DMA address; must be valid
14345 + * @param gfp_flags the GFP_* flags to use.
14346 + * @return address of a new buffer or null is buffer could not be allocated.
14347 + */
14348 +static void *dwc_otg_pcd_alloc_buffer(struct usb_ep *usb_ep, unsigned bytes,
14349 + dma_addr_t *dma,
14350 + gfp_t gfp_flags)
14351 +{
14352 + void *buf;
14353 + dwc_otg_pcd_ep_t *ep;
14354 + dwc_otg_pcd_t *pcd = 0;
14355 +
14356 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14357 + pcd = ep->pcd;
14358 +
14359 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%d,%p,%0x)\n", __func__, usb_ep, bytes,
14360 + dma, gfp_flags);
14361 +
14362 + /* Check dword alignment */
14363 + if ((bytes & 0x3UL) != 0) {
14364 + DWC_WARN("%s() Buffer size is not a multiple of"
14365 + "DWORD size (%d)",__func__, bytes);
14366 + }
14367 +
14368 + if (GET_CORE_IF(pcd)->dma_enable) {
14369 + buf = dma_alloc_coherent (NULL, bytes, dma, gfp_flags);
14370 + }
14371 + else {
14372 + buf = kmalloc(bytes, gfp_flags);
14373 + }
14374 +
14375 + /* Check dword alignment */
14376 + if (((int)buf & 0x3UL) != 0) {
14377 + DWC_WARN("%s() Buffer is not DWORD aligned (%p)",
14378 + __func__, buf);
14379 + }
14380 +
14381 + return buf;
14382 +}
14383 +
14384 +/**
14385 + * This function frees an I/O buffer that was allocated by alloc_buffer.
14386 + *
14387 + * @param usb_ep the endpoint associated with the buffer
14388 + * @param buf address of the buffer
14389 + * @param dma The buffer's DMA address
14390 + * @param bytes The number of bytes of the buffer
14391 + */
14392 +static void dwc_otg_pcd_free_buffer(struct usb_ep *usb_ep, void *buf,
14393 + dma_addr_t dma, unsigned bytes)
14394 +{
14395 + dwc_otg_pcd_ep_t *ep;
14396 + dwc_otg_pcd_t *pcd = 0;
14397 +
14398 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14399 + pcd = ep->pcd;
14400 +
14401 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%0x,%d)\n", __func__, ep, buf, dma, bytes);
14402 +
14403 + if (GET_CORE_IF(pcd)->dma_enable) {
14404 + dma_free_coherent (NULL, bytes, buf, dma);
14405 + }
14406 + else {
14407 + kfree(buf);
14408 + }
14409 +}
14410 +#endif
14411 +
14412 +/**
14413 + * This function is used to submit an I/O Request to an EP.
14414 + *
14415 + * - When the request completes the request's completion callback
14416 + * is called to return the request to the driver.
14417 + * - An EP, except control EPs, may have multiple requests
14418 + * pending.
14419 + * - Once submitted the request cannot be examined or modified.
14420 + * - Each request is turned into one or more packets.
14421 + * - A BULK EP can queue any amount of data; the transfer is
14422 + * packetized.
14423 + * - Zero length Packets are specified with the request 'zero'
14424 + * flag.
14425 + */
14426 +static int dwc_otg_pcd_ep_queue(struct usb_ep *usb_ep,
14427 + struct usb_request *usb_req,
14428 + gfp_t gfp_flags)
14429 +{
14430 + int prevented = 0;
14431 + dwc_otg_pcd_request_t *req;
14432 + dwc_otg_pcd_ep_t *ep;
14433 + dwc_otg_pcd_t *pcd;
14434 + unsigned long flags = 0;
14435 +
14436 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p,%d)\n",
14437 + __func__, usb_ep, usb_req, gfp_flags);
14438 +
14439 + req = container_of(usb_req, dwc_otg_pcd_request_t, req);
14440 + if (!usb_req || !usb_req->complete || !usb_req->buf ||
14441 + !list_empty(&req->queue)) {
14442 + DWC_WARN("%s, bad params\n", __func__);
14443 + return -EINVAL;
14444 + }
14445 +
14446 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14447 + if (!usb_ep || (!ep->desc && ep->dwc_ep.num != 0)/* || ep->stopped != 0*/) {
14448 + DWC_WARN("%s, bad ep\n", __func__);
14449 + return -EINVAL;
14450 + }
14451 +
14452 + pcd = ep->pcd;
14453 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
14454 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
14455 + DWC_WARN("%s, bogus device state\n", __func__);
14456 + return -ESHUTDOWN;
14457 + }
14458 +
14459 +
14460 + DWC_DEBUGPL(DBG_PCD, "%s queue req %p, len %d buf %p\n",
14461 + usb_ep->name, usb_req, usb_req->length, usb_req->buf);
14462 +
14463 + if (!GET_CORE_IF(pcd)->core_params->opt) {
14464 + if (ep->dwc_ep.num != 0) {
14465 + DWC_ERROR("%s queue req %p, len %d buf %p\n",
14466 + usb_ep->name, usb_req, usb_req->length, usb_req->buf);
14467 + }
14468 + }
14469 +
14470 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
14471 +
14472 +#if defined(DEBUG) & defined(VERBOSE)
14473 + dump_msg(usb_req->buf, usb_req->length);
14474 +#endif
14475 +
14476 + usb_req->status = -EINPROGRESS;
14477 + usb_req->actual = 0;
14478 +
14479 + /*
14480 + * For EP0 IN without premature status, zlp is required?
14481 + */
14482 + if (ep->dwc_ep.num == 0 && ep->dwc_ep.is_in) {
14483 + DWC_DEBUGPL(DBG_PCDV, "%s-OUT ZLP\n", usb_ep->name);
14484 + //_req->zero = 1;
14485 + }
14486 +
14487 + /* Start the transfer */
14488 + if (list_empty(&ep->queue) && !ep->stopped) {
14489 + /* EP0 Transfer? */
14490 + if (ep->dwc_ep.num == 0) {
14491 + switch (pcd->ep0state) {
14492 + case EP0_IN_DATA_PHASE:
14493 + DWC_DEBUGPL(DBG_PCD,
14494 + "%s ep0: EP0_IN_DATA_PHASE\n",
14495 + __func__);
14496 + break;
14497 +
14498 + case EP0_OUT_DATA_PHASE:
14499 + DWC_DEBUGPL(DBG_PCD,
14500 + "%s ep0: EP0_OUT_DATA_PHASE\n",
14501 + __func__);
14502 + if (pcd->request_config) {
14503 + /* Complete STATUS PHASE */
14504 + ep->dwc_ep.is_in = 1;
14505 + pcd->ep0state = EP0_IN_STATUS_PHASE;
14506 + }
14507 + break;
14508 +
14509 + case EP0_IN_STATUS_PHASE:
14510 + DWC_DEBUGPL(DBG_PCD,
14511 + "%s ep0: EP0_IN_STATUS_PHASE\n",
14512 + __func__);
14513 + break;
14514 +
14515 + default:
14516 + DWC_DEBUGPL(DBG_ANY, "ep0: odd state %d\n",
14517 + pcd->ep0state);
14518 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14519 + return -EL2HLT;
14520 + }
14521 + ep->dwc_ep.dma_addr = usb_req->dma;
14522 + ep->dwc_ep.start_xfer_buff = usb_req->buf;
14523 + ep->dwc_ep.xfer_buff = usb_req->buf;
14524 + ep->dwc_ep.xfer_len = usb_req->length;
14525 + ep->dwc_ep.xfer_count = 0;
14526 + ep->dwc_ep.sent_zlp = 0;
14527 + ep->dwc_ep.total_len = ep->dwc_ep.xfer_len;
14528 +
14529 + if(usb_req->zero) {
14530 + if((ep->dwc_ep.xfer_len % ep->dwc_ep.maxpacket == 0)
14531 + && (ep->dwc_ep.xfer_len != 0)) {
14532 + ep->dwc_ep.sent_zlp = 1;
14533 + }
14534 +
14535 + }
14536 +
14537 + ep_check_and_patch_dma_addr(ep);
14538 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
14539 + }
14540 + else {
14541 +
14542 + uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
14543 +
14544 + /* Setup and start the Transfer */
14545 + ep->dwc_ep.dma_addr = usb_req->dma;
14546 + ep->dwc_ep.start_xfer_buff = usb_req->buf;
14547 + ep->dwc_ep.xfer_buff = usb_req->buf;
14548 + ep->dwc_ep.sent_zlp = 0;
14549 + ep->dwc_ep.total_len = usb_req->length;
14550 + ep->dwc_ep.xfer_len = 0;
14551 + ep->dwc_ep.xfer_count = 0;
14552 +
14553 + if(max_transfer > MAX_TRANSFER_SIZE) {
14554 + ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
14555 + } else {
14556 + ep->dwc_ep.maxxfer = max_transfer;
14557 + }
14558 +
14559 + if(usb_req->zero) {
14560 + if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
14561 + && (ep->dwc_ep.total_len != 0)) {
14562 + ep->dwc_ep.sent_zlp = 1;
14563 + }
14564 +
14565 + }
14566 +
14567 + ep_check_and_patch_dma_addr(ep);
14568 + dwc_otg_ep_start_transfer(GET_CORE_IF(pcd), &ep->dwc_ep);
14569 + }
14570 + }
14571 +
14572 + if ((req != 0) || prevented) {
14573 + ++pcd->request_pending;
14574 + list_add_tail(&req->queue, &ep->queue);
14575 + if (ep->dwc_ep.is_in && ep->stopped && !(GET_CORE_IF(pcd)->dma_enable)) {
14576 + /** @todo NGS Create a function for this. */
14577 + diepmsk_data_t diepmsk = { .d32 = 0};
14578 + diepmsk.b.intktxfemp = 1;
14579 + if(&GET_CORE_IF(pcd)->multiproc_int_enable) {
14580 + dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepeachintmsk[ep->dwc_ep.num],
14581 + 0, diepmsk.d32);
14582 + } else {
14583 + dwc_modify_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->diepmsk, 0, diepmsk.d32);
14584 + }
14585 + }
14586 + }
14587 +
14588 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14589 + return 0;
14590 +}
14591 +
14592 +/**
14593 + * This function cancels an I/O request from an EP.
14594 + */
14595 +static int dwc_otg_pcd_ep_dequeue(struct usb_ep *usb_ep,
14596 + struct usb_request *usb_req)
14597 +{
14598 + dwc_otg_pcd_request_t *req;
14599 + dwc_otg_pcd_ep_t *ep;
14600 + dwc_otg_pcd_t *pcd;
14601 + unsigned long flags;
14602 +
14603 + DWC_DEBUGPL(DBG_PCDV,"%s(%p,%p)\n", __func__, usb_ep, usb_req);
14604 +
14605 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14606 + if (!usb_ep || !usb_req || (!ep->desc && ep->dwc_ep.num != 0)) {
14607 + DWC_WARN("%s, bad argument\n", __func__);
14608 + return -EINVAL;
14609 + }
14610 + pcd = ep->pcd;
14611 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
14612 + DWC_WARN("%s, bogus device state\n", __func__);
14613 + return -ESHUTDOWN;
14614 + }
14615 +
14616 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
14617 + DWC_DEBUGPL(DBG_PCDV, "%s %s %s %p\n", __func__, usb_ep->name,
14618 + ep->dwc_ep.is_in ? "IN" : "OUT",
14619 + usb_req);
14620 +
14621 + /* make sure it's actually queued on this endpoint */
14622 + list_for_each_entry(req, &ep->queue, queue)
14623 + {
14624 + if (&req->req == usb_req) {
14625 + break;
14626 + }
14627 + }
14628 +
14629 + if (&req->req != usb_req) {
14630 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14631 + return -EINVAL;
14632 + }
14633 +
14634 + if (!list_empty(&req->queue)) {
14635 + dwc_otg_request_done(ep, req, -ECONNRESET);
14636 + }
14637 + else {
14638 + req = 0;
14639 + }
14640 +
14641 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
14642 +
14643 + return req ? 0 : -EOPNOTSUPP;
14644 +}
14645 +
14646 +/**
14647 + * usb_ep_set_halt stalls an endpoint.
14648 + *
14649 + * usb_ep_clear_halt clears an endpoint halt and resets its data
14650 + * toggle.
14651 + *
14652 + * Both of these functions are implemented with the same underlying
14653 + * function. The behavior depends on the value argument.
14654 + *
14655 + * @param[in] usb_ep the Endpoint to halt or clear halt.
14656 + * @param[in] value
14657 + * - 0 means clear_halt.
14658 + * - 1 means set_halt,
14659 + * - 2 means clear stall lock flag.
14660 + * - 3 means set stall lock flag.
14661 + */
14662 +static int dwc_otg_pcd_ep_set_halt(struct usb_ep *usb_ep, int value)
14663 +{
14664 + int retval = 0;
14665 + unsigned long flags;
14666 + dwc_otg_pcd_ep_t *ep = 0;
14667 +
14668 +
14669 + DWC_DEBUGPL(DBG_PCD,"HALT %s %d\n", usb_ep->name, value);
14670 +
14671 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
14672 +
14673 + if (!usb_ep || (!ep->desc && ep != &ep->pcd->ep0) ||
14674 + ep->desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) {
14675 + DWC_WARN("%s, bad ep\n", __func__);
14676 + return -EINVAL;
14677 + }
14678 +
14679 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
14680 + if (!list_empty(&ep->queue)) {
14681 + DWC_WARN("%s() %s XFer In process\n", __func__, usb_ep->name);
14682 + retval = -EAGAIN;
14683 + }
14684 + else if (value == 0) {
14685 + dwc_otg_ep_clear_stall(ep->pcd->otg_dev->core_if,
14686 + &ep->dwc_ep);
14687 + }
14688 + else if(value == 1) {
14689 + if (ep->dwc_ep.is_in == 1 && ep->pcd->otg_dev->core_if->dma_desc_enable) {
14690 + dtxfsts_data_t txstatus;
14691 + fifosize_data_t txfifosize;
14692 +
14693 + txfifosize.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->core_global_regs->dptxfsiz_dieptxf[ep->dwc_ep.tx_fifo_num]);
14694 + txstatus.d32 = dwc_read_reg32(&ep->pcd->otg_dev->core_if->dev_if->in_ep_regs[ep->dwc_ep.num]->dtxfsts);
14695 +
14696 + if(txstatus.b.txfspcavail < txfifosize.b.depth) {
14697 + DWC_WARN("%s() %s Data In Tx Fifo\n", __func__, usb_ep->name);
14698 + retval = -EAGAIN;
14699 + }
14700 + else {
14701 + if (ep->dwc_ep.num == 0) {
14702 + ep->pcd->ep0state = EP0_STALL;
14703 + }
14704 +
14705 + ep->stopped = 1;
14706 + dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
14707 + &ep->dwc_ep);
14708 + }
14709 + }
14710 + else {
14711 + if (ep->dwc_ep.num == 0) {
14712 + ep->pcd->ep0state = EP0_STALL;
14713 + }
14714 +
14715 + ep->stopped = 1;
14716 + dwc_otg_ep_set_stall(ep->pcd->otg_dev->core_if,
14717 + &ep->dwc_ep);
14718 + }
14719 + }
14720 + else if (value == 2) {
14721 + ep->dwc_ep.stall_clear_flag = 0;
14722 + }
14723 + else if (value == 3) {
14724 + ep->dwc_ep.stall_clear_flag = 1;
14725 + }
14726 +
14727 + SPIN_UNLOCK_IRQRESTORE(&ep->pcd->lock, flags);
14728 + return retval;
14729 +}
14730 +
14731 +/**
14732 + * This function allocates a DMA Descriptor chain for the Endpoint
14733 + * buffer to be used for a transfer to/from the specified endpoint.
14734 + */
14735 +dwc_otg_dma_desc_t* dwc_otg_ep_alloc_desc_chain(uint32_t * dma_desc_addr, uint32_t count)
14736 +{
14737 +
14738 + return dma_alloc_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), dma_desc_addr, GFP_KERNEL);
14739 +}
14740 +
14741 +LIST_HEAD(tofree_list);
14742 +DEFINE_SPINLOCK(tofree_list_lock);
14743 +
14744 +struct free_param {
14745 + struct list_head list;
14746 +
14747 + void* addr;
14748 + dma_addr_t dma_addr;
14749 + uint32_t size;
14750 +};
14751 +void free_list_agent_fn(void *data){
14752 + struct list_head free_list;
14753 + struct free_param *cur,*next;
14754 +
14755 + spin_lock(&tofree_list_lock);
14756 + list_add(&free_list,&tofree_list);
14757 + list_del_init(&tofree_list);
14758 + spin_unlock(&tofree_list_lock);
14759 +
14760 + list_for_each_entry_safe(cur,next,&free_list,list){
14761 + if(cur==&free_list) break;
14762 + dma_free_coherent(NULL,cur->size,cur->addr,cur->dma_addr);
14763 + list_del(&cur->list);
14764 + kfree(cur);
14765 + }
14766 +}
14767 +DECLARE_WORK(free_list_agent,free_list_agent_fn);
14768 +/**
14769 + * This function frees a DMA Descriptor chain that was allocated by ep_alloc_desc.
14770 + */
14771 +void dwc_otg_ep_free_desc_chain(dwc_otg_dma_desc_t* desc_addr, uint32_t dma_desc_addr, uint32_t count)
14772 +{
14773 + if(irqs_disabled()){
14774 + struct free_param* fp=kmalloc(sizeof(struct free_param),GFP_KERNEL);
14775 + fp->addr=desc_addr;
14776 + fp->dma_addr=dma_desc_addr;
14777 + fp->size=count*sizeof(dwc_otg_dma_desc_t);
14778 +
14779 + spin_lock(&tofree_list_lock);
14780 + list_add(&fp->list,&tofree_list);
14781 + spin_unlock(&tofree_list_lock);
14782 +
14783 + schedule_work(&free_list_agent);
14784 + return ;
14785 + }
14786 + dma_free_coherent(NULL, count * sizeof(dwc_otg_dma_desc_t), desc_addr, dma_desc_addr);
14787 +}
14788 +
14789 +#ifdef DWC_EN_ISOC
14790 +
14791 +/**
14792 + * This function initializes a descriptor chain for Isochronous transfer
14793 + *
14794 + * @param core_if Programming view of DWC_otg controller.
14795 + * @param dwc_ep The EP to start the transfer on.
14796 + *
14797 + */
14798 +void dwc_otg_iso_ep_start_ddma_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
14799 +{
14800 +
14801 + dsts_data_t dsts = { .d32 = 0};
14802 + depctl_data_t depctl = { .d32 = 0 };
14803 + volatile uint32_t *addr;
14804 + int i, j;
14805 +
14806 + if(dwc_ep->is_in)
14807 + dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl / dwc_ep->bInterval;
14808 + else
14809 + dwc_ep->desc_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
14810 +
14811 +
14812 + /** Allocate descriptors for double buffering */
14813 + dwc_ep->iso_desc_addr = dwc_otg_ep_alloc_desc_chain(&dwc_ep->iso_dma_desc_addr,dwc_ep->desc_cnt*2);
14814 + if(dwc_ep->desc_addr) {
14815 + DWC_WARN("%s, can't allocate DMA descriptor chain\n", __func__);
14816 + return;
14817 + }
14818 +
14819 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
14820 +
14821 + /** ISO OUT EP */
14822 + if(dwc_ep->is_in == 0) {
14823 + desc_sts_data_t sts = { .d32 =0 };
14824 + dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
14825 + dma_addr_t dma_ad;
14826 + uint32_t data_per_desc;
14827 + dwc_otg_dev_out_ep_regs_t *out_regs =
14828 + core_if->dev_if->out_ep_regs[dwc_ep->num];
14829 + int offset;
14830 +
14831 + addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
14832 + dma_ad = (dma_addr_t)dwc_read_reg32(&(out_regs->doepdma));
14833 +
14834 + /** Buffer 0 descriptors setup */
14835 + dma_ad = dwc_ep->dma_addr0;
14836 +
14837 + sts.b_iso_out.bs = BS_HOST_READY;
14838 + sts.b_iso_out.rxsts = 0;
14839 + sts.b_iso_out.l = 0;
14840 + sts.b_iso_out.sp = 0;
14841 + sts.b_iso_out.ioc = 0;
14842 + sts.b_iso_out.pid = 0;
14843 + sts.b_iso_out.framenum = 0;
14844 +
14845 + offset = 0;
14846 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
14847 + {
14848 +
14849 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
14850 + {
14851 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14852 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14853 +
14854 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14855 + sts.b_iso_out.rxbytes = data_per_desc;
14856 + writel((uint32_t)dma_ad, &dma_desc->buf);
14857 + writel(sts.d32, &dma_desc->status);
14858 +
14859 + offset += data_per_desc;
14860 + dma_desc ++;
14861 + //(uint32_t)dma_ad += data_per_desc;
14862 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14863 + }
14864 + }
14865 +
14866 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
14867 + {
14868 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14869 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14870 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14871 + sts.b_iso_out.rxbytes = data_per_desc;
14872 + writel((uint32_t)dma_ad, &dma_desc->buf);
14873 + writel(sts.d32, &dma_desc->status);
14874 +
14875 + offset += data_per_desc;
14876 + dma_desc ++;
14877 + //(uint32_t)dma_ad += data_per_desc;
14878 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14879 + }
14880 +
14881 + sts.b_iso_out.ioc = 1;
14882 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14883 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14884 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14885 + sts.b_iso_out.rxbytes = data_per_desc;
14886 +
14887 + writel((uint32_t)dma_ad, &dma_desc->buf);
14888 + writel(sts.d32, &dma_desc->status);
14889 + dma_desc ++;
14890 +
14891 + /** Buffer 1 descriptors setup */
14892 + sts.b_iso_out.ioc = 0;
14893 + dma_ad = dwc_ep->dma_addr1;
14894 +
14895 + offset = 0;
14896 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
14897 + {
14898 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
14899 + {
14900 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14901 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14902 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14903 + sts.b_iso_out.rxbytes = data_per_desc;
14904 + writel((uint32_t)dma_ad, &dma_desc->buf);
14905 + writel(sts.d32, &dma_desc->status);
14906 +
14907 + offset += data_per_desc;
14908 + dma_desc ++;
14909 + //(uint32_t)dma_ad += data_per_desc;
14910 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14911 + }
14912 + }
14913 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
14914 + {
14915 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14916 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14917 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14918 + sts.b_iso_out.rxbytes = data_per_desc;
14919 + writel((uint32_t)dma_ad, &dma_desc->buf);
14920 + writel(sts.d32, &dma_desc->status);
14921 +
14922 + offset += data_per_desc;
14923 + dma_desc ++;
14924 + //(uint32_t)dma_ad += data_per_desc;
14925 + dma_ad = (uint32_t)dma_ad + data_per_desc;
14926 + }
14927 +
14928 + sts.b_iso_out.ioc = 1;
14929 + sts.b_iso_out.l = 1;
14930 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
14931 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
14932 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
14933 + sts.b_iso_out.rxbytes = data_per_desc;
14934 +
14935 + writel((uint32_t)dma_ad, &dma_desc->buf);
14936 + writel(sts.d32, &dma_desc->status);
14937 +
14938 + dwc_ep->next_frame = 0;
14939 +
14940 + /** Write dma_ad into DOEPDMA register */
14941 + dwc_write_reg32(&(out_regs->doepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
14942 +
14943 + }
14944 + /** ISO IN EP */
14945 + else {
14946 + desc_sts_data_t sts = { .d32 =0 };
14947 + dwc_otg_dma_desc_t* dma_desc = dwc_ep->iso_desc_addr;
14948 + dma_addr_t dma_ad;
14949 + dwc_otg_dev_in_ep_regs_t *in_regs =
14950 + core_if->dev_if->in_ep_regs[dwc_ep->num];
14951 + unsigned int frmnumber;
14952 + fifosize_data_t txfifosize,rxfifosize;
14953 +
14954 + txfifosize.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[dwc_ep->num]->dtxfsts);
14955 + rxfifosize.d32 = dwc_read_reg32(&core_if->core_global_regs->grxfsiz);
14956 +
14957 +
14958 + addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
14959 +
14960 + dma_ad = dwc_ep->dma_addr0;
14961 +
14962 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
14963 +
14964 + sts.b_iso_in.bs = BS_HOST_READY;
14965 + sts.b_iso_in.txsts = 0;
14966 + sts.b_iso_in.sp = (dwc_ep->data_per_frame % dwc_ep->maxpacket)? 1 : 0;
14967 + sts.b_iso_in.ioc = 0;
14968 + sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
14969 +
14970 +
14971 + frmnumber = dwc_ep->next_frame;
14972 +
14973 + sts.b_iso_in.framenum = frmnumber;
14974 + sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
14975 + sts.b_iso_in.l = 0;
14976 +
14977 + /** Buffer 0 descriptors setup */
14978 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
14979 + {
14980 + writel((uint32_t)dma_ad, &dma_desc->buf);
14981 + writel(sts.d32, &dma_desc->status);
14982 + dma_desc ++;
14983 +
14984 + //(uint32_t)dma_ad += dwc_ep->data_per_frame;
14985 + dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
14986 + sts.b_iso_in.framenum += dwc_ep->bInterval;
14987 + }
14988 +
14989 + sts.b_iso_in.ioc = 1;
14990 + writel((uint32_t)dma_ad, &dma_desc->buf);
14991 + writel(sts.d32, &dma_desc->status);
14992 + ++dma_desc;
14993 +
14994 + /** Buffer 1 descriptors setup */
14995 + sts.b_iso_in.ioc = 0;
14996 + dma_ad = dwc_ep->dma_addr1;
14997 +
14998 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
14999 + {
15000 + writel((uint32_t)dma_ad, &dma_desc->buf);
15001 + writel(sts.d32, &dma_desc->status);
15002 + dma_desc ++;
15003 +
15004 + //(uint32_t)dma_ad += dwc_ep->data_per_frame;
15005 + dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
15006 + sts.b_iso_in.framenum += dwc_ep->bInterval;
15007 +
15008 + sts.b_iso_in.ioc = 0;
15009 + }
15010 + sts.b_iso_in.ioc = 1;
15011 + sts.b_iso_in.l = 1;
15012 +
15013 + writel((uint32_t)dma_ad, &dma_desc->buf);
15014 + writel(sts.d32, &dma_desc->status);
15015 +
15016 + dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval;
15017 +
15018 + /** Write dma_ad into diepdma register */
15019 + dwc_write_reg32(&(in_regs->diepdma),(uint32_t)dwc_ep->iso_dma_desc_addr);
15020 + }
15021 + /** Enable endpoint, clear nak */
15022 + depctl.d32 = 0;
15023 + depctl.b.epena = 1;
15024 + depctl.b.usbactep = 1;
15025 + depctl.b.cnak = 1;
15026 +
15027 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
15028 + depctl.d32 = dwc_read_reg32(addr);
15029 +}
15030 +
15031 +/**
15032 + * This function initializes a descriptor chain for Isochronous transfer
15033 + *
15034 + * @param core_if Programming view of DWC_otg controller.
15035 + * @param ep The EP to start the transfer on.
15036 + *
15037 + */
15038 +
15039 +void dwc_otg_iso_ep_start_buf_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
15040 +{
15041 + depctl_data_t depctl = { .d32 = 0 };
15042 + volatile uint32_t *addr;
15043 +
15044 +
15045 + if(ep->is_in) {
15046 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
15047 + } else {
15048 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
15049 + }
15050 +
15051 +
15052 + if(core_if->dma_enable == 0 || core_if->dma_desc_enable!= 0) {
15053 + return;
15054 + } else {
15055 + deptsiz_data_t deptsiz = { .d32 = 0 };
15056 +
15057 + ep->xfer_len = ep->data_per_frame * ep->buf_proc_intrvl / ep->bInterval;
15058 + ep->pkt_cnt = (ep->xfer_len - 1 + ep->maxpacket) /
15059 + ep->maxpacket;
15060 + ep->xfer_count = 0;
15061 + ep->xfer_buff = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
15062 + ep->dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
15063 +
15064 + if(ep->is_in) {
15065 + /* Program the transfer size and packet count
15066 + * as follows: xfersize = N * maxpacket +
15067 + * short_packet pktcnt = N + (short_packet
15068 + * exist ? 1 : 0)
15069 + */
15070 + deptsiz.b.mc = ep->pkt_per_frm;
15071 + deptsiz.b.xfersize = ep->xfer_len;
15072 + deptsiz.b.pktcnt =
15073 + (ep->xfer_len - 1 + ep->maxpacket) /
15074 + ep->maxpacket;
15075 + dwc_write_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz, deptsiz.d32);
15076 +
15077 + /* Write the DMA register */
15078 + dwc_write_reg32 (&(core_if->dev_if->in_ep_regs[ep->num]->diepdma), (uint32_t)ep->dma_addr);
15079 +
15080 + } else {
15081 + deptsiz.b.pktcnt =
15082 + (ep->xfer_len + (ep->maxpacket - 1)) /
15083 + ep->maxpacket;
15084 + deptsiz.b.xfersize = deptsiz.b.pktcnt * ep->maxpacket;
15085 +
15086 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz, deptsiz.d32);
15087 +
15088 + /* Write the DMA register */
15089 + dwc_write_reg32 (&(core_if->dev_if->out_ep_regs[ep->num]->doepdma), (uint32_t)ep->dma_addr);
15090 +
15091 + }
15092 + /** Enable endpoint, clear nak */
15093 + depctl.d32 = 0;
15094 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
15095 +
15096 + depctl.b.epena = 1;
15097 + depctl.b.cnak = 1;
15098 +
15099 + dwc_modify_reg32(addr, depctl.d32,depctl.d32);
15100 + }
15101 +}
15102 +
15103 +
15104 +/**
15105 + * This function does the setup for a data transfer for an EP and
15106 + * starts the transfer. For an IN transfer, the packets will be
15107 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
15108 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
15109 + *
15110 + * @param core_if Programming view of DWC_otg controller.
15111 + * @param ep The EP to start the transfer on.
15112 + */
15113 +
15114 +void dwc_otg_iso_ep_start_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
15115 +{
15116 + if(core_if->dma_enable) {
15117 + if(core_if->dma_desc_enable) {
15118 + if(ep->is_in) {
15119 + ep->desc_cnt = ep->pkt_cnt / ep->pkt_per_frm;
15120 + } else {
15121 + ep->desc_cnt = ep->pkt_cnt;
15122 + }
15123 + dwc_otg_iso_ep_start_ddma_transfer(core_if, ep);
15124 + } else {
15125 + if(core_if->pti_enh_enable) {
15126 + dwc_otg_iso_ep_start_buf_transfer(core_if, ep);
15127 + } else {
15128 + ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
15129 + ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
15130 + dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
15131 + }
15132 + }
15133 + } else {
15134 + ep->cur_pkt_addr = (ep->proc_buf_num) ? ep->xfer_buff1 : ep->xfer_buff0;
15135 + ep->cur_pkt_dma_addr = (ep->proc_buf_num) ? ep->dma_addr1 : ep->dma_addr0;
15136 + dwc_otg_iso_ep_start_frm_transfer(core_if, ep);
15137 + }
15138 +}
15139 +
15140 +/**
15141 + * This function does the setup for a data transfer for an EP and
15142 + * starts the transfer. For an IN transfer, the packets will be
15143 + * loaded into the appropriate Tx FIFO in the ISR. For OUT transfers,
15144 + * the packets are unloaded from the Rx FIFO in the ISR. the ISR.
15145 + *
15146 + * @param core_if Programming view of DWC_otg controller.
15147 + * @param ep The EP to start the transfer on.
15148 + */
15149 +
15150 +void dwc_otg_iso_ep_stop_transfer(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
15151 +{
15152 + depctl_data_t depctl = { .d32 = 0 };
15153 + volatile uint32_t *addr;
15154 +
15155 + if(ep->is_in == 1) {
15156 + addr = &core_if->dev_if->in_ep_regs[ep->num]->diepctl;
15157 + }
15158 + else {
15159 + addr = &core_if->dev_if->out_ep_regs[ep->num]->doepctl;
15160 + }
15161 +
15162 + /* disable the ep */
15163 + depctl.d32 = dwc_read_reg32(addr);
15164 +
15165 + depctl.b.epdis = 1;
15166 + depctl.b.snak = 1;
15167 +
15168 + dwc_write_reg32(addr, depctl.d32);
15169 +
15170 + if(core_if->dma_desc_enable &&
15171 + ep->iso_desc_addr && ep->iso_dma_desc_addr) {
15172 + dwc_otg_ep_free_desc_chain(ep->iso_desc_addr,ep->iso_dma_desc_addr,ep->desc_cnt * 2);
15173 + }
15174 +
15175 + /* reset varibales */
15176 + ep->dma_addr0 = 0;
15177 + ep->dma_addr1 = 0;
15178 + ep->xfer_buff0 = 0;
15179 + ep->xfer_buff1 = 0;
15180 + ep->data_per_frame = 0;
15181 + ep->data_pattern_frame = 0;
15182 + ep->sync_frame = 0;
15183 + ep->buf_proc_intrvl = 0;
15184 + ep->bInterval = 0;
15185 + ep->proc_buf_num = 0;
15186 + ep->pkt_per_frm = 0;
15187 + ep->pkt_per_frm = 0;
15188 + ep->desc_cnt = 0;
15189 + ep->iso_desc_addr = 0;
15190 + ep->iso_dma_desc_addr = 0;
15191 +}
15192 +
15193 +
15194 +/**
15195 + * This function is used to submit an ISOC Transfer Request to an EP.
15196 + *
15197 + * - Every time a sync period completes the request's completion callback
15198 + * is called to provide data to the gadget driver.
15199 + * - Once submitted the request cannot be modified.
15200 + * - Each request is turned into periodic data packets untill ISO
15201 + * Transfer is stopped..
15202 + */
15203 +static int dwc_otg_pcd_iso_ep_start(struct usb_ep *usb_ep, struct usb_iso_request *req,
15204 + gfp_t gfp_flags)
15205 +{
15206 + dwc_otg_pcd_ep_t *ep;
15207 + dwc_otg_pcd_t *pcd;
15208 + dwc_ep_t *dwc_ep;
15209 + unsigned long flags = 0;
15210 + int32_t frm_data;
15211 + dwc_otg_core_if_t *core_if;
15212 + dcfg_data_t dcfg;
15213 + dsts_data_t dsts;
15214 +
15215 +
15216 + if (!req || !req->process_buffer || !req->buf0 || !req->buf1) {
15217 + DWC_WARN("%s, bad params\n", __func__);
15218 + return -EINVAL;
15219 + }
15220 +
15221 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
15222 +
15223 + if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
15224 + DWC_WARN("%s, bad ep\n", __func__);
15225 + return -EINVAL;
15226 + }
15227 +
15228 + pcd = ep->pcd;
15229 + core_if = GET_CORE_IF(pcd);
15230 +
15231 + dcfg.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dcfg);
15232 +
15233 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
15234 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
15235 + DWC_WARN("%s, bogus device state\n", __func__);
15236 + return -ESHUTDOWN;
15237 + }
15238 +
15239 + SPIN_LOCK_IRQSAVE(&ep->pcd->lock, flags);
15240 +
15241 + dwc_ep = &ep->dwc_ep;
15242 +
15243 + if(ep->iso_req) {
15244 + DWC_WARN("%s, iso request in progress\n", __func__);
15245 + }
15246 + req->status = -EINPROGRESS;
15247 +
15248 + dwc_ep->dma_addr0 = req->dma0;
15249 + dwc_ep->dma_addr1 = req->dma1;
15250 +
15251 + dwc_ep->xfer_buff0 = req->buf0;
15252 + dwc_ep->xfer_buff1 = req->buf1;
15253 +
15254 + ep->iso_req = req;
15255 +
15256 + dwc_ep->data_per_frame = req->data_per_frame;
15257 +
15258 + /** @todo - pattern data support is to be implemented in the future */
15259 + dwc_ep->data_pattern_frame = req->data_pattern_frame;
15260 + dwc_ep->sync_frame = req->sync_frame;
15261 +
15262 + dwc_ep->buf_proc_intrvl = req->buf_proc_intrvl;
15263 +
15264 + dwc_ep->bInterval = 1 << (ep->desc->bInterval - 1);
15265 +
15266 + dwc_ep->proc_buf_num = 0;
15267 +
15268 + dwc_ep->pkt_per_frm = 0;
15269 + frm_data = ep->dwc_ep.data_per_frame;
15270 + while(frm_data > 0) {
15271 + dwc_ep->pkt_per_frm++;
15272 + frm_data -= ep->dwc_ep.maxpacket;
15273 + }
15274 +
15275 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
15276 +
15277 + if(req->flags & USB_REQ_ISO_ASAP) {
15278 + dwc_ep->next_frame = dsts.b.soffn + 1;
15279 + if(dwc_ep->bInterval != 1){
15280 + dwc_ep->next_frame = dwc_ep->next_frame + (dwc_ep->bInterval - 1 - dwc_ep->next_frame % dwc_ep->bInterval);
15281 + }
15282 + } else {
15283 + dwc_ep->next_frame = req->start_frame;
15284 + }
15285 +
15286 +
15287 + if(!core_if->pti_enh_enable) {
15288 + dwc_ep->pkt_cnt = dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
15289 + } else {
15290 + dwc_ep->pkt_cnt =
15291 + (dwc_ep->data_per_frame * (dwc_ep->buf_proc_intrvl / dwc_ep->bInterval)
15292 + - 1 + dwc_ep->maxpacket) / dwc_ep->maxpacket;
15293 + }
15294 +
15295 + if(core_if->dma_desc_enable) {
15296 + dwc_ep->desc_cnt =
15297 + dwc_ep->buf_proc_intrvl * dwc_ep->pkt_per_frm / dwc_ep->bInterval;
15298 + }
15299 +
15300 + dwc_ep->pkt_info = kmalloc(sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt, GFP_KERNEL);
15301 + if(!dwc_ep->pkt_info) {
15302 + return -ENOMEM;
15303 + }
15304 + if(core_if->pti_enh_enable) {
15305 + memset(dwc_ep->pkt_info, 0, sizeof(iso_pkt_info_t) * dwc_ep->pkt_cnt);
15306 + }
15307 +
15308 + dwc_ep->cur_pkt = 0;
15309 +
15310 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
15311 +
15312 + dwc_otg_iso_ep_start_transfer(core_if, dwc_ep);
15313 +
15314 + return 0;
15315 +}
15316 +
15317 +/**
15318 + * This function stops ISO EP Periodic Data Transfer.
15319 + */
15320 +static int dwc_otg_pcd_iso_ep_stop(struct usb_ep *usb_ep, struct usb_iso_request *req)
15321 +{
15322 + dwc_otg_pcd_ep_t *ep;
15323 + dwc_otg_pcd_t *pcd;
15324 + dwc_ep_t *dwc_ep;
15325 + unsigned long flags;
15326 +
15327 + ep = container_of(usb_ep, dwc_otg_pcd_ep_t, ep);
15328 +
15329 + if (!usb_ep || !ep->desc || ep->dwc_ep.num == 0) {
15330 + DWC_WARN("%s, bad ep\n", __func__);
15331 + return -EINVAL;
15332 + }
15333 +
15334 + pcd = ep->pcd;
15335 +
15336 + if (!pcd->driver || pcd->gadget.speed == USB_SPEED_UNKNOWN) {
15337 + DWC_DEBUGPL(DBG_PCDV, "gadget.speed=%d\n", pcd->gadget.speed);
15338 + DWC_WARN("%s, bogus device state\n", __func__);
15339 + return -ESHUTDOWN;
15340 + }
15341 +
15342 + dwc_ep = &ep->dwc_ep;
15343 +
15344 + dwc_otg_iso_ep_stop_transfer(GET_CORE_IF(pcd), dwc_ep);
15345 +
15346 + kfree(dwc_ep->pkt_info);
15347 +
15348 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
15349 +
15350 + if(ep->iso_req != req) {
15351 + return -EINVAL;
15352 + }
15353 +
15354 + req->status = -ECONNRESET;
15355 +
15356 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
15357 +
15358 +
15359 + ep->iso_req = 0;
15360 +
15361 + return 0;
15362 +}
15363 +
15364 +/**
15365 + * This function is used for perodical data exchnage between PCD and gadget drivers.
15366 + * for Isochronous EPs
15367 + *
15368 + * - Every time a sync period completes this function is called to
15369 + * perform data exchange between PCD and gadget
15370 + */
15371 +void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req)
15372 +{
15373 + int i;
15374 + struct usb_gadget_iso_packet_descriptor *iso_packet;
15375 + dwc_ep_t *dwc_ep;
15376 +
15377 + dwc_ep = &ep->dwc_ep;
15378 +
15379 + if(ep->iso_req->status == -ECONNRESET) {
15380 + DWC_PRINT("Device has already disconnected\n");
15381 + /*Device has been disconnected*/
15382 + return;
15383 + }
15384 +
15385 + if(dwc_ep->proc_buf_num != 0) {
15386 + iso_packet = ep->iso_req->iso_packet_desc0;
15387 + }
15388 +
15389 + else {
15390 + iso_packet = ep->iso_req->iso_packet_desc1;
15391 + }
15392 +
15393 + /* Fill in ISOC packets descriptors & pass to gadget driver*/
15394 +
15395 + for(i = 0; i < dwc_ep->pkt_cnt; ++i) {
15396 + iso_packet[i].status = dwc_ep->pkt_info[i].status;
15397 + iso_packet[i].offset = dwc_ep->pkt_info[i].offset;
15398 + iso_packet[i].actual_length = dwc_ep->pkt_info[i].length;
15399 + dwc_ep->pkt_info[i].status = 0;
15400 + dwc_ep->pkt_info[i].offset = 0;
15401 + dwc_ep->pkt_info[i].length = 0;
15402 + }
15403 +
15404 + /* Call callback function to process data buffer */
15405 + ep->iso_req->status = 0;/* success */
15406 +
15407 + SPIN_UNLOCK(&ep->pcd->lock);
15408 + ep->iso_req->process_buffer(&ep->ep, ep->iso_req);
15409 + SPIN_LOCK(&ep->pcd->lock);
15410 +}
15411 +
15412 +
15413 +static struct usb_iso_request *dwc_otg_pcd_alloc_iso_request(struct usb_ep *ep,int packets,
15414 + gfp_t gfp_flags)
15415 +{
15416 + struct usb_iso_request *pReq = NULL;
15417 + uint32_t req_size;
15418 +
15419 +
15420 + req_size = sizeof(struct usb_iso_request);
15421 + req_size += (2 * packets * (sizeof(struct usb_gadget_iso_packet_descriptor)));
15422 +
15423 +
15424 + pReq = kmalloc(req_size, gfp_flags);
15425 + if (!pReq) {
15426 + DWC_WARN("%s, can't allocate Iso Request\n", __func__);
15427 + return 0;
15428 + }
15429 + pReq->iso_packet_desc0 = (void*) (pReq + 1);
15430 +
15431 + pReq->iso_packet_desc1 = pReq->iso_packet_desc0 + packets;
15432 +
15433 + return pReq;
15434 +}
15435 +
15436 +static void dwc_otg_pcd_free_iso_request(struct usb_ep *ep, struct usb_iso_request *req)
15437 +{
15438 + kfree(req);
15439 +}
15440 +
15441 +static struct usb_isoc_ep_ops dwc_otg_pcd_ep_ops =
15442 +{
15443 + .ep_ops =
15444 + {
15445 + .enable = dwc_otg_pcd_ep_enable,
15446 + .disable = dwc_otg_pcd_ep_disable,
15447 +
15448 + .alloc_request = dwc_otg_pcd_alloc_request,
15449 + .free_request = dwc_otg_pcd_free_request,
15450 +
15451 + //.alloc_buffer = dwc_otg_pcd_alloc_buffer,
15452 + //.free_buffer = dwc_otg_pcd_free_buffer,
15453 +
15454 + .queue = dwc_otg_pcd_ep_queue,
15455 + .dequeue = dwc_otg_pcd_ep_dequeue,
15456 +
15457 + .set_halt = dwc_otg_pcd_ep_set_halt,
15458 + .fifo_status = 0,
15459 + .fifo_flush = 0,
15460 + },
15461 + .iso_ep_start = dwc_otg_pcd_iso_ep_start,
15462 + .iso_ep_stop = dwc_otg_pcd_iso_ep_stop,
15463 + .alloc_iso_request = dwc_otg_pcd_alloc_iso_request,
15464 + .free_iso_request = dwc_otg_pcd_free_iso_request,
15465 +};
15466 +
15467 +#else
15468 +
15469 +
15470 +static struct usb_ep_ops dwc_otg_pcd_ep_ops =
15471 +{
15472 + .enable = dwc_otg_pcd_ep_enable,
15473 + .disable = dwc_otg_pcd_ep_disable,
15474 +
15475 + .alloc_request = dwc_otg_pcd_alloc_request,
15476 + .free_request = dwc_otg_pcd_free_request,
15477 +
15478 +// .alloc_buffer = dwc_otg_pcd_alloc_buffer,
15479 +// .free_buffer = dwc_otg_pcd_free_buffer,
15480 +
15481 + .queue = dwc_otg_pcd_ep_queue,
15482 + .dequeue = dwc_otg_pcd_ep_dequeue,
15483 +
15484 + .set_halt = dwc_otg_pcd_ep_set_halt,
15485 + .fifo_status = 0,
15486 + .fifo_flush = 0,
15487 +
15488 +
15489 +};
15490 +
15491 +#endif /* DWC_EN_ISOC */
15492 +/* Gadget Operations */
15493 +/**
15494 + * The following gadget operations will be implemented in the DWC_otg
15495 + * PCD. Functions in the API that are not described below are not
15496 + * implemented.
15497 + *
15498 + * The Gadget API provides wrapper functions for each of the function
15499 + * pointers defined in usb_gadget_ops. The Gadget Driver calls the
15500 + * wrapper function, which then calls the underlying PCD function. The
15501 + * following sections are named according to the wrapper functions
15502 + * (except for ioctl, which doesn't have a wrapper function). Within
15503 + * each section, the corresponding DWC_otg PCD function name is
15504 + * specified.
15505 + *
15506 + */
15507 +
15508 +/**
15509 + *Gets the USB Frame number of the last SOF.
15510 + */
15511 +static int dwc_otg_pcd_get_frame(struct usb_gadget *gadget)
15512 +{
15513 + dwc_otg_pcd_t *pcd;
15514 +
15515 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
15516 +
15517 + if (gadget == 0) {
15518 + return -ENODEV;
15519 + }
15520 + else {
15521 + pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
15522 + dwc_otg_get_frame_number(GET_CORE_IF(pcd));
15523 + }
15524 +
15525 + return 0;
15526 +}
15527 +
15528 +void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd)
15529 +{
15530 + uint32_t *addr = (uint32_t *)&(GET_CORE_IF(pcd)->core_global_regs->gotgctl);
15531 + gotgctl_data_t mem;
15532 + gotgctl_data_t val;
15533 +
15534 + val.d32 = dwc_read_reg32(addr);
15535 + if (val.b.sesreq) {
15536 + DWC_ERROR("Session Request Already active!\n");
15537 + return;
15538 + }
15539 +
15540 + DWC_NOTICE("Session Request Initated\n");
15541 + mem.d32 = dwc_read_reg32(addr);
15542 + mem.b.sesreq = 1;
15543 + dwc_write_reg32(addr, mem.d32);
15544 +
15545 + /* Start the SRP timer */
15546 + dwc_otg_pcd_start_srp_timer(pcd);
15547 + return;
15548 +}
15549 +
15550 +void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set)
15551 +{
15552 + dctl_data_t dctl = {.d32=0};
15553 + volatile uint32_t *addr = &(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dctl);
15554 +
15555 + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
15556 + if (pcd->remote_wakeup_enable) {
15557 + if (set) {
15558 + dctl.b.rmtwkupsig = 1;
15559 + dwc_modify_reg32(addr, 0, dctl.d32);
15560 + DWC_DEBUGPL(DBG_PCD, "Set Remote Wakeup\n");
15561 + mdelay(1);
15562 + dwc_modify_reg32(addr, dctl.d32, 0);
15563 + DWC_DEBUGPL(DBG_PCD, "Clear Remote Wakeup\n");
15564 + }
15565 + else {
15566 + }
15567 + }
15568 + else {
15569 + DWC_DEBUGPL(DBG_PCD, "Remote Wakeup is disabled\n");
15570 + }
15571 + }
15572 + return;
15573 +}
15574 +
15575 +/**
15576 + * Initiates Session Request Protocol (SRP) to wakeup the host if no
15577 + * session is in progress. If a session is already in progress, but
15578 + * the device is suspended, remote wakeup signaling is started.
15579 + *
15580 + */
15581 +static int dwc_otg_pcd_wakeup(struct usb_gadget *gadget)
15582 +{
15583 + unsigned long flags;
15584 + dwc_otg_pcd_t *pcd;
15585 + dsts_data_t dsts;
15586 + gotgctl_data_t gotgctl;
15587 +
15588 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, gadget);
15589 +
15590 + if (gadget == 0) {
15591 + return -ENODEV;
15592 + }
15593 + else {
15594 + pcd = container_of(gadget, dwc_otg_pcd_t, gadget);
15595 + }
15596 + SPIN_LOCK_IRQSAVE(&pcd->lock, flags);
15597 +
15598 + /*
15599 + * This function starts the Protocol if no session is in progress. If
15600 + * a session is already in progress, but the device is suspended,
15601 + * remote wakeup signaling is started.
15602 + */
15603 +
15604 + /* Check if valid session */
15605 + gotgctl.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->core_global_regs->gotgctl));
15606 + if (gotgctl.b.bsesvld) {
15607 + /* Check if suspend state */
15608 + dsts.d32 = dwc_read_reg32(&(GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts));
15609 + if (dsts.b.suspsts) {
15610 + dwc_otg_pcd_remote_wakeup(pcd, 1);
15611 + }
15612 + }
15613 + else {
15614 + dwc_otg_pcd_initiate_srp(pcd);
15615 + }
15616 +
15617 + SPIN_UNLOCK_IRQRESTORE(&pcd->lock, flags);
15618 + return 0;
15619 +}
15620 +
15621 +static const struct usb_gadget_ops dwc_otg_pcd_ops =
15622 +{
15623 + .get_frame = dwc_otg_pcd_get_frame,
15624 + .wakeup = dwc_otg_pcd_wakeup,
15625 + // current versions must always be self-powered
15626 +};
15627 +
15628 +/**
15629 + * This function updates the otg values in the gadget structure.
15630 + */
15631 +void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *pcd, const unsigned reset)
15632 +{
15633 +
15634 + if (!pcd->gadget.is_otg)
15635 + return;
15636 +
15637 + if (reset) {
15638 + pcd->b_hnp_enable = 0;
15639 + pcd->a_hnp_support = 0;
15640 + pcd->a_alt_hnp_support = 0;
15641 + }
15642 +
15643 + pcd->gadget.b_hnp_enable = pcd->b_hnp_enable;
15644 + pcd->gadget.a_hnp_support = pcd->a_hnp_support;
15645 + pcd->gadget.a_alt_hnp_support = pcd->a_alt_hnp_support;
15646 +}
15647 +
15648 +/**
15649 + * This function is the top level PCD interrupt handler.
15650 + */
15651 +static irqreturn_t dwc_otg_pcd_irq(int irq, void *dev)
15652 +{
15653 + dwc_otg_pcd_t *pcd = dev;
15654 + int32_t retval = IRQ_NONE;
15655 +
15656 + retval = dwc_otg_pcd_handle_intr(pcd);
15657 + return IRQ_RETVAL(retval);
15658 +}
15659 +
15660 +/**
15661 + * PCD Callback function for initializing the PCD when switching to
15662 + * device mode.
15663 + *
15664 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15665 + */
15666 +static int32_t dwc_otg_pcd_start_cb(void *p)
15667 +{
15668 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15669 +
15670 + /*
15671 + * Initialized the Core for Device mode.
15672 + */
15673 + if (dwc_otg_is_device_mode(GET_CORE_IF(pcd))) {
15674 + dwc_otg_core_dev_init(GET_CORE_IF(pcd));
15675 + }
15676 + return 1;
15677 +}
15678 +
15679 +/**
15680 + * PCD Callback function for stopping the PCD when switching to Host
15681 + * mode.
15682 + *
15683 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15684 + */
15685 +static int32_t dwc_otg_pcd_stop_cb(void *p)
15686 +{
15687 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15688 + extern void dwc_otg_pcd_stop(dwc_otg_pcd_t *_pcd);
15689 +
15690 + dwc_otg_pcd_stop(pcd);
15691 + return 1;
15692 +}
15693 +
15694 +
15695 +/**
15696 + * PCD Callback function for notifying the PCD when resuming from
15697 + * suspend.
15698 + *
15699 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15700 + */
15701 +static int32_t dwc_otg_pcd_suspend_cb(void *p)
15702 +{
15703 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15704 +
15705 + if (pcd->driver && pcd->driver->resume) {
15706 + SPIN_UNLOCK(&pcd->lock);
15707 + pcd->driver->suspend(&pcd->gadget);
15708 + SPIN_LOCK(&pcd->lock);
15709 + }
15710 +
15711 + return 1;
15712 +}
15713 +
15714 +
15715 +/**
15716 + * PCD Callback function for notifying the PCD when resuming from
15717 + * suspend.
15718 + *
15719 + * @param p void pointer to the <code>dwc_otg_pcd_t</code>
15720 + */
15721 +static int32_t dwc_otg_pcd_resume_cb(void *p)
15722 +{
15723 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)p;
15724 +
15725 + if (pcd->driver && pcd->driver->resume) {
15726 + SPIN_UNLOCK(&pcd->lock);
15727 + pcd->driver->resume(&pcd->gadget);
15728 + SPIN_LOCK(&pcd->lock);
15729 + }
15730 +
15731 + /* Stop the SRP timeout timer. */
15732 + if ((GET_CORE_IF(pcd)->core_params->phy_type != DWC_PHY_TYPE_PARAM_FS) ||
15733 + (!GET_CORE_IF(pcd)->core_params->i2c_enable)) {
15734 + if (GET_CORE_IF(pcd)->srp_timer_started) {
15735 + GET_CORE_IF(pcd)->srp_timer_started = 0;
15736 + del_timer(&pcd->srp_timer);
15737 + }
15738 + }
15739 + return 1;
15740 +}
15741 +
15742 +
15743 +/**
15744 + * PCD Callback structure for handling mode switching.
15745 + */
15746 +static dwc_otg_cil_callbacks_t pcd_callbacks =
15747 +{
15748 + .start = dwc_otg_pcd_start_cb,
15749 + .stop = dwc_otg_pcd_stop_cb,
15750 + .suspend = dwc_otg_pcd_suspend_cb,
15751 + .resume_wakeup = dwc_otg_pcd_resume_cb,
15752 + .p = 0, /* Set at registration */
15753 +};
15754 +
15755 +/**
15756 + * This function is called when the SRP timer expires. The SRP should
15757 + * complete within 6 seconds.
15758 + */
15759 +static void srp_timeout(unsigned long ptr)
15760 +{
15761 + gotgctl_data_t gotgctl;
15762 + dwc_otg_core_if_t *core_if = (dwc_otg_core_if_t *)ptr;
15763 + volatile uint32_t *addr = &core_if->core_global_regs->gotgctl;
15764 +
15765 + gotgctl.d32 = dwc_read_reg32(addr);
15766 +
15767 + core_if->srp_timer_started = 0;
15768 +
15769 + if ((core_if->core_params->phy_type == DWC_PHY_TYPE_PARAM_FS) &&
15770 + (core_if->core_params->i2c_enable)) {
15771 + DWC_PRINT("SRP Timeout\n");
15772 +
15773 + if ((core_if->srp_success) &&
15774 + (gotgctl.b.bsesvld)) {
15775 + if (core_if->pcd_cb && core_if->pcd_cb->resume_wakeup) {
15776 + core_if->pcd_cb->resume_wakeup(core_if->pcd_cb->p);
15777 + }
15778 +
15779 + /* Clear Session Request */
15780 + gotgctl.d32 = 0;
15781 + gotgctl.b.sesreq = 1;
15782 + dwc_modify_reg32(&core_if->core_global_regs->gotgctl,
15783 + gotgctl.d32, 0);
15784 +
15785 + core_if->srp_success = 0;
15786 + }
15787 + else {
15788 + DWC_ERROR("Device not connected/responding\n");
15789 + gotgctl.b.sesreq = 0;
15790 + dwc_write_reg32(addr, gotgctl.d32);
15791 + }
15792 + }
15793 + else if (gotgctl.b.sesreq) {
15794 + DWC_PRINT("SRP Timeout\n");
15795 +
15796 + DWC_ERROR("Device not connected/responding\n");
15797 + gotgctl.b.sesreq = 0;
15798 + dwc_write_reg32(addr, gotgctl.d32);
15799 + }
15800 + else {
15801 + DWC_PRINT(" SRP GOTGCTL=%0x\n", gotgctl.d32);
15802 + }
15803 +}
15804 +
15805 +/**
15806 + * Start the SRP timer to detect when the SRP does not complete within
15807 + * 6 seconds.
15808 + *
15809 + * @param pcd the pcd structure.
15810 + */
15811 +void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd)
15812 +{
15813 + struct timer_list *srp_timer = &pcd->srp_timer;
15814 + GET_CORE_IF(pcd)->srp_timer_started = 1;
15815 + init_timer(srp_timer);
15816 + srp_timer->function = srp_timeout;
15817 + srp_timer->data = (unsigned long)GET_CORE_IF(pcd);
15818 + srp_timer->expires = jiffies + (HZ*6);
15819 + add_timer(srp_timer);
15820 +}
15821 +
15822 +/**
15823 + * Tasklet
15824 + *
15825 + */
15826 +extern void start_next_request(dwc_otg_pcd_ep_t *ep);
15827 +
15828 +static void start_xfer_tasklet_func (unsigned long data)
15829 +{
15830 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t*)data;
15831 + dwc_otg_core_if_t *core_if = pcd->otg_dev->core_if;
15832 +
15833 + int i;
15834 + depctl_data_t diepctl;
15835 +
15836 + DWC_DEBUGPL(DBG_PCDV, "Start xfer tasklet\n");
15837 +
15838 + diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->diepctl);
15839 +
15840 + if (pcd->ep0.queue_sof) {
15841 + pcd->ep0.queue_sof = 0;
15842 + start_next_request (&pcd->ep0);
15843 + // break;
15844 + }
15845 +
15846 + for (i=0; i<core_if->dev_if->num_in_eps; i++)
15847 + {
15848 + depctl_data_t diepctl;
15849 + diepctl.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[i]->diepctl);
15850 +
15851 + if (pcd->in_ep[i].queue_sof) {
15852 + pcd->in_ep[i].queue_sof = 0;
15853 + start_next_request (&pcd->in_ep[i]);
15854 + // break;
15855 + }
15856 + }
15857 +
15858 + return;
15859 +}
15860 +
15861 +
15862 +
15863 +
15864 +
15865 +
15866 +
15867 +static struct tasklet_struct start_xfer_tasklet = {
15868 + .next = NULL,
15869 + .state = 0,
15870 + .count = ATOMIC_INIT(0),
15871 + .func = start_xfer_tasklet_func,
15872 + .data = 0,
15873 +};
15874 +/**
15875 + * This function initialized the pcd Dp structures to there default
15876 + * state.
15877 + *
15878 + * @param pcd the pcd structure.
15879 + */
15880 +void dwc_otg_pcd_reinit(dwc_otg_pcd_t *pcd)
15881 +{
15882 + static const char * names[] =
15883 + {
15884 +
15885 + "ep0",
15886 + "ep1in",
15887 + "ep2in",
15888 + "ep3in",
15889 + "ep4in",
15890 + "ep5in",
15891 + "ep6in",
15892 + "ep7in",
15893 + "ep8in",
15894 + "ep9in",
15895 + "ep10in",
15896 + "ep11in",
15897 + "ep12in",
15898 + "ep13in",
15899 + "ep14in",
15900 + "ep15in",
15901 + "ep1out",
15902 + "ep2out",
15903 + "ep3out",
15904 + "ep4out",
15905 + "ep5out",
15906 + "ep6out",
15907 + "ep7out",
15908 + "ep8out",
15909 + "ep9out",
15910 + "ep10out",
15911 + "ep11out",
15912 + "ep12out",
15913 + "ep13out",
15914 + "ep14out",
15915 + "ep15out"
15916 +
15917 + };
15918 +
15919 + int i;
15920 + int in_ep_cntr, out_ep_cntr;
15921 + uint32_t hwcfg1;
15922 + uint32_t num_in_eps = (GET_CORE_IF(pcd))->dev_if->num_in_eps;
15923 + uint32_t num_out_eps = (GET_CORE_IF(pcd))->dev_if->num_out_eps;
15924 + dwc_otg_pcd_ep_t *ep;
15925 +
15926 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
15927 +
15928 + INIT_LIST_HEAD (&pcd->gadget.ep_list);
15929 + pcd->gadget.ep0 = &pcd->ep0.ep;
15930 + pcd->gadget.speed = USB_SPEED_UNKNOWN;
15931 +
15932 + INIT_LIST_HEAD (&pcd->gadget.ep0->ep_list);
15933 +
15934 + /**
15935 + * Initialize the EP0 structure.
15936 + */
15937 + ep = &pcd->ep0;
15938 +
15939 + /* Init EP structure */
15940 + ep->desc = 0;
15941 + ep->pcd = pcd;
15942 + ep->stopped = 1;
15943 +
15944 + /* Init DWC ep structure */
15945 + ep->dwc_ep.num = 0;
15946 + ep->dwc_ep.active = 0;
15947 + ep->dwc_ep.tx_fifo_num = 0;
15948 + /* Control until ep is actvated */
15949 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
15950 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
15951 + ep->dwc_ep.dma_addr = 0;
15952 + ep->dwc_ep.start_xfer_buff = 0;
15953 + ep->dwc_ep.xfer_buff = 0;
15954 + ep->dwc_ep.xfer_len = 0;
15955 + ep->dwc_ep.xfer_count = 0;
15956 + ep->dwc_ep.sent_zlp = 0;
15957 + ep->dwc_ep.total_len = 0;
15958 + ep->queue_sof = 0;
15959 + ep->dwc_ep.desc_addr = 0;
15960 + ep->dwc_ep.dma_desc_addr = 0;
15961 +
15962 + ep->dwc_ep.aligned_buf=NULL;
15963 + ep->dwc_ep.aligned_buf_size=0;
15964 + ep->dwc_ep.aligned_dma_addr=0;
15965 +
15966 +
15967 + /* Init the usb_ep structure. */
15968 + ep->ep.name = names[0];
15969 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
15970 +
15971 + /**
15972 + * @todo NGS: What should the max packet size be set to
15973 + * here? Before EP type is set?
15974 + */
15975 + ep->ep.maxpacket = MAX_PACKET_SIZE;
15976 +
15977 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
15978 +
15979 + INIT_LIST_HEAD (&ep->queue);
15980 + /**
15981 + * Initialize the EP structures.
15982 + */
15983 + in_ep_cntr = 0;
15984 + hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 3;
15985 +
15986 + for (i = 1; in_ep_cntr < num_in_eps; i++)
15987 + {
15988 + if((hwcfg1 & 0x1) == 0) {
15989 + dwc_otg_pcd_ep_t *ep = &pcd->in_ep[in_ep_cntr];
15990 + in_ep_cntr ++;
15991 +
15992 + /* Init EP structure */
15993 + ep->desc = 0;
15994 + ep->pcd = pcd;
15995 + ep->stopped = 1;
15996 +
15997 + /* Init DWC ep structure */
15998 + ep->dwc_ep.is_in = 1;
15999 + ep->dwc_ep.num = i;
16000 + ep->dwc_ep.active = 0;
16001 + ep->dwc_ep.tx_fifo_num = 0;
16002 +
16003 + /* Control until ep is actvated */
16004 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
16005 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
16006 + ep->dwc_ep.dma_addr = 0;
16007 + ep->dwc_ep.start_xfer_buff = 0;
16008 + ep->dwc_ep.xfer_buff = 0;
16009 + ep->dwc_ep.xfer_len = 0;
16010 + ep->dwc_ep.xfer_count = 0;
16011 + ep->dwc_ep.sent_zlp = 0;
16012 + ep->dwc_ep.total_len = 0;
16013 + ep->queue_sof = 0;
16014 + ep->dwc_ep.desc_addr = 0;
16015 + ep->dwc_ep.dma_desc_addr = 0;
16016 +
16017 + /* Init the usb_ep structure. */
16018 + ep->ep.name = names[i];
16019 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
16020 +
16021 + /**
16022 + * @todo NGS: What should the max packet size be set to
16023 + * here? Before EP type is set?
16024 + */
16025 + ep->ep.maxpacket = MAX_PACKET_SIZE;
16026 +
16027 + //add only even number ep as in
16028 + if((i%2)==1)
16029 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
16030 +
16031 + INIT_LIST_HEAD (&ep->queue);
16032 + }
16033 + hwcfg1 >>= 2;
16034 + }
16035 +
16036 + out_ep_cntr = 0;
16037 + hwcfg1 = (GET_CORE_IF(pcd))->hwcfg1.d32 >> 2;
16038 +
16039 + for (i = 1; out_ep_cntr < num_out_eps; i++)
16040 + {
16041 + if((hwcfg1 & 0x1) == 0) {
16042 + dwc_otg_pcd_ep_t *ep = &pcd->out_ep[out_ep_cntr];
16043 + out_ep_cntr++;
16044 +
16045 + /* Init EP structure */
16046 + ep->desc = 0;
16047 + ep->pcd = pcd;
16048 + ep->stopped = 1;
16049 +
16050 + /* Init DWC ep structure */
16051 + ep->dwc_ep.is_in = 0;
16052 + ep->dwc_ep.num = i;
16053 + ep->dwc_ep.active = 0;
16054 + ep->dwc_ep.tx_fifo_num = 0;
16055 + /* Control until ep is actvated */
16056 + ep->dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
16057 + ep->dwc_ep.maxpacket = MAX_PACKET_SIZE;
16058 + ep->dwc_ep.dma_addr = 0;
16059 + ep->dwc_ep.start_xfer_buff = 0;
16060 + ep->dwc_ep.xfer_buff = 0;
16061 + ep->dwc_ep.xfer_len = 0;
16062 + ep->dwc_ep.xfer_count = 0;
16063 + ep->dwc_ep.sent_zlp = 0;
16064 + ep->dwc_ep.total_len = 0;
16065 + ep->queue_sof = 0;
16066 +
16067 + /* Init the usb_ep structure. */
16068 + ep->ep.name = names[15 + i];
16069 + ep->ep.ops = (struct usb_ep_ops*)&dwc_otg_pcd_ep_ops;
16070 + /**
16071 + * @todo NGS: What should the max packet size be set to
16072 + * here? Before EP type is set?
16073 + */
16074 + ep->ep.maxpacket = MAX_PACKET_SIZE;
16075 +
16076 + //add only odd number ep as out
16077 + if((i%2)==0)
16078 + list_add_tail (&ep->ep.ep_list, &pcd->gadget.ep_list);
16079 +
16080 + INIT_LIST_HEAD (&ep->queue);
16081 + }
16082 + hwcfg1 >>= 2;
16083 + }
16084 +
16085 + /* remove ep0 from the list. There is a ep0 pointer.*/
16086 + list_del_init (&pcd->ep0.ep.ep_list);
16087 +
16088 + pcd->ep0state = EP0_DISCONNECT;
16089 + pcd->ep0.ep.maxpacket = MAX_EP0_SIZE;
16090 + pcd->ep0.dwc_ep.maxpacket = MAX_EP0_SIZE;
16091 + pcd->ep0.dwc_ep.type = DWC_OTG_EP_TYPE_CONTROL;
16092 +}
16093 +
16094 +/**
16095 + * This function releases the Gadget device.
16096 + * required by device_unregister().
16097 + *
16098 + * @todo Should this do something? Should it free the PCD?
16099 + */
16100 +static void dwc_otg_pcd_gadget_release(struct device *dev)
16101 +{
16102 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, dev);
16103 +}
16104 +
16105 +
16106 +
16107 +/**
16108 + * This function initialized the PCD portion of the driver.
16109 + *
16110 + */
16111 +u8 dev_id[]="gadget";
16112 +int dwc_otg_pcd_init(struct platform_device *pdev)
16113 +{
16114 + static char pcd_name[] = "dwc_otg_pcd";
16115 + dwc_otg_pcd_t *pcd;
16116 + dwc_otg_core_if_t* core_if;
16117 + dwc_otg_dev_if_t* dev_if;
16118 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
16119 + int retval = 0;
16120 +
16121 +
16122 + DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n",__func__, pdev);
16123 + /*
16124 + * Allocate PCD structure
16125 + */
16126 + pcd = kmalloc(sizeof(dwc_otg_pcd_t), GFP_KERNEL);
16127 +
16128 + if (pcd == 0) {
16129 + return -ENOMEM;
16130 + }
16131 +
16132 + memset(pcd, 0, sizeof(dwc_otg_pcd_t));
16133 + spin_lock_init(&pcd->lock);
16134 +
16135 + otg_dev->pcd = pcd;
16136 + s_pcd = pcd;
16137 + pcd->gadget.name = pcd_name;
16138 +
16139 + pcd->gadget.dev.init_name = dev_id;
16140 + pcd->otg_dev = platform_get_drvdata(pdev);
16141 +
16142 + pcd->gadget.dev.parent = &pdev->dev;
16143 + pcd->gadget.dev.release = dwc_otg_pcd_gadget_release;
16144 + pcd->gadget.ops = &dwc_otg_pcd_ops;
16145 +
16146 + core_if = GET_CORE_IF(pcd);
16147 + dev_if = core_if->dev_if;
16148 +
16149 + if(core_if->hwcfg4.b.ded_fifo_en) {
16150 + DWC_PRINT("Dedicated Tx FIFOs mode\n");
16151 + }
16152 + else {
16153 + DWC_PRINT("Shared Tx FIFO mode\n");
16154 + }
16155 +
16156 + /* If the module is set to FS or if the PHY_TYPE is FS then the gadget
16157 + * should not report as dual-speed capable. replace the following line
16158 + * with the block of code below it once the software is debugged for
16159 + * this. If is_dualspeed = 0 then the gadget driver should not report
16160 + * a device qualifier descriptor when queried. */
16161 + if ((GET_CORE_IF(pcd)->core_params->speed == DWC_SPEED_PARAM_FULL) ||
16162 + ((GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == 2) &&
16163 + (GET_CORE_IF(pcd)->hwcfg2.b.fs_phy_type == 1) &&
16164 + (GET_CORE_IF(pcd)->core_params->ulpi_fs_ls))) {
16165 + pcd->gadget.max_speed = USB_SPEED_FULL;
16166 + }
16167 + else {
16168 + pcd->gadget.max_speed = USB_SPEED_HIGH;
16169 + }
16170 +
16171 + if ((otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE) ||
16172 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST) ||
16173 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE) ||
16174 + (otg_dev->core_if->hwcfg2.b.op_mode == DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST)) {
16175 + pcd->gadget.is_otg = 0;
16176 + }
16177 + else {
16178 + pcd->gadget.is_otg = 1;
16179 + }
16180 +
16181 +
16182 + pcd->driver = 0;
16183 + /* Register the gadget device */
16184 +printk("%s: 1\n",__func__);
16185 + retval = device_register(&pcd->gadget.dev);
16186 + if (retval != 0) {
16187 + kfree (pcd);
16188 +printk("%s: 2\n",__func__);
16189 + return retval;
16190 + }
16191 +
16192 +
16193 + /*
16194 + * Initialized the Core for Device mode.
16195 + */
16196 + if (dwc_otg_is_device_mode(core_if)) {
16197 + dwc_otg_core_dev_init(core_if);
16198 + }
16199 +
16200 + /*
16201 + * Initialize EP structures
16202 + */
16203 + dwc_otg_pcd_reinit(pcd);
16204 +
16205 + /*
16206 + * Register the PCD Callbacks.
16207 + */
16208 + dwc_otg_cil_register_pcd_callbacks(otg_dev->core_if, &pcd_callbacks,
16209 + pcd);
16210 + /*
16211 + * Setup interupt handler
16212 + */
16213 + DWC_DEBUGPL(DBG_ANY, "registering handler for irq%d\n", otg_dev->irq);
16214 + retval = request_irq(otg_dev->irq, dwc_otg_pcd_irq,
16215 + IRQF_SHARED, pcd->gadget.name, pcd);
16216 + if (retval != 0) {
16217 + DWC_ERROR("request of irq%d failed\n", otg_dev->irq);
16218 + device_unregister(&pcd->gadget.dev);
16219 + kfree (pcd);
16220 + return -EBUSY;
16221 + }
16222 +
16223 + /*
16224 + * Initialize the DMA buffer for SETUP packets
16225 + */
16226 + if (GET_CORE_IF(pcd)->dma_enable) {
16227 + pcd->setup_pkt = dma_alloc_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, &pcd->setup_pkt_dma_handle, 0);
16228 + if (pcd->setup_pkt == 0) {
16229 + free_irq(otg_dev->irq, pcd);
16230 + device_unregister(&pcd->gadget.dev);
16231 + kfree (pcd);
16232 + return -ENOMEM;
16233 + }
16234 +
16235 + pcd->status_buf = dma_alloc_coherent (NULL, sizeof (uint16_t), &pcd->status_buf_dma_handle, 0);
16236 + if (pcd->status_buf == 0) {
16237 + dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
16238 + free_irq(otg_dev->irq, pcd);
16239 + device_unregister(&pcd->gadget.dev);
16240 + kfree (pcd);
16241 + return -ENOMEM;
16242 + }
16243 +
16244 + if (GET_CORE_IF(pcd)->dma_desc_enable) {
16245 + dev_if->setup_desc_addr[0] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[0], 1);
16246 + dev_if->setup_desc_addr[1] = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_setup_desc_addr[1], 1);
16247 + dev_if->in_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_in_desc_addr, 1);
16248 + dev_if->out_desc_addr = dwc_otg_ep_alloc_desc_chain(&dev_if->dma_out_desc_addr, 1);
16249 +
16250 + if(dev_if->setup_desc_addr[0] == 0
16251 + || dev_if->setup_desc_addr[1] == 0
16252 + || dev_if->in_desc_addr == 0
16253 + || dev_if->out_desc_addr == 0 ) {
16254 +
16255 + if(dev_if->out_desc_addr)
16256 + dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
16257 + if(dev_if->in_desc_addr)
16258 + dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
16259 + if(dev_if->setup_desc_addr[1])
16260 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
16261 + if(dev_if->setup_desc_addr[0])
16262 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
16263 +
16264 +
16265 + dma_free_coherent(NULL, sizeof(*pcd->status_buf), pcd->status_buf, pcd->setup_pkt_dma_handle);
16266 + dma_free_coherent(NULL, sizeof(*pcd->setup_pkt), pcd->setup_pkt, pcd->setup_pkt_dma_handle);
16267 +
16268 + free_irq(otg_dev->irq, pcd);
16269 + device_unregister(&pcd->gadget.dev);
16270 + kfree (pcd);
16271 +
16272 + return -ENOMEM;
16273 + }
16274 + }
16275 + }
16276 + else {
16277 + pcd->setup_pkt = kmalloc (sizeof (*pcd->setup_pkt) * 5, GFP_KERNEL);
16278 + if (pcd->setup_pkt == 0) {
16279 + free_irq(otg_dev->irq, pcd);
16280 + device_unregister(&pcd->gadget.dev);
16281 + kfree (pcd);
16282 + return -ENOMEM;
16283 + }
16284 +
16285 + pcd->status_buf = kmalloc (sizeof (uint16_t), GFP_KERNEL);
16286 + if (pcd->status_buf == 0) {
16287 + kfree(pcd->setup_pkt);
16288 + free_irq(otg_dev->irq, pcd);
16289 + device_unregister(&pcd->gadget.dev);
16290 + kfree (pcd);
16291 + return -ENOMEM;
16292 + }
16293 + }
16294 +
16295 +
16296 + /* Initialize tasklet */
16297 + start_xfer_tasklet.data = (unsigned long)pcd;
16298 + pcd->start_xfer_tasklet = &start_xfer_tasklet;
16299 +
16300 + return 0;
16301 +}
16302 +
16303 +/**
16304 + * Cleanup the PCD.
16305 + */
16306 +void dwc_otg_pcd_remove(struct platform_device *pdev)
16307 +{
16308 + dwc_otg_device_t *otg_dev = platform_get_drvdata(pdev);
16309 + dwc_otg_pcd_t *pcd = otg_dev->pcd;
16310 + dwc_otg_dev_if_t* dev_if = GET_CORE_IF(pcd)->dev_if;
16311 +
16312 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pdev);
16313 +
16314 + /*
16315 + * Free the IRQ
16316 + */
16317 + free_irq(otg_dev->irq, pcd);
16318 +
16319 + /* start with the driver above us */
16320 + if (pcd->driver) {
16321 + /* should have been done already by driver model core */
16322 + DWC_WARN("driver '%s' is still registered\n",
16323 + pcd->driver->driver.name);
16324 + usb_gadget_unregister_driver(pcd->driver);
16325 + }
16326 + device_unregister(&pcd->gadget.dev);
16327 +
16328 + if (GET_CORE_IF(pcd)->dma_enable) {
16329 + dma_free_coherent (NULL, sizeof (*pcd->setup_pkt) * 5, pcd->setup_pkt, pcd->setup_pkt_dma_handle);
16330 + dma_free_coherent (NULL, sizeof (uint16_t), pcd->status_buf, pcd->status_buf_dma_handle);
16331 + if (GET_CORE_IF(pcd)->dma_desc_enable) {
16332 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[0], dev_if->dma_setup_desc_addr[0], 1);
16333 + dwc_otg_ep_free_desc_chain(dev_if->setup_desc_addr[1], dev_if->dma_setup_desc_addr[1], 1);
16334 + dwc_otg_ep_free_desc_chain(dev_if->in_desc_addr, dev_if->dma_in_desc_addr, 1);
16335 + dwc_otg_ep_free_desc_chain(dev_if->out_desc_addr, dev_if->dma_out_desc_addr, 1);
16336 + }
16337 + }
16338 + else {
16339 + kfree (pcd->setup_pkt);
16340 + kfree (pcd->status_buf);
16341 + }
16342 +
16343 + kfree(pcd);
16344 + otg_dev->pcd = 0;
16345 +}
16346 +
16347 +/**
16348 + * This function registers a gadget driver with the PCD.
16349 + *
16350 + * When a driver is successfully registered, it will receive control
16351 + * requests including set_configuration(), which enables non-control
16352 + * requests. then usb traffic follows until a disconnect is reported.
16353 + * then a host may connect again, or the driver might get unbound.
16354 + *
16355 + * @param driver The driver being registered
16356 + */
16357 +int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
16358 + int (*bind)(struct usb_gadget *))
16359 +{
16360 + int retval;
16361 +
16362 + DWC_DEBUGPL(DBG_PCD, "registering gadget driver '%s'\n", driver->driver.name);
16363 +
16364 + if (!driver || driver->max_speed == USB_SPEED_UNKNOWN ||
16365 + !bind ||
16366 + !driver->unbind ||
16367 + !driver->disconnect ||
16368 + !driver->setup) {
16369 + DWC_DEBUGPL(DBG_PCDV,"EINVAL\n");
16370 + return -EINVAL;
16371 + }
16372 + if (s_pcd == 0) {
16373 + DWC_DEBUGPL(DBG_PCDV,"ENODEV\n");
16374 + return -ENODEV;
16375 + }
16376 + if (s_pcd->driver != 0) {
16377 + DWC_DEBUGPL(DBG_PCDV,"EBUSY (%p)\n", s_pcd->driver);
16378 + return -EBUSY;
16379 + }
16380 +
16381 + /* hook up the driver */
16382 + s_pcd->driver = driver;
16383 + s_pcd->gadget.dev.driver = &driver->driver;
16384 +
16385 + DWC_DEBUGPL(DBG_PCD, "bind to driver %s\n", driver->driver.name);
16386 + retval = bind(&s_pcd->gadget);
16387 + if (retval) {
16388 + DWC_ERROR("bind to driver %s --> error %d\n",
16389 + driver->driver.name, retval);
16390 + s_pcd->driver = 0;
16391 + s_pcd->gadget.dev.driver = 0;
16392 + return retval;
16393 + }
16394 + DWC_DEBUGPL(DBG_ANY, "registered gadget driver '%s'\n",
16395 + driver->driver.name);
16396 + return 0;
16397 +}
16398 +
16399 +EXPORT_SYMBOL(usb_gadget_probe_driver);
16400 +
16401 +/**
16402 + * This function unregisters a gadget driver
16403 + *
16404 + * @param driver The driver being unregistered
16405 + */
16406 +int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
16407 +{
16408 + //DWC_DEBUGPL(DBG_PCDV,"%s(%p)\n", __func__, _driver);
16409 +
16410 + if (s_pcd == 0) {
16411 + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): s_pcd==0\n", __func__,
16412 + -ENODEV);
16413 + return -ENODEV;
16414 + }
16415 + if (driver == 0 || driver != s_pcd->driver) {
16416 + DWC_DEBUGPL(DBG_ANY, "%s Return(%d): driver?\n", __func__,
16417 + -EINVAL);
16418 + return -EINVAL;
16419 + }
16420 +
16421 + driver->unbind(&s_pcd->gadget);
16422 + s_pcd->driver = 0;
16423 +
16424 + DWC_DEBUGPL(DBG_ANY, "unregistered driver '%s'\n",
16425 + driver->driver.name);
16426 + return 0;
16427 +}
16428 +EXPORT_SYMBOL(usb_gadget_unregister_driver);
16429 +
16430 +#endif /* DWC_HOST_ONLY */
16431 --- /dev/null
16432 +++ b/drivers/usb/dwc/otg_pcd.h
16433 @@ -0,0 +1,292 @@
16434 +/* ==========================================================================
16435 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd.h $
16436 + * $Revision: #36 $
16437 + * $Date: 2008/09/26 $
16438 + * $Change: 1103515 $
16439 + *
16440 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
16441 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
16442 + * otherwise expressly agreed to in writing between Synopsys and you.
16443 + *
16444 + * The Software IS NOT an item of Licensed Software or Licensed Product under
16445 + * any End User Software License Agreement or Agreement for Licensed Product
16446 + * with Synopsys or any supplement thereto. You are permitted to use and
16447 + * redistribute this Software in source and binary forms, with or without
16448 + * modification, provided that redistributions of source code must retain this
16449 + * notice. You may not view, use, disclose, copy or distribute this file or
16450 + * any information contained herein except pursuant to this license grant from
16451 + * Synopsys. If you do not agree with this notice, including the disclaimer
16452 + * below, then you are not authorized to use the Software.
16453 + *
16454 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
16455 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16456 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16457 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
16458 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
16459 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
16460 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
16461 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
16462 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
16463 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
16464 + * DAMAGE.
16465 + * ========================================================================== */
16466 +#ifndef DWC_HOST_ONLY
16467 +#if !defined(__DWC_PCD_H__)
16468 +#define __DWC_PCD_H__
16469 +
16470 +#include <linux/types.h>
16471 +#include <linux/list.h>
16472 +#include <linux/errno.h>
16473 +#include <linux/device.h>
16474 +#include <linux/platform_device.h>
16475 +
16476 +#include <linux/usb/ch9.h>
16477 +#include <linux/usb/gadget.h>
16478 +
16479 +#include <linux/interrupt.h>
16480 +#include <linux/dma-mapping.h>
16481 +
16482 +struct dwc_otg_device;
16483 +
16484 +#include "otg_cil.h"
16485 +
16486 +/**
16487 + * @file
16488 + *
16489 + * This file contains the structures, constants, and interfaces for
16490 + * the Perpherial Contoller Driver (PCD).
16491 + *
16492 + * The Peripheral Controller Driver (PCD) for Linux will implement the
16493 + * Gadget API, so that the existing Gadget drivers can be used. For
16494 + * the Mass Storage Function driver the File-backed USB Storage Gadget
16495 + * (FBS) driver will be used. The FBS driver supports the
16496 + * Control-Bulk (CB), Control-Bulk-Interrupt (CBI), and Bulk-Only
16497 + * transports.
16498 + *
16499 + */
16500 +
16501 +/** Invalid DMA Address */
16502 +#define DMA_ADDR_INVALID (~(dma_addr_t)0)
16503 +/** Maxpacket size for EP0 */
16504 +#define MAX_EP0_SIZE 64
16505 +/** Maxpacket size for any EP */
16506 +#define MAX_PACKET_SIZE 1024
16507 +
16508 +/** Max Transfer size for any EP */
16509 +#define MAX_TRANSFER_SIZE 65535
16510 +
16511 +/** Max DMA Descriptor count for any EP */
16512 +#define MAX_DMA_DESC_CNT 64
16513 +
16514 +/**
16515 + * Get the pointer to the core_if from the pcd pointer.
16516 + */
16517 +#define GET_CORE_IF( _pcd ) (_pcd->otg_dev->core_if)
16518 +
16519 +/**
16520 + * States of EP0.
16521 + */
16522 +typedef enum ep0_state
16523 +{
16524 + EP0_DISCONNECT, /* no host */
16525 + EP0_IDLE,
16526 + EP0_IN_DATA_PHASE,
16527 + EP0_OUT_DATA_PHASE,
16528 + EP0_IN_STATUS_PHASE,
16529 + EP0_OUT_STATUS_PHASE,
16530 + EP0_STALL,
16531 +} ep0state_e;
16532 +
16533 +/** Fordward declaration.*/
16534 +struct dwc_otg_pcd;
16535 +
16536 +/** DWC_otg iso request structure.
16537 + *
16538 + */
16539 +typedef struct usb_iso_request dwc_otg_pcd_iso_request_t;
16540 +
16541 +/** PCD EP structure.
16542 + * This structure describes an EP, there is an array of EPs in the PCD
16543 + * structure.
16544 + */
16545 +typedef struct dwc_otg_pcd_ep
16546 +{
16547 + /** USB EP data */
16548 + struct usb_ep ep;
16549 + /** USB EP Descriptor */
16550 + const struct usb_endpoint_descriptor *desc;
16551 +
16552 + /** queue of dwc_otg_pcd_requests. */
16553 + struct list_head queue;
16554 + unsigned stopped : 1;
16555 + unsigned disabling : 1;
16556 + unsigned dma : 1;
16557 + unsigned queue_sof : 1;
16558 +
16559 +#ifdef DWC_EN_ISOC
16560 + /** DWC_otg Isochronous Transfer */
16561 + struct usb_iso_request* iso_req;
16562 +#endif //DWC_EN_ISOC
16563 +
16564 + /** DWC_otg ep data. */
16565 + dwc_ep_t dwc_ep;
16566 +
16567 + /** Pointer to PCD */
16568 + struct dwc_otg_pcd *pcd;
16569 +}dwc_otg_pcd_ep_t;
16570 +
16571 +
16572 +
16573 +/** DWC_otg PCD Structure.
16574 + * This structure encapsulates the data for the dwc_otg PCD.
16575 + */
16576 +typedef struct dwc_otg_pcd
16577 +{
16578 + /** USB gadget */
16579 + struct usb_gadget gadget;
16580 + /** USB gadget driver pointer*/
16581 + struct usb_gadget_driver *driver;
16582 + /** The DWC otg device pointer. */
16583 + struct dwc_otg_device *otg_dev;
16584 +
16585 + /** State of EP0 */
16586 + ep0state_e ep0state;
16587 + /** EP0 Request is pending */
16588 + unsigned ep0_pending : 1;
16589 + /** Indicates when SET CONFIGURATION Request is in process */
16590 + unsigned request_config : 1;
16591 + /** The state of the Remote Wakeup Enable. */
16592 + unsigned remote_wakeup_enable : 1;
16593 + /** The state of the B-Device HNP Enable. */
16594 + unsigned b_hnp_enable : 1;
16595 + /** The state of A-Device HNP Support. */
16596 + unsigned a_hnp_support : 1;
16597 + /** The state of the A-Device Alt HNP support. */
16598 + unsigned a_alt_hnp_support : 1;
16599 + /** Count of pending Requests */
16600 + unsigned request_pending;
16601 +
16602 + /** SETUP packet for EP0
16603 + * This structure is allocated as a DMA buffer on PCD initialization
16604 + * with enough space for up to 3 setup packets.
16605 + */
16606 + union
16607 + {
16608 + struct usb_ctrlrequest req;
16609 + uint32_t d32[2];
16610 + } *setup_pkt;
16611 +
16612 + dma_addr_t setup_pkt_dma_handle;
16613 +
16614 + /** 2-byte dma buffer used to return status from GET_STATUS */
16615 + uint16_t *status_buf;
16616 + dma_addr_t status_buf_dma_handle;
16617 +
16618 + /** EP0 */
16619 + dwc_otg_pcd_ep_t ep0;
16620 +
16621 + /** Array of IN EPs. */
16622 + dwc_otg_pcd_ep_t in_ep[ MAX_EPS_CHANNELS - 1];
16623 + /** Array of OUT EPs. */
16624 + dwc_otg_pcd_ep_t out_ep[ MAX_EPS_CHANNELS - 1];
16625 + /** number of valid EPs in the above array. */
16626 +// unsigned num_eps : 4;
16627 + spinlock_t lock;
16628 + /** Timer for SRP. If it expires before SRP is successful
16629 + * clear the SRP. */
16630 + struct timer_list srp_timer;
16631 +
16632 + /** Tasklet to defer starting of TEST mode transmissions until
16633 + * Status Phase has been completed.
16634 + */
16635 + struct tasklet_struct test_mode_tasklet;
16636 +
16637 + /** Tasklet to delay starting of xfer in DMA mode */
16638 + struct tasklet_struct *start_xfer_tasklet;
16639 +
16640 + /** The test mode to enter when the tasklet is executed. */
16641 + unsigned test_mode;
16642 +
16643 +} dwc_otg_pcd_t;
16644 +
16645 +
16646 +/** DWC_otg request structure.
16647 + * This structure is a list of requests.
16648 + */
16649 +typedef struct
16650 +{
16651 + struct usb_request req; /**< USB Request. */
16652 + struct list_head queue; /**< queue of these requests. */
16653 +} dwc_otg_pcd_request_t;
16654 +
16655 +
16656 +extern int dwc_otg_pcd_init(struct platform_device *pdev);
16657 +
16658 +//extern void dwc_otg_pcd_remove( struct dwc_otg_device *_otg_dev );
16659 +extern void dwc_otg_pcd_remove( struct platform_device *pdev );
16660 +extern int32_t dwc_otg_pcd_handle_intr( dwc_otg_pcd_t *pcd );
16661 +extern void dwc_otg_pcd_start_srp_timer(dwc_otg_pcd_t *pcd );
16662 +
16663 +extern void dwc_otg_pcd_initiate_srp(dwc_otg_pcd_t *pcd);
16664 +extern void dwc_otg_pcd_remote_wakeup(dwc_otg_pcd_t *pcd, int set);
16665 +
16666 +extern void dwc_otg_iso_buffer_done(dwc_otg_pcd_ep_t *ep, dwc_otg_pcd_iso_request_t *req);
16667 +extern void dwc_otg_request_done(dwc_otg_pcd_ep_t *_ep, dwc_otg_pcd_request_t *req,
16668 + int status);
16669 +extern void dwc_otg_request_nuke(dwc_otg_pcd_ep_t *_ep);
16670 +extern void dwc_otg_pcd_update_otg(dwc_otg_pcd_t *_pcd,
16671 + const unsigned reset);
16672 +#ifndef VERBOSE
16673 +#define VERIFY_PCD_DMA_ADDR(_addr_) BUG_ON(((_addr_)==DMA_ADDR_INVALID)||\
16674 + ((_addr_)==0)||\
16675 + ((_addr_)&0x3))
16676 +#else
16677 +#define VERIFY_PCD_DMA_ADDR(_addr_) {\
16678 + if(((_addr_)==DMA_ADDR_INVALID)||\
16679 + ((_addr_)==0)||\
16680 + ((_addr_)&0x3)) {\
16681 + printk("%s: Invalid DMA address "#_addr_"(%.8x)\n",__func__,_addr_);\
16682 + BUG();\
16683 + }\
16684 + }
16685 +#endif
16686 +
16687 +
16688 +static inline void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
16689 +//void ep_check_and_patch_dma_addr(dwc_otg_pcd_ep_t *ep){
16690 + dwc_ep_t *dwc_ep=&ep->dwc_ep;
16691 +
16692 +DWC_DEBUGPL(DBG_PCDV,"%s: dwc_ep xfer_buf=%.8x, total_len=%d, dma_addr=%.8x\n",__func__,(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->dma_addr);
16693 + if (/*(core_if->dma_enable)&&*/(dwc_ep->dma_addr==DMA_ADDR_INVALID)) {
16694 + if((((u32)dwc_ep->xfer_buff)&0x3)==0){
16695 + dwc_ep->dma_addr=dma_map_single(NULL,(void *)(dwc_ep->start_xfer_buff),(dwc_ep->total_len), DMA_TO_DEVICE);
16696 +DWC_DEBUGPL(DBG_PCDV," got dma_addr=%.8x\n",dwc_ep->dma_addr);
16697 + }else{
16698 +DWC_DEBUGPL(DBG_PCDV," buf not aligned, use aligned_buf instead. xfer_buf=%.8x, total_len=%d, aligned_buf_size=%d\n",(u32)dwc_ep->xfer_buff,(dwc_ep->total_len),dwc_ep->aligned_buf_size);
16699 + if(dwc_ep->aligned_buf_size<dwc_ep->total_len){
16700 + if(dwc_ep->aligned_buf){
16701 +//printk(" free buff dwc_ep aligned_buf_size=%d, aligned_buf(%.8x), aligned_dma_addr(%.8x));\n",dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
16702 + //dma_free_coherent(NULL,dwc_ep->aligned_buf_size,dwc_ep->aligned_buf,dwc_ep->aligned_dma_addr);
16703 + kfree(dwc_ep->aligned_buf);
16704 + }
16705 + dwc_ep->aligned_buf_size=((1<<20)>(dwc_ep->total_len<<1))?(dwc_ep->total_len<<1):(1<<20);
16706 + //dwc_ep->aligned_buf = dma_alloc_coherent (NULL, dwc_ep->aligned_buf_size, &dwc_ep->aligned_dma_addr, GFP_KERNEL|GFP_DMA);
16707 + dwc_ep->aligned_buf=kmalloc(dwc_ep->aligned_buf_size,GFP_KERNEL|GFP_DMA|GFP_ATOMIC);
16708 + dwc_ep->aligned_dma_addr=dma_map_single(NULL,(void *)(dwc_ep->aligned_buf),(dwc_ep->aligned_buf_size),DMA_FROM_DEVICE);
16709 + if(!dwc_ep->aligned_buf){
16710 + DWC_ERROR("Cannot alloc required buffer!!\n");
16711 + BUG();
16712 + }
16713 +DWC_DEBUGPL(DBG_PCDV," dwc_ep allocated aligned buf=%.8x, dma_addr=%.8x, size=%d(0x%x)\n", (u32)dwc_ep->aligned_buf, dwc_ep->aligned_dma_addr, dwc_ep->aligned_buf_size, dwc_ep->aligned_buf_size);
16714 + }
16715 + dwc_ep->dma_addr=dwc_ep->aligned_dma_addr;
16716 + if(dwc_ep->is_in) {
16717 + memcpy(dwc_ep->aligned_buf,dwc_ep->xfer_buff,dwc_ep->total_len);
16718 + dma_sync_single_for_device(NULL,dwc_ep->dma_addr,dwc_ep->total_len,DMA_TO_DEVICE);
16719 + }
16720 + }
16721 + }
16722 +}
16723 +
16724 +#endif
16725 +#endif /* DWC_HOST_ONLY */
16726 --- /dev/null
16727 +++ b/drivers/usb/dwc/otg_pcd_intr.c
16728 @@ -0,0 +1,3682 @@
16729 +/* ==========================================================================
16730 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_pcd_intr.c $
16731 + * $Revision: #83 $
16732 + * $Date: 2008/10/14 $
16733 + * $Change: 1115682 $
16734 + *
16735 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
16736 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
16737 + * otherwise expressly agreed to in writing between Synopsys and you.
16738 + *
16739 + * The Software IS NOT an item of Licensed Software or Licensed Product under
16740 + * any End User Software License Agreement or Agreement for Licensed Product
16741 + * with Synopsys or any supplement thereto. You are permitted to use and
16742 + * redistribute this Software in source and binary forms, with or without
16743 + * modification, provided that redistributions of source code must retain this
16744 + * notice. You may not view, use, disclose, copy or distribute this file or
16745 + * any information contained herein except pursuant to this license grant from
16746 + * Synopsys. If you do not agree with this notice, including the disclaimer
16747 + * below, then you are not authorized to use the Software.
16748 + *
16749 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
16750 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16751 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16752 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
16753 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
16754 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
16755 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
16756 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
16757 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
16758 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
16759 + * DAMAGE.
16760 + * ========================================================================== */
16761 +#ifndef DWC_HOST_ONLY
16762 +#include <linux/interrupt.h>
16763 +#include <linux/dma-mapping.h>
16764 +#include <linux/version.h>
16765 +#include <linux/pci.h>
16766 +
16767 +#include "otg_driver.h"
16768 +#include "otg_pcd.h"
16769 +
16770 +
16771 +#define DEBUG_EP0
16772 +
16773 +
16774 +/* request functions defined in "dwc_otg_pcd.c" */
16775 +
16776 +/** @file
16777 + * This file contains the implementation of the PCD Interrupt handlers.
16778 + *
16779 + * The PCD handles the device interrupts. Many conditions can cause a
16780 + * device interrupt. When an interrupt occurs, the device interrupt
16781 + * service routine determines the cause of the interrupt and
16782 + * dispatches handling to the appropriate function. These interrupt
16783 + * handling functions are described below.
16784 + * All interrupt registers are processed from LSB to MSB.
16785 + */
16786 +
16787 +
16788 +/**
16789 + * This function prints the ep0 state for debug purposes.
16790 + */
16791 +static inline void print_ep0_state(dwc_otg_pcd_t *pcd)
16792 +{
16793 +#ifdef DEBUG
16794 + char str[40];
16795 +
16796 + switch (pcd->ep0state) {
16797 + case EP0_DISCONNECT:
16798 + strcpy(str, "EP0_DISCONNECT");
16799 + break;
16800 + case EP0_IDLE:
16801 + strcpy(str, "EP0_IDLE");
16802 + break;
16803 + case EP0_IN_DATA_PHASE:
16804 + strcpy(str, "EP0_IN_DATA_PHASE");
16805 + break;
16806 + case EP0_OUT_DATA_PHASE:
16807 + strcpy(str, "EP0_OUT_DATA_PHASE");
16808 + break;
16809 + case EP0_IN_STATUS_PHASE:
16810 + strcpy(str,"EP0_IN_STATUS_PHASE");
16811 + break;
16812 + case EP0_OUT_STATUS_PHASE:
16813 + strcpy(str,"EP0_OUT_STATUS_PHASE");
16814 + break;
16815 + case EP0_STALL:
16816 + strcpy(str,"EP0_STALL");
16817 + break;
16818 + default:
16819 + strcpy(str,"EP0_INVALID");
16820 + }
16821 +
16822 + DWC_DEBUGPL(DBG_ANY, "%s(%d)\n", str, pcd->ep0state);
16823 +#endif
16824 +}
16825 +
16826 +/**
16827 + * This function returns pointer to in ep struct with number ep_num
16828 + */
16829 +static inline dwc_otg_pcd_ep_t* get_in_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
16830 +{
16831 + int i;
16832 + int num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
16833 + if(ep_num == 0) {
16834 + return &pcd->ep0;
16835 + }
16836 + else {
16837 + for(i = 0; i < num_in_eps; ++i)
16838 + {
16839 + if(pcd->in_ep[i].dwc_ep.num == ep_num)
16840 + return &pcd->in_ep[i];
16841 + }
16842 + return 0;
16843 + }
16844 +}
16845 +/**
16846 + * This function returns pointer to out ep struct with number ep_num
16847 + */
16848 +static inline dwc_otg_pcd_ep_t* get_out_ep(dwc_otg_pcd_t *pcd, uint32_t ep_num)
16849 +{
16850 + int i;
16851 + int num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
16852 + if(ep_num == 0) {
16853 + return &pcd->ep0;
16854 + }
16855 + else {
16856 + for(i = 0; i < num_out_eps; ++i)
16857 + {
16858 + if(pcd->out_ep[i].dwc_ep.num == ep_num)
16859 + return &pcd->out_ep[i];
16860 + }
16861 + return 0;
16862 + }
16863 +}
16864 +/**
16865 + * This functions gets a pointer to an EP from the wIndex address
16866 + * value of the control request.
16867 + */
16868 +static dwc_otg_pcd_ep_t *get_ep_by_addr (dwc_otg_pcd_t *pcd, u16 wIndex)
16869 +{
16870 + dwc_otg_pcd_ep_t *ep;
16871 +
16872 + if ((wIndex & USB_ENDPOINT_NUMBER_MASK) == 0)
16873 + return &pcd->ep0;
16874 + list_for_each_entry(ep, &pcd->gadget.ep_list, ep.ep_list)
16875 + {
16876 + u8 bEndpointAddress;
16877 +
16878 + if (!ep->desc)
16879 + continue;
16880 +
16881 + bEndpointAddress = ep->desc->bEndpointAddress;
16882 + if((wIndex & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK))
16883 + == (bEndpointAddress & (USB_DIR_IN | USB_ENDPOINT_NUMBER_MASK)))
16884 + return ep;
16885 + }
16886 + return NULL;
16887 +}
16888 +
16889 +/**
16890 + * This function checks the EP request queue, if the queue is not
16891 + * empty the next request is started.
16892 + */
16893 +void start_next_request(dwc_otg_pcd_ep_t *ep)
16894 +{
16895 + dwc_otg_pcd_request_t *req = 0;
16896 + uint32_t max_transfer = GET_CORE_IF(ep->pcd)->core_params->max_transfer_size;
16897 + if (!list_empty(&ep->queue)) {
16898 + req = list_entry(ep->queue.next,
16899 + dwc_otg_pcd_request_t, queue);
16900 +
16901 + /* Setup and start the Transfer */
16902 + ep->dwc_ep.dma_addr = req->req.dma;
16903 + ep->dwc_ep.start_xfer_buff = req->req.buf;
16904 + ep->dwc_ep.xfer_buff = req->req.buf;
16905 + ep->dwc_ep.sent_zlp = 0;
16906 + ep->dwc_ep.total_len = req->req.length;
16907 + ep->dwc_ep.xfer_len = 0;
16908 + ep->dwc_ep.xfer_count = 0;
16909 +
16910 + if(max_transfer > MAX_TRANSFER_SIZE) {
16911 + ep->dwc_ep.maxxfer = max_transfer - (max_transfer % ep->dwc_ep.maxpacket);
16912 + } else {
16913 + ep->dwc_ep.maxxfer = max_transfer;
16914 + }
16915 +
16916 + if(req->req.zero) {
16917 + if((ep->dwc_ep.total_len % ep->dwc_ep.maxpacket == 0)
16918 + && (ep->dwc_ep.total_len != 0)) {
16919 + ep->dwc_ep.sent_zlp = 1;
16920 + }
16921 +
16922 + }
16923 + ep_check_and_patch_dma_addr(ep);
16924 + dwc_otg_ep_start_transfer(GET_CORE_IF(ep->pcd), &ep->dwc_ep);
16925 + }
16926 +}
16927 +
16928 +/**
16929 + * This function handles the SOF Interrupts. At this time the SOF
16930 + * Interrupt is disabled.
16931 + */
16932 +int32_t dwc_otg_pcd_handle_sof_intr(dwc_otg_pcd_t *pcd)
16933 +{
16934 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
16935 +
16936 + gintsts_data_t gintsts;
16937 +
16938 + DWC_DEBUGPL(DBG_PCD, "SOF\n");
16939 +
16940 + /* Clear interrupt */
16941 + gintsts.d32 = 0;
16942 + gintsts.b.sofintr = 1;
16943 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
16944 +
16945 + return 1;
16946 +}
16947 +
16948 +
16949 +/**
16950 + * This function handles the Rx Status Queue Level Interrupt, which
16951 + * indicates that there is a least one packet in the Rx FIFO. The
16952 + * packets are moved from the FIFO to memory, where they will be
16953 + * processed when the Endpoint Interrupt Register indicates Transfer
16954 + * Complete or SETUP Phase Done.
16955 + *
16956 + * Repeat the following until the Rx Status Queue is empty:
16957 + * -# Read the Receive Status Pop Register (GRXSTSP) to get Packet
16958 + * info
16959 + * -# If Receive FIFO is empty then skip to step Clear the interrupt
16960 + * and exit
16961 + * -# If SETUP Packet call dwc_otg_read_setup_packet to copy the
16962 + * SETUP data to the buffer
16963 + * -# If OUT Data Packet call dwc_otg_read_packet to copy the data
16964 + * to the destination buffer
16965 + */
16966 +int32_t dwc_otg_pcd_handle_rx_status_q_level_intr(dwc_otg_pcd_t *pcd)
16967 +{
16968 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
16969 + dwc_otg_core_global_regs_t *global_regs = core_if->core_global_regs;
16970 + gintmsk_data_t gintmask = {.d32=0};
16971 + device_grxsts_data_t status;
16972 + dwc_otg_pcd_ep_t *ep;
16973 + gintsts_data_t gintsts;
16974 +#ifdef DEBUG
16975 + static char *dpid_str[] ={ "D0", "D2", "D1", "MDATA" };
16976 +#endif
16977 +
16978 + //DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, _pcd);
16979 + /* Disable the Rx Status Queue Level interrupt */
16980 + gintmask.b.rxstsqlvl= 1;
16981 + dwc_modify_reg32(&global_regs->gintmsk, gintmask.d32, 0);
16982 +
16983 + /* Get the Status from the top of the FIFO */
16984 + status.d32 = dwc_read_reg32(&global_regs->grxstsp);
16985 +
16986 + DWC_DEBUGPL(DBG_PCD, "EP:%d BCnt:%d DPID:%s "
16987 + "pktsts:%x Frame:%d(0x%0x)\n",
16988 + status.b.epnum, status.b.bcnt,
16989 + dpid_str[status.b.dpid],
16990 + status.b.pktsts, status.b.fn, status.b.fn);
16991 + /* Get pointer to EP structure */
16992 + ep = get_out_ep(pcd, status.b.epnum);
16993 +
16994 + switch (status.b.pktsts) {
16995 + case DWC_DSTS_GOUT_NAK:
16996 + DWC_DEBUGPL(DBG_PCDV, "Global OUT NAK\n");
16997 + break;
16998 + case DWC_STS_DATA_UPDT:
16999 + DWC_DEBUGPL(DBG_PCDV, "OUT Data Packet\n");
17000 + if (status.b.bcnt && ep->dwc_ep.xfer_buff) {
17001 + /** @todo NGS Check for buffer overflow? */
17002 + dwc_otg_read_packet(core_if,
17003 + ep->dwc_ep.xfer_buff,
17004 + status.b.bcnt);
17005 + ep->dwc_ep.xfer_count += status.b.bcnt;
17006 + ep->dwc_ep.xfer_buff += status.b.bcnt;
17007 + }
17008 + break;
17009 + case DWC_STS_XFER_COMP:
17010 + DWC_DEBUGPL(DBG_PCDV, "OUT Complete\n");
17011 + break;
17012 + case DWC_DSTS_SETUP_COMP:
17013 +#ifdef DEBUG_EP0
17014 + DWC_DEBUGPL(DBG_PCDV, "Setup Complete\n");
17015 +#endif
17016 + break;
17017 +case DWC_DSTS_SETUP_UPDT:
17018 + dwc_otg_read_setup_packet(core_if, pcd->setup_pkt->d32);
17019 +#ifdef DEBUG_EP0
17020 + DWC_DEBUGPL(DBG_PCD,
17021 + "SETUP PKT: %02x.%02x v%04x i%04x l%04x\n",
17022 + pcd->setup_pkt->req.bRequestType,
17023 + pcd->setup_pkt->req.bRequest,
17024 + pcd->setup_pkt->req.wValue,
17025 + pcd->setup_pkt->req.wIndex,
17026 + pcd->setup_pkt->req.wLength);
17027 +#endif
17028 + ep->dwc_ep.xfer_count += status.b.bcnt;
17029 + break;
17030 + default:
17031 + DWC_DEBUGPL(DBG_PCDV, "Invalid Packet Status (0x%0x)\n",
17032 + status.b.pktsts);
17033 + break;
17034 + }
17035 +
17036 + /* Enable the Rx Status Queue Level interrupt */
17037 + dwc_modify_reg32(&global_regs->gintmsk, 0, gintmask.d32);
17038 + /* Clear interrupt */
17039 + gintsts.d32 = 0;
17040 + gintsts.b.rxstsqlvl = 1;
17041 + dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
17042 +
17043 + //DWC_DEBUGPL(DBG_PCDV, "EXIT: %s\n", __func__);
17044 + return 1;
17045 +}
17046 +/**
17047 + * This function examines the Device IN Token Learning Queue to
17048 + * determine the EP number of the last IN token received. This
17049 + * implementation is for the Mass Storage device where there are only
17050 + * 2 IN EPs (Control-IN and BULK-IN).
17051 + *
17052 + * The EP numbers for the first six IN Tokens are in DTKNQR1 and there
17053 + * are 8 EP Numbers in each of the other possible DTKNQ Registers.
17054 + *
17055 + * @param core_if Programming view of DWC_otg controller.
17056 + *
17057 + */
17058 +static inline int get_ep_of_last_in_token(dwc_otg_core_if_t *core_if)
17059 +{
17060 + dwc_otg_device_global_regs_t *dev_global_regs =
17061 + core_if->dev_if->dev_global_regs;
17062 + const uint32_t TOKEN_Q_DEPTH = core_if->hwcfg2.b.dev_token_q_depth;
17063 + /* Number of Token Queue Registers */
17064 + const int DTKNQ_REG_CNT = (TOKEN_Q_DEPTH + 7) / 8;
17065 + dtknq1_data_t dtknqr1;
17066 + uint32_t in_tkn_epnums[4];
17067 + int ndx = 0;
17068 + int i = 0;
17069 + volatile uint32_t *addr = &dev_global_regs->dtknqr1;
17070 + int epnum = 0;
17071 +
17072 + //DWC_DEBUGPL(DBG_PCD,"dev_token_q_depth=%d\n",TOKEN_Q_DEPTH);
17073 +
17074 + /* Read the DTKNQ Registers */
17075 + for (i = 0; i < DTKNQ_REG_CNT; i++)
17076 + {
17077 + in_tkn_epnums[ i ] = dwc_read_reg32(addr);
17078 + DWC_DEBUGPL(DBG_PCDV, "DTKNQR%d=0x%08x\n", i+1,
17079 + in_tkn_epnums[i]);
17080 + if (addr == &dev_global_regs->dvbusdis) {
17081 + addr = &dev_global_regs->dtknqr3_dthrctl;
17082 + }
17083 + else {
17084 + ++addr;
17085 + }
17086 + }
17087 +
17088 + /* Copy the DTKNQR1 data to the bit field. */
17089 + dtknqr1.d32 = in_tkn_epnums[0];
17090 + /* Get the EP numbers */
17091 + in_tkn_epnums[0] = dtknqr1.b.epnums0_5;
17092 + ndx = dtknqr1.b.intknwptr - 1;
17093 +
17094 + //DWC_DEBUGPL(DBG_PCDV,"ndx=%d\n",ndx);
17095 + if (ndx == -1) {
17096 + /** @todo Find a simpler way to calculate the max
17097 + * queue position.*/
17098 + int cnt = TOKEN_Q_DEPTH;
17099 + if (TOKEN_Q_DEPTH <= 6) {
17100 + cnt = TOKEN_Q_DEPTH - 1;
17101 + }
17102 + else if (TOKEN_Q_DEPTH <= 14) {
17103 + cnt = TOKEN_Q_DEPTH - 7;
17104 + }
17105 + else if (TOKEN_Q_DEPTH <= 22) {
17106 + cnt = TOKEN_Q_DEPTH - 15;
17107 + }
17108 + else {
17109 + cnt = TOKEN_Q_DEPTH - 23;
17110 + }
17111 + epnum = (in_tkn_epnums[ DTKNQ_REG_CNT - 1 ] >> (cnt * 4)) & 0xF;
17112 + }
17113 + else {
17114 + if (ndx <= 5) {
17115 + epnum = (in_tkn_epnums[0] >> (ndx * 4)) & 0xF;
17116 + }
17117 + else if (ndx <= 13) {
17118 + ndx -= 6;
17119 + epnum = (in_tkn_epnums[1] >> (ndx * 4)) & 0xF;
17120 + }
17121 + else if (ndx <= 21) {
17122 + ndx -= 14;
17123 + epnum = (in_tkn_epnums[2] >> (ndx * 4)) & 0xF;
17124 + }
17125 + else if (ndx <= 29) {
17126 + ndx -= 22;
17127 + epnum = (in_tkn_epnums[3] >> (ndx * 4)) & 0xF;
17128 + }
17129 + }
17130 + //DWC_DEBUGPL(DBG_PCD,"epnum=%d\n",epnum);
17131 + return epnum;
17132 +}
17133 +
17134 +/**
17135 + * This interrupt occurs when the non-periodic Tx FIFO is half-empty.
17136 + * The active request is checked for the next packet to be loaded into
17137 + * the non-periodic Tx FIFO.
17138 + */
17139 +int32_t dwc_otg_pcd_handle_np_tx_fifo_empty_intr(dwc_otg_pcd_t *pcd)
17140 +{
17141 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17142 + dwc_otg_core_global_regs_t *global_regs =
17143 + core_if->core_global_regs;
17144 + dwc_otg_dev_in_ep_regs_t *ep_regs;
17145 + gnptxsts_data_t txstatus = {.d32 = 0};
17146 + gintsts_data_t gintsts;
17147 +
17148 + int epnum = 0;
17149 + dwc_otg_pcd_ep_t *ep = 0;
17150 + uint32_t len = 0;
17151 + int dwords;
17152 +
17153 + /* Get the epnum from the IN Token Learning Queue. */
17154 + epnum = get_ep_of_last_in_token(core_if);
17155 + ep = get_in_ep(pcd, epnum);
17156 +
17157 + DWC_DEBUGPL(DBG_PCD, "NP TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
17158 + ep_regs = core_if->dev_if->in_ep_regs[epnum];
17159 +
17160 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17161 + if (len > ep->dwc_ep.maxpacket) {
17162 + len = ep->dwc_ep.maxpacket;
17163 + }
17164 + dwords = (len + 3)/4;
17165 +
17166 + /* While there is space in the queue and space in the FIFO and
17167 + * More data to tranfer, Write packets to the Tx FIFO */
17168 + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
17169 + DWC_DEBUGPL(DBG_PCDV, "b4 GNPTXSTS=0x%08x\n",txstatus.d32);
17170 +
17171 + while (txstatus.b.nptxqspcavail > 0 &&
17172 + txstatus.b.nptxfspcavail > dwords &&
17173 + ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len) {
17174 + /* Write the FIFO */
17175 + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
17176 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17177 +
17178 + if (len > ep->dwc_ep.maxpacket) {
17179 + len = ep->dwc_ep.maxpacket;
17180 + }
17181 +
17182 + dwords = (len + 3)/4;
17183 + txstatus.d32 = dwc_read_reg32(&global_regs->gnptxsts);
17184 + DWC_DEBUGPL(DBG_PCDV,"GNPTXSTS=0x%08x\n",txstatus.d32);
17185 + }
17186 +
17187 + DWC_DEBUGPL(DBG_PCDV, "GNPTXSTS=0x%08x\n",
17188 + dwc_read_reg32(&global_regs->gnptxsts));
17189 +
17190 + /* Clear interrupt */
17191 + gintsts.d32 = 0;
17192 + gintsts.b.nptxfempty = 1;
17193 + dwc_write_reg32 (&global_regs->gintsts, gintsts.d32);
17194 +
17195 + return 1;
17196 +}
17197 +
17198 +/**
17199 + * This function is called when dedicated Tx FIFO Empty interrupt occurs.
17200 + * The active request is checked for the next packet to be loaded into
17201 + * apropriate Tx FIFO.
17202 + */
17203 +static int32_t write_empty_tx_fifo(dwc_otg_pcd_t *pcd, uint32_t epnum)
17204 +{
17205 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17206 + dwc_otg_dev_if_t* dev_if = core_if->dev_if;
17207 + dwc_otg_dev_in_ep_regs_t *ep_regs;
17208 + dtxfsts_data_t txstatus = {.d32 = 0};
17209 + dwc_otg_pcd_ep_t *ep = 0;
17210 + uint32_t len = 0;
17211 + int dwords;
17212 +
17213 + ep = get_in_ep(pcd, epnum);
17214 +
17215 + DWC_DEBUGPL(DBG_PCD, "Dedicated TxFifo Empty: %s(%d) \n", ep->ep.name, epnum);
17216 +
17217 + ep_regs = core_if->dev_if->in_ep_regs[epnum];
17218 +
17219 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17220 +
17221 + if (len > ep->dwc_ep.maxpacket) {
17222 + len = ep->dwc_ep.maxpacket;
17223 + }
17224 +
17225 + dwords = (len + 3)/4;
17226 +
17227 + /* While there is space in the queue and space in the FIFO and
17228 + * More data to tranfer, Write packets to the Tx FIFO */
17229 + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
17230 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,txstatus.d32);
17231 +
17232 + while (txstatus.b.txfspcavail > dwords &&
17233 + ep->dwc_ep.xfer_count < ep->dwc_ep.xfer_len &&
17234 + ep->dwc_ep.xfer_len != 0) {
17235 + /* Write the FIFO */
17236 + dwc_otg_ep_write_packet(core_if, &ep->dwc_ep, 0);
17237 +
17238 + len = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
17239 + if (len > ep->dwc_ep.maxpacket) {
17240 + len = ep->dwc_ep.maxpacket;
17241 + }
17242 +
17243 + dwords = (len + 3)/4;
17244 + txstatus.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts);
17245 + DWC_DEBUGPL(DBG_PCDV,"dtxfsts[%d]=0x%08x\n", epnum, txstatus.d32);
17246 + }
17247 +
17248 + DWC_DEBUGPL(DBG_PCDV, "b4 dtxfsts[%d]=0x%08x\n",epnum,dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dtxfsts));
17249 +
17250 + return 1;
17251 +}
17252 +
17253 +/**
17254 + * This function is called when the Device is disconnected. It stops
17255 + * any active requests and informs the Gadget driver of the
17256 + * disconnect.
17257 + */
17258 +void dwc_otg_pcd_stop(dwc_otg_pcd_t *pcd)
17259 +{
17260 + int i, num_in_eps, num_out_eps;
17261 + dwc_otg_pcd_ep_t *ep;
17262 +
17263 + gintmsk_data_t intr_mask = {.d32 = 0};
17264 +
17265 + num_in_eps = GET_CORE_IF(pcd)->dev_if->num_in_eps;
17266 + num_out_eps = GET_CORE_IF(pcd)->dev_if->num_out_eps;
17267 +
17268 + DWC_DEBUGPL(DBG_PCDV, "%s() \n", __func__);
17269 + /* don't disconnect drivers more than once */
17270 + if (pcd->ep0state == EP0_DISCONNECT) {
17271 + DWC_DEBUGPL(DBG_ANY, "%s() Already Disconnected\n", __func__);
17272 + return;
17273 + }
17274 + pcd->ep0state = EP0_DISCONNECT;
17275 +
17276 + /* Reset the OTG state. */
17277 + dwc_otg_pcd_update_otg(pcd, 1);
17278 +
17279 + /* Disable the NP Tx Fifo Empty Interrupt. */
17280 + intr_mask.b.nptxfempty = 1;
17281 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17282 + intr_mask.d32, 0);
17283 +
17284 + /* Flush the FIFOs */
17285 + /**@todo NGS Flush Periodic FIFOs */
17286 + dwc_otg_flush_tx_fifo(GET_CORE_IF(pcd), 0x10);
17287 + dwc_otg_flush_rx_fifo(GET_CORE_IF(pcd));
17288 +
17289 + /* prevent new request submissions, kill any outstanding requests */
17290 + ep = &pcd->ep0;
17291 + dwc_otg_request_nuke(ep);
17292 + /* prevent new request submissions, kill any outstanding requests */
17293 + for (i = 0; i < num_in_eps; i++)
17294 + {
17295 + dwc_otg_pcd_ep_t *ep = &pcd->in_ep[i];
17296 + dwc_otg_request_nuke(ep);
17297 + }
17298 + /* prevent new request submissions, kill any outstanding requests */
17299 + for (i = 0; i < num_out_eps; i++)
17300 + {
17301 + dwc_otg_pcd_ep_t *ep = &pcd->out_ep[i];
17302 + dwc_otg_request_nuke(ep);
17303 + }
17304 +
17305 + /* report disconnect; the driver is already quiesced */
17306 + if (pcd->driver && pcd->driver->disconnect) {
17307 + SPIN_UNLOCK(&pcd->lock);
17308 + pcd->driver->disconnect(&pcd->gadget);
17309 + SPIN_LOCK(&pcd->lock);
17310 + }
17311 +}
17312 +
17313 +/**
17314 + * This interrupt indicates that ...
17315 + */
17316 +int32_t dwc_otg_pcd_handle_i2c_intr(dwc_otg_pcd_t *pcd)
17317 +{
17318 + gintmsk_data_t intr_mask = { .d32 = 0};
17319 + gintsts_data_t gintsts;
17320 +
17321 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "i2cintr");
17322 + intr_mask.b.i2cintr = 1;
17323 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17324 + intr_mask.d32, 0);
17325 +
17326 + /* Clear interrupt */
17327 + gintsts.d32 = 0;
17328 + gintsts.b.i2cintr = 1;
17329 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17330 + gintsts.d32);
17331 + return 1;
17332 +}
17333 +
17334 +
17335 +/**
17336 + * This interrupt indicates that ...
17337 + */
17338 +int32_t dwc_otg_pcd_handle_early_suspend_intr(dwc_otg_pcd_t *pcd)
17339 +{
17340 + gintsts_data_t gintsts;
17341 +#if defined(VERBOSE)
17342 + DWC_PRINT("Early Suspend Detected\n");
17343 +#endif
17344 + /* Clear interrupt */
17345 + gintsts.d32 = 0;
17346 + gintsts.b.erlysuspend = 1;
17347 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17348 + gintsts.d32);
17349 + return 1;
17350 +}
17351 +
17352 +/**
17353 + * This function configures EPO to receive SETUP packets.
17354 + *
17355 + * @todo NGS: Update the comments from the HW FS.
17356 + *
17357 + * -# Program the following fields in the endpoint specific registers
17358 + * for Control OUT EP 0, in order to receive a setup packet
17359 + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
17360 + * setup packets)
17361 + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
17362 + * to back setup packets)
17363 + * - In DMA mode, DOEPDMA0 Register with a memory address to
17364 + * store any setup packets received
17365 + *
17366 + * @param core_if Programming view of DWC_otg controller.
17367 + * @param pcd Programming view of the PCD.
17368 + */
17369 +static inline void ep0_out_start(dwc_otg_core_if_t *core_if, dwc_otg_pcd_t *pcd)
17370 +{
17371 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
17372 + deptsiz0_data_t doeptsize0 = { .d32 = 0};
17373 + dwc_otg_dma_desc_t* dma_desc;
17374 + depctl_data_t doepctl = { .d32 = 0 };
17375 +
17376 +#ifdef VERBOSE
17377 + DWC_DEBUGPL(DBG_PCDV,"%s() doepctl0=%0x\n", __func__,
17378 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
17379 +#endif
17380 +
17381 + doeptsize0.b.supcnt = 3;
17382 + doeptsize0.b.pktcnt = 1;
17383 + doeptsize0.b.xfersize = 8*3;
17384 +
17385 + if (core_if->dma_enable) {
17386 + if (!core_if->dma_desc_enable) {
17387 + /** put here as for Hermes mode deptisz register should not be written */
17388 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
17389 + doeptsize0.d32);
17390 +
17391 + /** @todo dma needs to handle multiple setup packets (up to 3) */
17392 + VERIFY_PCD_DMA_ADDR(pcd->setup_pkt_dma_handle);
17393 +
17394 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma,
17395 + pcd->setup_pkt_dma_handle);
17396 + } else {
17397 + dev_if->setup_desc_index = (dev_if->setup_desc_index + 1) & 1;
17398 + dma_desc = dev_if->setup_desc_addr[dev_if->setup_desc_index];
17399 +
17400 + /** DMA Descriptor Setup */
17401 + dma_desc->status.b.bs = BS_HOST_BUSY;
17402 + dma_desc->status.b.l = 1;
17403 + dma_desc->status.b.ioc = 1;
17404 + dma_desc->status.b.bytes = pcd->ep0.dwc_ep.maxpacket;
17405 + dma_desc->buf = pcd->setup_pkt_dma_handle;
17406 + dma_desc->status.b.bs = BS_HOST_READY;
17407 +
17408 + /** DOEPDMA0 Register write */
17409 + VERIFY_PCD_DMA_ADDR(dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
17410 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepdma, dev_if->dma_setup_desc_addr[dev_if->setup_desc_index]);
17411 + }
17412 +
17413 + } else {
17414 + /** put here as for Hermes mode deptisz register should not be written */
17415 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doeptsiz,
17416 + doeptsize0.d32);
17417 + }
17418 +
17419 + /** DOEPCTL0 Register write */
17420 + doepctl.b.epena = 1;
17421 + doepctl.b.cnak = 1;
17422 + dwc_write_reg32(&dev_if->out_ep_regs[0]->doepctl, doepctl.d32);
17423 +
17424 +#ifdef VERBOSE
17425 + DWC_DEBUGPL(DBG_PCDV,"doepctl0=%0x\n",
17426 + dwc_read_reg32(&dev_if->out_ep_regs[0]->doepctl));
17427 + DWC_DEBUGPL(DBG_PCDV,"diepctl0=%0x\n",
17428 + dwc_read_reg32(&dev_if->in_ep_regs[0]->diepctl));
17429 +#endif
17430 +}
17431 +
17432 +/**
17433 + * This interrupt occurs when a USB Reset is detected. When the USB
17434 + * Reset Interrupt occurs the device state is set to DEFAULT and the
17435 + * EP0 state is set to IDLE.
17436 + * -# Set the NAK bit for all OUT endpoints (DOEPCTLn.SNAK = 1)
17437 + * -# Unmask the following interrupt bits
17438 + * - DAINTMSK.INEP0 = 1 (Control 0 IN endpoint)
17439 + * - DAINTMSK.OUTEP0 = 1 (Control 0 OUT endpoint)
17440 + * - DOEPMSK.SETUP = 1
17441 + * - DOEPMSK.XferCompl = 1
17442 + * - DIEPMSK.XferCompl = 1
17443 + * - DIEPMSK.TimeOut = 1
17444 + * -# Program the following fields in the endpoint specific registers
17445 + * for Control OUT EP 0, in order to receive a setup packet
17446 + * - DOEPTSIZ0.Packet Count = 3 (To receive up to 3 back to back
17447 + * setup packets)
17448 + * - DOEPTSIZE0.Transfer Size = 24 Bytes (To receive up to 3 back
17449 + * to back setup packets)
17450 + * - In DMA mode, DOEPDMA0 Register with a memory address to
17451 + * store any setup packets received
17452 + * At this point, all the required initialization, except for enabling
17453 + * the control 0 OUT endpoint is done, for receiving SETUP packets.
17454 + */
17455 +int32_t dwc_otg_pcd_handle_usb_reset_intr(dwc_otg_pcd_t * pcd)
17456 +{
17457 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17458 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
17459 + depctl_data_t doepctl = { .d32 = 0};
17460 +
17461 + daint_data_t daintmsk = { .d32 = 0};
17462 + doepmsk_data_t doepmsk = { .d32 = 0};
17463 + diepmsk_data_t diepmsk = { .d32 = 0};
17464 +
17465 + dcfg_data_t dcfg = { .d32=0 };
17466 + grstctl_t resetctl = { .d32=0 };
17467 + dctl_data_t dctl = {.d32=0};
17468 + int i = 0;
17469 + gintsts_data_t gintsts;
17470 +
17471 + DWC_PRINT("USB RESET\n");
17472 +#ifdef DWC_EN_ISOC
17473 + for(i = 1;i < 16; ++i)
17474 + {
17475 + dwc_otg_pcd_ep_t *ep;
17476 + dwc_ep_t *dwc_ep;
17477 + ep = get_in_ep(pcd,i);
17478 + if(ep != 0){
17479 + dwc_ep = &ep->dwc_ep;
17480 + dwc_ep->next_frame = 0xffffffff;
17481 + }
17482 + }
17483 +#endif /* DWC_EN_ISOC */
17484 +
17485 + /* reset the HNP settings */
17486 + dwc_otg_pcd_update_otg(pcd, 1);
17487 +
17488 + /* Clear the Remote Wakeup Signalling */
17489 + dctl.b.rmtwkupsig = 1;
17490 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dctl,
17491 + dctl.d32, 0);
17492 +
17493 + /* Set NAK for all OUT EPs */
17494 + doepctl.b.snak = 1;
17495 + for (i=0; i <= dev_if->num_out_eps; i++)
17496 + {
17497 + dwc_write_reg32(&dev_if->out_ep_regs[i]->doepctl,
17498 + doepctl.d32);
17499 + }
17500 +
17501 + /* Flush the NP Tx FIFO */
17502 + dwc_otg_flush_tx_fifo(core_if, 0x10);
17503 + /* Flush the Learning Queue */
17504 + resetctl.b.intknqflsh = 1;
17505 + dwc_write_reg32(&core_if->core_global_regs->grstctl, resetctl.d32);
17506 +
17507 + if(core_if->multiproc_int_enable) {
17508 + daintmsk.b.inep0 = 1;
17509 + daintmsk.b.outep0 = 1;
17510 + dwc_write_reg32(&dev_if->dev_global_regs->deachintmsk, daintmsk.d32);
17511 +
17512 + doepmsk.b.setup = 1;
17513 + doepmsk.b.xfercompl = 1;
17514 + doepmsk.b.ahberr = 1;
17515 + doepmsk.b.epdisabled = 1;
17516 +
17517 + if(core_if->dma_desc_enable) {
17518 + doepmsk.b.stsphsercvd = 1;
17519 + doepmsk.b.bna = 1;
17520 + }
17521 +/*
17522 + doepmsk.b.babble = 1;
17523 + doepmsk.b.nyet = 1;
17524 +
17525 + if(core_if->dma_enable) {
17526 + doepmsk.b.nak = 1;
17527 + }
17528 +*/
17529 + dwc_write_reg32(&dev_if->dev_global_regs->doepeachintmsk[0], doepmsk.d32);
17530 +
17531 + diepmsk.b.xfercompl = 1;
17532 + diepmsk.b.timeout = 1;
17533 + diepmsk.b.epdisabled = 1;
17534 + diepmsk.b.ahberr = 1;
17535 + diepmsk.b.intknepmis = 1;
17536 +
17537 + if(core_if->dma_desc_enable) {
17538 + diepmsk.b.bna = 1;
17539 + }
17540 +/*
17541 + if(core_if->dma_enable) {
17542 + diepmsk.b.nak = 1;
17543 + }
17544 +*/
17545 + dwc_write_reg32(&dev_if->dev_global_regs->diepeachintmsk[0], diepmsk.d32);
17546 + } else{
17547 + daintmsk.b.inep0 = 1;
17548 + daintmsk.b.outep0 = 1;
17549 + dwc_write_reg32(&dev_if->dev_global_regs->daintmsk, daintmsk.d32);
17550 +
17551 + doepmsk.b.setup = 1;
17552 + doepmsk.b.xfercompl = 1;
17553 + doepmsk.b.ahberr = 1;
17554 + doepmsk.b.epdisabled = 1;
17555 +
17556 + if(core_if->dma_desc_enable) {
17557 + doepmsk.b.stsphsercvd = 1;
17558 + doepmsk.b.bna = 1;
17559 + }
17560 +/*
17561 + doepmsk.b.babble = 1;
17562 + doepmsk.b.nyet = 1;
17563 + doepmsk.b.nak = 1;
17564 +*/
17565 + dwc_write_reg32(&dev_if->dev_global_regs->doepmsk, doepmsk.d32);
17566 +
17567 + diepmsk.b.xfercompl = 1;
17568 + diepmsk.b.timeout = 1;
17569 + diepmsk.b.epdisabled = 1;
17570 + diepmsk.b.ahberr = 1;
17571 + diepmsk.b.intknepmis = 1;
17572 +
17573 + if(core_if->dma_desc_enable) {
17574 + diepmsk.b.bna = 1;
17575 + }
17576 +
17577 +// diepmsk.b.nak = 1;
17578 +
17579 + dwc_write_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32);
17580 + }
17581 +
17582 + /* Reset Device Address */
17583 + dcfg.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dcfg);
17584 + dcfg.b.devaddr = 0;
17585 + dwc_write_reg32(&dev_if->dev_global_regs->dcfg, dcfg.d32);
17586 +
17587 + /* setup EP0 to receive SETUP packets */
17588 + ep0_out_start(core_if, pcd);
17589 +
17590 + /* Clear interrupt */
17591 + gintsts.d32 = 0;
17592 + gintsts.b.usbreset = 1;
17593 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
17594 +
17595 + return 1;
17596 +}
17597 +
17598 +/**
17599 + * Get the device speed from the device status register and convert it
17600 + * to USB speed constant.
17601 + *
17602 + * @param core_if Programming view of DWC_otg controller.
17603 + */
17604 +static int get_device_speed(dwc_otg_core_if_t *core_if)
17605 +{
17606 + dsts_data_t dsts;
17607 + enum usb_device_speed speed = USB_SPEED_UNKNOWN;
17608 + dsts.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dsts);
17609 +
17610 + switch (dsts.b.enumspd) {
17611 + case DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ:
17612 + speed = USB_SPEED_HIGH;
17613 + break;
17614 + case DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ:
17615 + case DWC_DSTS_ENUMSPD_FS_PHY_48MHZ:
17616 + speed = USB_SPEED_FULL;
17617 + break;
17618 +
17619 + case DWC_DSTS_ENUMSPD_LS_PHY_6MHZ:
17620 + speed = USB_SPEED_LOW;
17621 + break;
17622 + }
17623 +
17624 + return speed;
17625 +}
17626 +
17627 +/**
17628 + * Read the device status register and set the device speed in the
17629 + * data structure.
17630 + * Set up EP0 to receive SETUP packets by calling dwc_ep0_activate.
17631 + */
17632 +int32_t dwc_otg_pcd_handle_enum_done_intr(dwc_otg_pcd_t *pcd)
17633 +{
17634 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17635 + gintsts_data_t gintsts;
17636 + gusbcfg_data_t gusbcfg;
17637 + dwc_otg_core_global_regs_t *global_regs =
17638 + GET_CORE_IF(pcd)->core_global_regs;
17639 + uint8_t utmi16b, utmi8b;
17640 +// DWC_DEBUGPL(DBG_PCD, "SPEED ENUM\n");
17641 + DWC_PRINT("SPEED ENUM\n");
17642 +
17643 + if (GET_CORE_IF(pcd)->snpsid >= 0x4F54260A) {
17644 + utmi16b = 6;
17645 + utmi8b = 9;
17646 + } else {
17647 + utmi16b = 4;
17648 + utmi8b = 8;
17649 + }
17650 + dwc_otg_ep0_activate(GET_CORE_IF(pcd), &ep0->dwc_ep);
17651 +
17652 +#ifdef DEBUG_EP0
17653 + print_ep0_state(pcd);
17654 +#endif
17655 +
17656 + if (pcd->ep0state == EP0_DISCONNECT) {
17657 + pcd->ep0state = EP0_IDLE;
17658 + }
17659 + else if (pcd->ep0state == EP0_STALL) {
17660 + pcd->ep0state = EP0_IDLE;
17661 + }
17662 +
17663 + pcd->ep0state = EP0_IDLE;
17664 +
17665 + ep0->stopped = 0;
17666 +
17667 + pcd->gadget.speed = get_device_speed(GET_CORE_IF(pcd));
17668 +
17669 + /* Set USB turnaround time based on device speed and PHY interface. */
17670 + gusbcfg.d32 = dwc_read_reg32(&global_regs->gusbcfg);
17671 + if (pcd->gadget.speed == USB_SPEED_HIGH) {
17672 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_ULPI) {
17673 + /* ULPI interface */
17674 + gusbcfg.b.usbtrdtim = 9;
17675 + }
17676 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI) {
17677 + /* UTMI+ interface */
17678 + if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 0) {
17679 + gusbcfg.b.usbtrdtim = utmi8b;
17680 + }
17681 + else if (GET_CORE_IF(pcd)->hwcfg4.b.utmi_phy_data_width == 1) {
17682 + gusbcfg.b.usbtrdtim = utmi16b;
17683 + }
17684 + else if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 8) {
17685 + gusbcfg.b.usbtrdtim = utmi8b;
17686 + }
17687 + else {
17688 + gusbcfg.b.usbtrdtim = utmi16b;
17689 + }
17690 + }
17691 + if (GET_CORE_IF(pcd)->hwcfg2.b.hs_phy_type == DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI) {
17692 + /* UTMI+ OR ULPI interface */
17693 + if (gusbcfg.b.ulpi_utmi_sel == 1) {
17694 + /* ULPI interface */
17695 + gusbcfg.b.usbtrdtim = 9;
17696 + }
17697 + else {
17698 + /* UTMI+ interface */
17699 + if (GET_CORE_IF(pcd)->core_params->phy_utmi_width == 16) {
17700 + gusbcfg.b.usbtrdtim = utmi16b;
17701 + }
17702 + else {
17703 + gusbcfg.b.usbtrdtim = utmi8b;
17704 + }
17705 + }
17706 + }
17707 + }
17708 + else {
17709 + /* Full or low speed */
17710 + gusbcfg.b.usbtrdtim = 9;
17711 + }
17712 + dwc_write_reg32(&global_regs->gusbcfg, gusbcfg.d32);
17713 +
17714 + /* Clear interrupt */
17715 + gintsts.d32 = 0;
17716 + gintsts.b.enumdone = 1;
17717 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17718 + gintsts.d32);
17719 + return 1;
17720 +}
17721 +
17722 +/**
17723 + * This interrupt indicates that the ISO OUT Packet was dropped due to
17724 + * Rx FIFO full or Rx Status Queue Full. If this interrupt occurs
17725 + * read all the data from the Rx FIFO.
17726 + */
17727 +int32_t dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(dwc_otg_pcd_t *pcd)
17728 +{
17729 + gintmsk_data_t intr_mask = { .d32 = 0};
17730 + gintsts_data_t gintsts;
17731 +
17732 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
17733 + "ISOC Out Dropped");
17734 +
17735 + intr_mask.b.isooutdrop = 1;
17736 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17737 + intr_mask.d32, 0);
17738 +
17739 + /* Clear interrupt */
17740 +
17741 + gintsts.d32 = 0;
17742 + gintsts.b.isooutdrop = 1;
17743 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
17744 + gintsts.d32);
17745 +
17746 + return 1;
17747 +}
17748 +
17749 +/**
17750 + * This interrupt indicates the end of the portion of the micro-frame
17751 + * for periodic transactions. If there is a periodic transaction for
17752 + * the next frame, load the packets into the EP periodic Tx FIFO.
17753 + */
17754 +int32_t dwc_otg_pcd_handle_end_periodic_frame_intr(dwc_otg_pcd_t *pcd)
17755 +{
17756 + gintmsk_data_t intr_mask = { .d32 = 0};
17757 + gintsts_data_t gintsts;
17758 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "EOP");
17759 +
17760 + intr_mask.b.eopframe = 1;
17761 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
17762 + intr_mask.d32, 0);
17763 +
17764 + /* Clear interrupt */
17765 + gintsts.d32 = 0;
17766 + gintsts.b.eopframe = 1;
17767 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts, gintsts.d32);
17768 +
17769 + return 1;
17770 +}
17771 +
17772 +/**
17773 + * This interrupt indicates that EP of the packet on the top of the
17774 + * non-periodic Tx FIFO does not match EP of the IN Token received.
17775 + *
17776 + * The "Device IN Token Queue" Registers are read to determine the
17777 + * order the IN Tokens have been received. The non-periodic Tx FIFO
17778 + * is flushed, so it can be reloaded in the order seen in the IN Token
17779 + * Queue.
17780 + */
17781 +int32_t dwc_otg_pcd_handle_ep_mismatch_intr(dwc_otg_core_if_t *core_if)
17782 +{
17783 + gintsts_data_t gintsts;
17784 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, core_if);
17785 +
17786 + /* Clear interrupt */
17787 + gintsts.d32 = 0;
17788 + gintsts.b.epmismatch = 1;
17789 + dwc_write_reg32 (&core_if->core_global_regs->gintsts, gintsts.d32);
17790 +
17791 + return 1;
17792 +}
17793 +
17794 +/**
17795 + * This funcion stalls EP0.
17796 + */
17797 +static inline void ep0_do_stall(dwc_otg_pcd_t *pcd, const int err_val)
17798 +{
17799 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17800 + struct usb_ctrlrequest *ctrl = &pcd->setup_pkt->req;
17801 + DWC_WARN("req %02x.%02x protocol STALL; err %d\n",
17802 + ctrl->bRequestType, ctrl->bRequest, err_val);
17803 +
17804 + ep0->dwc_ep.is_in = 1;
17805 + dwc_otg_ep_set_stall(pcd->otg_dev->core_if, &ep0->dwc_ep);
17806 + pcd->ep0.stopped = 1;
17807 + pcd->ep0state = EP0_IDLE;
17808 + ep0_out_start(GET_CORE_IF(pcd), pcd);
17809 +}
17810 +
17811 +/**
17812 + * This functions delegates the setup command to the gadget driver.
17813 + */
17814 +static inline void do_gadget_setup(dwc_otg_pcd_t *pcd,
17815 + struct usb_ctrlrequest * ctrl)
17816 +{
17817 + int ret = 0;
17818 + if (pcd->driver && pcd->driver->setup) {
17819 + SPIN_UNLOCK(&pcd->lock);
17820 + ret = pcd->driver->setup(&pcd->gadget, ctrl);
17821 + SPIN_LOCK(&pcd->lock);
17822 + if (ret < 0) {
17823 + ep0_do_stall(pcd, ret);
17824 + }
17825 +
17826 + /** @todo This is a g_file_storage gadget driver specific
17827 + * workaround: a DELAYED_STATUS result from the fsg_setup
17828 + * routine will result in the gadget queueing a EP0 IN status
17829 + * phase for a two-stage control transfer. Exactly the same as
17830 + * a SET_CONFIGURATION/SET_INTERFACE except that this is a class
17831 + * specific request. Need a generic way to know when the gadget
17832 + * driver will queue the status phase. Can we assume when we
17833 + * call the gadget driver setup() function that it will always
17834 + * queue and require the following flag? Need to look into
17835 + * this.
17836 + */
17837 +
17838 + if (ret == 256 + 999) {
17839 + pcd->request_config = 1;
17840 + }
17841 + }
17842 +}
17843 +
17844 +/**
17845 + * This function starts the Zero-Length Packet for the IN status phase
17846 + * of a 2 stage control transfer.
17847 + */
17848 +static inline void do_setup_in_status_phase(dwc_otg_pcd_t *pcd)
17849 +{
17850 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17851 + if (pcd->ep0state == EP0_STALL) {
17852 + return;
17853 + }
17854 +
17855 + pcd->ep0state = EP0_IN_STATUS_PHASE;
17856 +
17857 + /* Prepare for more SETUP Packets */
17858 + DWC_DEBUGPL(DBG_PCD, "EP0 IN ZLP\n");
17859 + ep0->dwc_ep.xfer_len = 0;
17860 + ep0->dwc_ep.xfer_count = 0;
17861 + ep0->dwc_ep.is_in = 1;
17862 + ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
17863 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
17864 +
17865 + /* Prepare for more SETUP Packets */
17866 +// if(GET_CORE_IF(pcd)->dma_enable == 0) ep0_out_start(GET_CORE_IF(pcd), pcd);
17867 +}
17868 +
17869 +/**
17870 + * This function starts the Zero-Length Packet for the OUT status phase
17871 + * of a 2 stage control transfer.
17872 + */
17873 +static inline void do_setup_out_status_phase(dwc_otg_pcd_t *pcd)
17874 +{
17875 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17876 + if (pcd->ep0state == EP0_STALL) {
17877 + DWC_DEBUGPL(DBG_PCD, "EP0 STALLED\n");
17878 + return;
17879 + }
17880 + pcd->ep0state = EP0_OUT_STATUS_PHASE;
17881 +
17882 + DWC_DEBUGPL(DBG_PCD, "EP0 OUT ZLP\n");
17883 + ep0->dwc_ep.xfer_len = 0;
17884 + ep0->dwc_ep.xfer_count = 0;
17885 + ep0->dwc_ep.is_in = 0;
17886 + ep0->dwc_ep.dma_addr = pcd->setup_pkt_dma_handle;
17887 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
17888 +
17889 + /* Prepare for more SETUP Packets */
17890 + if(GET_CORE_IF(pcd)->dma_enable == 0) {
17891 + ep0_out_start(GET_CORE_IF(pcd), pcd);
17892 + }
17893 +}
17894 +
17895 +/**
17896 + * Clear the EP halt (STALL) and if pending requests start the
17897 + * transfer.
17898 + */
17899 +static inline void pcd_clear_halt(dwc_otg_pcd_t *pcd, dwc_otg_pcd_ep_t *ep)
17900 +{
17901 + if(ep->dwc_ep.stall_clear_flag == 0)
17902 + dwc_otg_ep_clear_stall(GET_CORE_IF(pcd), &ep->dwc_ep);
17903 +
17904 + /* Reactive the EP */
17905 + dwc_otg_ep_activate(GET_CORE_IF(pcd), &ep->dwc_ep);
17906 + if (ep->stopped) {
17907 + ep->stopped = 0;
17908 + /* If there is a request in the EP queue start it */
17909 +
17910 + /** @todo FIXME: this causes an EP mismatch in DMA mode.
17911 + * epmismatch not yet implemented. */
17912 +
17913 + /*
17914 + * Above fixme is solved by implmenting a tasklet to call the
17915 + * start_next_request(), outside of interrupt context at some
17916 + * time after the current time, after a clear-halt setup packet.
17917 + * Still need to implement ep mismatch in the future if a gadget
17918 + * ever uses more than one endpoint at once
17919 + */
17920 + ep->queue_sof = 1;
17921 + tasklet_schedule (pcd->start_xfer_tasklet);
17922 + }
17923 + /* Start Control Status Phase */
17924 + do_setup_in_status_phase(pcd);
17925 +}
17926 +
17927 +/**
17928 + * This function is called when the SET_FEATURE TEST_MODE Setup packet
17929 + * is sent from the host. The Device Control register is written with
17930 + * the Test Mode bits set to the specified Test Mode. This is done as
17931 + * a tasklet so that the "Status" phase of the control transfer
17932 + * completes before transmitting the TEST packets.
17933 + *
17934 + * @todo This has not been tested since the tasklet struct was put
17935 + * into the PCD struct!
17936 + *
17937 + */
17938 +static void do_test_mode(unsigned long data)
17939 +{
17940 + dctl_data_t dctl;
17941 + dwc_otg_pcd_t *pcd = (dwc_otg_pcd_t *)data;
17942 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
17943 + int test_mode = pcd->test_mode;
17944 +
17945 +
17946 +// DWC_WARN("%s() has not been tested since being rewritten!\n", __func__);
17947 +
17948 + dctl.d32 = dwc_read_reg32(&core_if->dev_if->dev_global_regs->dctl);
17949 + switch (test_mode) {
17950 + case 1: // TEST_J
17951 + dctl.b.tstctl = 1;
17952 + break;
17953 +
17954 + case 2: // TEST_K
17955 + dctl.b.tstctl = 2;
17956 + break;
17957 +
17958 + case 3: // TEST_SE0_NAK
17959 + dctl.b.tstctl = 3;
17960 + break;
17961 +
17962 + case 4: // TEST_PACKET
17963 + dctl.b.tstctl = 4;
17964 + break;
17965 +
17966 + case 5: // TEST_FORCE_ENABLE
17967 + dctl.b.tstctl = 5;
17968 + break;
17969 + }
17970 + dwc_write_reg32(&core_if->dev_if->dev_global_regs->dctl, dctl.d32);
17971 +}
17972 +
17973 +/**
17974 + * This function process the GET_STATUS Setup Commands.
17975 + */
17976 +static inline void do_get_status(dwc_otg_pcd_t *pcd)
17977 +{
17978 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
17979 + dwc_otg_pcd_ep_t *ep;
17980 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
17981 + uint16_t *status = pcd->status_buf;
17982 +
17983 +#ifdef DEBUG_EP0
17984 + DWC_DEBUGPL(DBG_PCD,
17985 + "GET_STATUS %02x.%02x v%04x i%04x l%04x\n",
17986 + ctrl.bRequestType, ctrl.bRequest,
17987 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
17988 +#endif
17989 +
17990 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
17991 + case USB_RECIP_DEVICE:
17992 + *status = 0x1; /* Self powered */
17993 + *status |= pcd->remote_wakeup_enable << 1;
17994 + break;
17995 +
17996 + case USB_RECIP_INTERFACE:
17997 + *status = 0;
17998 + break;
17999 +
18000 + case USB_RECIP_ENDPOINT:
18001 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
18002 + if (ep == 0 || ctrl.wLength > 2) {
18003 + ep0_do_stall(pcd, -EOPNOTSUPP);
18004 + return;
18005 + }
18006 + /** @todo check for EP stall */
18007 + *status = ep->stopped;
18008 + break;
18009 + }
18010 + pcd->ep0_pending = 1;
18011 + ep0->dwc_ep.start_xfer_buff = (uint8_t *)status;
18012 + ep0->dwc_ep.xfer_buff = (uint8_t *)status;
18013 + ep0->dwc_ep.dma_addr = pcd->status_buf_dma_handle;
18014 + ep0->dwc_ep.xfer_len = 2;
18015 + ep0->dwc_ep.xfer_count = 0;
18016 + ep0->dwc_ep.total_len = ep0->dwc_ep.xfer_len;
18017 + dwc_otg_ep0_start_transfer(GET_CORE_IF(pcd), &ep0->dwc_ep);
18018 +}
18019 +/**
18020 + * This function process the SET_FEATURE Setup Commands.
18021 + */
18022 +static inline void do_set_feature(dwc_otg_pcd_t *pcd)
18023 +{
18024 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
18025 + dwc_otg_core_global_regs_t *global_regs =
18026 + core_if->core_global_regs;
18027 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
18028 + dwc_otg_pcd_ep_t *ep = 0;
18029 + int32_t otg_cap_param = core_if->core_params->otg_cap;
18030 + gotgctl_data_t gotgctl = { .d32 = 0 };
18031 +
18032 + DWC_DEBUGPL(DBG_PCD, "SET_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
18033 + ctrl.bRequestType, ctrl.bRequest,
18034 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
18035 + DWC_DEBUGPL(DBG_PCD,"otg_cap=%d\n", otg_cap_param);
18036 +
18037 +
18038 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
18039 + case USB_RECIP_DEVICE:
18040 + switch (ctrl.wValue) {
18041 + case USB_DEVICE_REMOTE_WAKEUP:
18042 + pcd->remote_wakeup_enable = 1;
18043 + break;
18044 +
18045 + case USB_DEVICE_TEST_MODE:
18046 + /* Setup the Test Mode tasklet to do the Test
18047 + * Packet generation after the SETUP Status
18048 + * phase has completed. */
18049 +
18050 + /** @todo This has not been tested since the
18051 + * tasklet struct was put into the PCD
18052 + * struct! */
18053 + pcd->test_mode_tasklet.next = 0;
18054 + pcd->test_mode_tasklet.state = 0;
18055 + atomic_set(&pcd->test_mode_tasklet.count, 0);
18056 + pcd->test_mode_tasklet.func = do_test_mode;
18057 + pcd->test_mode_tasklet.data = (unsigned long)pcd;
18058 + pcd->test_mode = ctrl.wIndex >> 8;
18059 + tasklet_schedule(&pcd->test_mode_tasklet);
18060 + break;
18061 +
18062 + case USB_DEVICE_B_HNP_ENABLE:
18063 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_B_HNP_ENABLE\n");
18064 +
18065 + /* dev may initiate HNP */
18066 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
18067 + pcd->b_hnp_enable = 1;
18068 + dwc_otg_pcd_update_otg(pcd, 0);
18069 + DWC_DEBUGPL(DBG_PCD, "Request B HNP\n");
18070 + /**@todo Is the gotgctl.devhnpen cleared
18071 + * by a USB Reset? */
18072 + gotgctl.b.devhnpen = 1;
18073 + gotgctl.b.hnpreq = 1;
18074 + dwc_write_reg32(&global_regs->gotgctl, gotgctl.d32);
18075 + }
18076 + else {
18077 + ep0_do_stall(pcd, -EOPNOTSUPP);
18078 + }
18079 + break;
18080 +
18081 + case USB_DEVICE_A_HNP_SUPPORT:
18082 + /* RH port supports HNP */
18083 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_HNP_SUPPORT\n");
18084 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
18085 + pcd->a_hnp_support = 1;
18086 + dwc_otg_pcd_update_otg(pcd, 0);
18087 + }
18088 + else {
18089 + ep0_do_stall(pcd, -EOPNOTSUPP);
18090 + }
18091 + break;
18092 +
18093 + case USB_DEVICE_A_ALT_HNP_SUPPORT:
18094 + /* other RH port does */
18095 + DWC_DEBUGPL(DBG_PCDV, "SET_FEATURE: USB_DEVICE_A_ALT_HNP_SUPPORT\n");
18096 + if (otg_cap_param == DWC_OTG_CAP_PARAM_HNP_SRP_CAPABLE) {
18097 + pcd->a_alt_hnp_support = 1;
18098 + dwc_otg_pcd_update_otg(pcd, 0);
18099 + }
18100 + else {
18101 + ep0_do_stall(pcd, -EOPNOTSUPP);
18102 + }
18103 + break;
18104 + }
18105 + do_setup_in_status_phase(pcd);
18106 + break;
18107 +
18108 + case USB_RECIP_INTERFACE:
18109 + do_gadget_setup(pcd, &ctrl);
18110 + break;
18111 +
18112 + case USB_RECIP_ENDPOINT:
18113 + if (ctrl.wValue == USB_ENDPOINT_HALT) {
18114 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
18115 + if (ep == 0) {
18116 + ep0_do_stall(pcd, -EOPNOTSUPP);
18117 + return;
18118 + }
18119 + ep->stopped = 1;
18120 + dwc_otg_ep_set_stall(core_if, &ep->dwc_ep);
18121 + }
18122 + do_setup_in_status_phase(pcd);
18123 + break;
18124 + }
18125 +}
18126 +
18127 +/**
18128 + * This function process the CLEAR_FEATURE Setup Commands.
18129 + */
18130 +static inline void do_clear_feature(dwc_otg_pcd_t *pcd)
18131 +{
18132 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
18133 + dwc_otg_pcd_ep_t *ep = 0;
18134 +
18135 + DWC_DEBUGPL(DBG_PCD,
18136 + "CLEAR_FEATURE:%02x.%02x v%04x i%04x l%04x\n",
18137 + ctrl.bRequestType, ctrl.bRequest,
18138 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
18139 +
18140 + switch (ctrl.bRequestType & USB_RECIP_MASK) {
18141 + case USB_RECIP_DEVICE:
18142 + switch (ctrl.wValue) {
18143 + case USB_DEVICE_REMOTE_WAKEUP:
18144 + pcd->remote_wakeup_enable = 0;
18145 + break;
18146 +
18147 + case USB_DEVICE_TEST_MODE:
18148 + /** @todo Add CLEAR_FEATURE for TEST modes. */
18149 + break;
18150 + }
18151 + do_setup_in_status_phase(pcd);
18152 + break;
18153 +
18154 + case USB_RECIP_ENDPOINT:
18155 + ep = get_ep_by_addr(pcd, ctrl.wIndex);
18156 + if (ep == 0) {
18157 + ep0_do_stall(pcd, -EOPNOTSUPP);
18158 + return;
18159 + }
18160 +
18161 + pcd_clear_halt(pcd, ep);
18162 +
18163 + break;
18164 + }
18165 +}
18166 +
18167 +/**
18168 + * This function process the SET_ADDRESS Setup Commands.
18169 + */
18170 +static inline void do_set_address(dwc_otg_pcd_t *pcd)
18171 +{
18172 + dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
18173 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
18174 +
18175 + if (ctrl.bRequestType == USB_RECIP_DEVICE) {
18176 + dcfg_data_t dcfg = {.d32=0};
18177 +
18178 +#ifdef DEBUG_EP0
18179 +// DWC_DEBUGPL(DBG_PCDV, "SET_ADDRESS:%d\n", ctrl.wValue);
18180 +#endif
18181 + dcfg.b.devaddr = ctrl.wValue;
18182 + dwc_modify_reg32(&dev_if->dev_global_regs->dcfg, 0, dcfg.d32);
18183 + do_setup_in_status_phase(pcd);
18184 + }
18185 +}
18186 +
18187 +/**
18188 + * This function processes SETUP commands. In Linux, the USB Command
18189 + * processing is done in two places - the first being the PCD and the
18190 + * second in the Gadget Driver (for example, the File-Backed Storage
18191 + * Gadget Driver).
18192 + *
18193 + * <table>
18194 + * <tr><td>Command </td><td>Driver </td><td>Description</td></tr>
18195 + *
18196 + * <tr><td>GET_STATUS </td><td>PCD </td><td>Command is processed as
18197 + * defined in chapter 9 of the USB 2.0 Specification chapter 9
18198 + * </td></tr>
18199 + *
18200 + * <tr><td>CLEAR_FEATURE </td><td>PCD </td><td>The Device and Endpoint
18201 + * requests are the ENDPOINT_HALT feature is procesed, all others the
18202 + * interface requests are ignored.</td></tr>
18203 + *
18204 + * <tr><td>SET_FEATURE </td><td>PCD </td><td>The Device and Endpoint
18205 + * requests are processed by the PCD. Interface requests are passed
18206 + * to the Gadget Driver.</td></tr>
18207 + *
18208 + * <tr><td>SET_ADDRESS </td><td>PCD </td><td>Program the DCFG reg,
18209 + * with device address received </td></tr>
18210 + *
18211 + * <tr><td>GET_DESCRIPTOR </td><td>Gadget Driver </td><td>Return the
18212 + * requested descriptor</td></tr>
18213 + *
18214 + * <tr><td>SET_DESCRIPTOR </td><td>Gadget Driver </td><td>Optional -
18215 + * not implemented by any of the existing Gadget Drivers.</td></tr>
18216 + *
18217 + * <tr><td>SET_CONFIGURATION </td><td>Gadget Driver </td><td>Disable
18218 + * all EPs and enable EPs for new configuration.</td></tr>
18219 + *
18220 + * <tr><td>GET_CONFIGURATION </td><td>Gadget Driver </td><td>Return
18221 + * the current configuration</td></tr>
18222 + *
18223 + * <tr><td>SET_INTERFACE </td><td>Gadget Driver </td><td>Disable all
18224 + * EPs and enable EPs for new configuration.</td></tr>
18225 + *
18226 + * <tr><td>GET_INTERFACE </td><td>Gadget Driver </td><td>Return the
18227 + * current interface.</td></tr>
18228 + *
18229 + * <tr><td>SYNC_FRAME </td><td>PCD </td><td>Display debug
18230 + * message.</td></tr>
18231 + * </table>
18232 + *
18233 + * When the SETUP Phase Done interrupt occurs, the PCD SETUP commands are
18234 + * processed by pcd_setup. Calling the Function Driver's setup function from
18235 + * pcd_setup processes the gadget SETUP commands.
18236 + */
18237 +static inline void pcd_setup(dwc_otg_pcd_t *pcd)
18238 +{
18239 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
18240 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
18241 + struct usb_ctrlrequest ctrl = pcd->setup_pkt->req;
18242 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
18243 +
18244 + deptsiz0_data_t doeptsize0 = { .d32 = 0};
18245 +
18246 +#ifdef DEBUG_EP0
18247 + DWC_DEBUGPL(DBG_PCD, "SETUP %02x.%02x v%04x i%04x l%04x\n",
18248 + ctrl.bRequestType, ctrl.bRequest,
18249 + ctrl.wValue, ctrl.wIndex, ctrl.wLength);
18250 +#endif
18251 +
18252 + doeptsize0.d32 = dwc_read_reg32(&dev_if->out_ep_regs[0]->doeptsiz);
18253 +
18254 + /** @todo handle > 1 setup packet , assert error for now */
18255 +
18256 + if (core_if->dma_enable && core_if->dma_desc_enable == 0 && (doeptsize0.b.supcnt < 2)) {
18257 + DWC_ERROR ("\n\n----------- CANNOT handle > 1 setup packet in DMA mode\n\n");
18258 + }
18259 +
18260 + /* Clean up the request queue */
18261 + dwc_otg_request_nuke(ep0);
18262 + ep0->stopped = 0;
18263 +
18264 + if (ctrl.bRequestType & USB_DIR_IN) {
18265 + ep0->dwc_ep.is_in = 1;
18266 + pcd->ep0state = EP0_IN_DATA_PHASE;
18267 + }
18268 + else {
18269 + ep0->dwc_ep.is_in = 0;
18270 + pcd->ep0state = EP0_OUT_DATA_PHASE;
18271 + }
18272 +
18273 + if(ctrl.wLength == 0) {
18274 + ep0->dwc_ep.is_in = 1;
18275 + pcd->ep0state = EP0_IN_STATUS_PHASE;
18276 + }
18277 +
18278 + if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) {
18279 + /* handle non-standard (class/vendor) requests in the gadget driver */
18280 + do_gadget_setup(pcd, &ctrl);
18281 + return;
18282 + }
18283 +
18284 + /** @todo NGS: Handle bad setup packet? */
18285 +
18286 +///////////////////////////////////////////
18287 +//// --- Standard Request handling --- ////
18288 +
18289 + switch (ctrl.bRequest) {
18290 + case USB_REQ_GET_STATUS:
18291 + do_get_status(pcd);
18292 + break;
18293 +
18294 + case USB_REQ_CLEAR_FEATURE:
18295 + do_clear_feature(pcd);
18296 + break;
18297 +
18298 + case USB_REQ_SET_FEATURE:
18299 + do_set_feature(pcd);
18300 + break;
18301 +
18302 + case USB_REQ_SET_ADDRESS:
18303 + do_set_address(pcd);
18304 + break;
18305 +
18306 + case USB_REQ_SET_INTERFACE:
18307 + case USB_REQ_SET_CONFIGURATION:
18308 +// _pcd->request_config = 1; /* Configuration changed */
18309 + do_gadget_setup(pcd, &ctrl);
18310 + break;
18311 +
18312 + case USB_REQ_SYNCH_FRAME:
18313 + do_gadget_setup(pcd, &ctrl);
18314 + break;
18315 +
18316 + default:
18317 + /* Call the Gadget Driver's setup functions */
18318 + do_gadget_setup(pcd, &ctrl);
18319 + break;
18320 + }
18321 +}
18322 +
18323 +/**
18324 + * This function completes the ep0 control transfer.
18325 + */
18326 +static int32_t ep0_complete_request(dwc_otg_pcd_ep_t *ep)
18327 +{
18328 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
18329 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
18330 + dwc_otg_dev_in_ep_regs_t *in_ep_regs =
18331 + dev_if->in_ep_regs[ep->dwc_ep.num];
18332 +#ifdef DEBUG_EP0
18333 + dwc_otg_dev_out_ep_regs_t *out_ep_regs =
18334 + dev_if->out_ep_regs[ep->dwc_ep.num];
18335 +#endif
18336 + deptsiz0_data_t deptsiz;
18337 + desc_sts_data_t desc_sts;
18338 + dwc_otg_pcd_request_t *req;
18339 + int is_last = 0;
18340 + dwc_otg_pcd_t *pcd = ep->pcd;
18341 +
18342 + //DWC_DEBUGPL(DBG_PCDV, "%s() %s\n", __func__, _ep->ep.name);
18343 +
18344 + if (pcd->ep0_pending && list_empty(&ep->queue)) {
18345 + if (ep->dwc_ep.is_in) {
18346 +#ifdef DEBUG_EP0
18347 + DWC_DEBUGPL(DBG_PCDV, "Do setup OUT status phase\n");
18348 +#endif
18349 + do_setup_out_status_phase(pcd);
18350 + }
18351 + else {
18352 +#ifdef DEBUG_EP0
18353 + DWC_DEBUGPL(DBG_PCDV, "Do setup IN status phase\n");
18354 +#endif
18355 + do_setup_in_status_phase(pcd);
18356 + }
18357 + pcd->ep0_pending = 0;
18358 + return 1;
18359 + }
18360 +
18361 + if (list_empty(&ep->queue)) {
18362 + return 0;
18363 + }
18364 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t, queue);
18365 +
18366 +
18367 + if (pcd->ep0state == EP0_OUT_STATUS_PHASE || pcd->ep0state == EP0_IN_STATUS_PHASE) {
18368 + is_last = 1;
18369 + }
18370 + else if (ep->dwc_ep.is_in) {
18371 + deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
18372 + if(core_if->dma_desc_enable != 0)
18373 + desc_sts.d32 = readl(dev_if->in_desc_addr);
18374 +#ifdef DEBUG_EP0
18375 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
18376 + ep->ep.name, ep->dwc_ep.xfer_len,
18377 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18378 +#endif
18379 +
18380 + if (((core_if->dma_desc_enable == 0) && (deptsiz.b.xfersize == 0)) ||
18381 + ((core_if->dma_desc_enable != 0) && (desc_sts.b.bytes == 0))) {
18382 + req->req.actual = ep->dwc_ep.xfer_count;
18383 + /* Is a Zero Len Packet needed? */
18384 + if (req->req.zero) {
18385 +#ifdef DEBUG_EP0
18386 + DWC_DEBUGPL(DBG_PCD, "Setup Rx ZLP\n");
18387 +#endif
18388 + req->req.zero = 0;
18389 + }
18390 + do_setup_out_status_phase(pcd);
18391 + }
18392 + }
18393 + else {
18394 + /* ep0-OUT */
18395 +#ifdef DEBUG_EP0
18396 + deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
18397 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xsize=%d pktcnt=%d\n",
18398 + ep->ep.name, ep->dwc_ep.xfer_len,
18399 + deptsiz.b.xfersize,
18400 + deptsiz.b.pktcnt);
18401 +#endif
18402 + req->req.actual = ep->dwc_ep.xfer_count;
18403 + /* Is a Zero Len Packet needed? */
18404 + if (req->req.zero) {
18405 +#ifdef DEBUG_EP0
18406 + DWC_DEBUGPL(DBG_PCDV, "Setup Tx ZLP\n");
18407 +#endif
18408 + req->req.zero = 0;
18409 + }
18410 + if(core_if->dma_desc_enable == 0)
18411 + do_setup_in_status_phase(pcd);
18412 + }
18413 +
18414 + /* Complete the request */
18415 + if (is_last) {
18416 + dwc_otg_request_done(ep, req, 0);
18417 + ep->dwc_ep.start_xfer_buff = 0;
18418 + ep->dwc_ep.xfer_buff = 0;
18419 + ep->dwc_ep.xfer_len = 0;
18420 + return 1;
18421 + }
18422 + return 0;
18423 +}
18424 +
18425 +inline void aligned_buf_patch_on_buf_dma_oep_completion(dwc_otg_pcd_ep_t *ep, uint32_t byte_count)
18426 +{
18427 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
18428 + if(byte_count && dwc_ep->aligned_buf &&
18429 + dwc_ep->dma_addr>=dwc_ep->aligned_dma_addr &&
18430 + dwc_ep->dma_addr<=(dwc_ep->aligned_dma_addr+dwc_ep->aligned_buf_size))\
18431 + {
18432 + //aligned buf used, apply complete patch
18433 + u32 offset=(dwc_ep->dma_addr-dwc_ep->aligned_dma_addr);
18434 + memcpy(dwc_ep->start_xfer_buff+offset, dwc_ep->aligned_buf+offset, byte_count);
18435 + }
18436 +}
18437 +
18438 +/**
18439 + * This function completes the request for the EP. If there are
18440 + * additional requests for the EP in the queue they will be started.
18441 + */
18442 +static void complete_ep(dwc_otg_pcd_ep_t *ep)
18443 +{
18444 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
18445 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
18446 + dwc_otg_dev_in_ep_regs_t *in_ep_regs =
18447 + dev_if->in_ep_regs[ep->dwc_ep.num];
18448 + deptsiz_data_t deptsiz;
18449 + desc_sts_data_t desc_sts;
18450 + dwc_otg_pcd_request_t *req = 0;
18451 + dwc_otg_dma_desc_t* dma_desc;
18452 + uint32_t byte_count = 0;
18453 + int is_last = 0;
18454 + int i;
18455 +
18456 + DWC_DEBUGPL(DBG_PCDV,"%s() %s-%s\n", __func__, ep->ep.name,
18457 + (ep->dwc_ep.is_in?"IN":"OUT"));
18458 +
18459 + /* Get any pending requests */
18460 + if (!list_empty(&ep->queue)) {
18461 + req = list_entry(ep->queue.next, dwc_otg_pcd_request_t,
18462 + queue);
18463 + if (!req) {
18464 + printk("complete_ep 0x%p, req = NULL!\n", ep);
18465 + return;
18466 + }
18467 + }
18468 + else {
18469 + printk("complete_ep 0x%p, ep->queue empty!\n", ep);
18470 + return;
18471 + }
18472 + DWC_DEBUGPL(DBG_PCD, "Requests %d\n", ep->pcd->request_pending);
18473 +
18474 + if (ep->dwc_ep.is_in) {
18475 + deptsiz.d32 = dwc_read_reg32(&in_ep_regs->dieptsiz);
18476 +
18477 + if (core_if->dma_enable) {
18478 + //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
18479 + if(core_if->dma_desc_enable == 0) {
18480 + //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_NONE);
18481 + if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
18482 + byte_count = ep->dwc_ep.xfer_len - ep->dwc_ep.xfer_count;
18483 +DWC_DEBUGPL(DBG_PCDV,"byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x)\n", byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count );
18484 +
18485 + ep->dwc_ep.xfer_buff += byte_count;
18486 + ep->dwc_ep.dma_addr += byte_count;
18487 + ep->dwc_ep.xfer_count += byte_count;
18488 +
18489 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
18490 + ep->ep.name, ep->dwc_ep.xfer_len,
18491 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18492 +
18493 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18494 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18495 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
18496 + } else if(ep->dwc_ep.sent_zlp) {
18497 + /*
18498 + * This fragment of code should initiate 0
18499 + * length trasfer in case if it is queued
18500 + * a trasfer with size divisible to EPs max
18501 + * packet size and with usb_request zero field
18502 + * is set, which means that after data is transfered,
18503 + * it is also should be transfered
18504 + * a 0 length packet at the end. For Slave and
18505 + * Buffer DMA modes in this case SW has
18506 + * to initiate 2 transfers one with transfer size,
18507 + * and the second with 0 size. For Desriptor
18508 + * DMA mode SW is able to initiate a transfer,
18509 + * which will handle all the packets including
18510 + * the last 0 legth.
18511 + */
18512 + ep->dwc_ep.sent_zlp = 0;
18513 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18514 + } else {
18515 + is_last = 1;
18516 + }
18517 + } else {
18518 + DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
18519 + ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
18520 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18521 + }
18522 + } else {
18523 +
18524 + dma_desc = ep->dwc_ep.desc_addr;
18525 + byte_count = 0;
18526 + ep->dwc_ep.sent_zlp = 0;
18527 +
18528 + for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
18529 + desc_sts.d32 = readl(dma_desc);
18530 + byte_count += desc_sts.b.bytes;
18531 + dma_desc++;
18532 + }
18533 +
18534 + if(byte_count == 0) {
18535 + ep->dwc_ep.xfer_count = ep->dwc_ep.total_len;
18536 + is_last = 1;
18537 + } else {
18538 + DWC_WARN("Incomplete transfer\n");
18539 + }
18540 + }
18541 + } else {
18542 + if (deptsiz.b.xfersize == 0 && deptsiz.b.pktcnt == 0) {
18543 + /* Check if the whole transfer was completed,
18544 + * if no, setup transfer for next portion of data
18545 + */
18546 + DWC_DEBUGPL(DBG_PCDV, "%s len=%d xfersize=%d pktcnt=%d\n",
18547 + ep->ep.name, ep->dwc_ep.xfer_len,
18548 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18549 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18550 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18551 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
18552 + } else if(ep->dwc_ep.sent_zlp) {
18553 + /*
18554 + * This fragment of code should initiate 0
18555 + * length trasfer in case if it is queued
18556 + * a trasfer with size divisible to EPs max
18557 + * packet size and with usb_request zero field
18558 + * is set, which means that after data is transfered,
18559 + * it is also should be transfered
18560 + * a 0 length packet at the end. For Slave and
18561 + * Buffer DMA modes in this case SW has
18562 + * to initiate 2 transfers one with transfer size,
18563 + * and the second with 0 size. For Desriptor
18564 + * DMA mode SW is able to initiate a transfer,
18565 + * which will handle all the packets including
18566 + * the last 0 legth.
18567 + */
18568 + ep->dwc_ep.sent_zlp = 0;
18569 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18570 + } else {
18571 + is_last = 1;
18572 + }
18573 + }
18574 + else {
18575 + DWC_WARN("Incomplete transfer (%s-%s [siz=%d pkt=%d])\n",
18576 + ep->ep.name, (ep->dwc_ep.is_in?"IN":"OUT"),
18577 + deptsiz.b.xfersize, deptsiz.b.pktcnt);
18578 + }
18579 + }
18580 + } else {
18581 + dwc_otg_dev_out_ep_regs_t *out_ep_regs =
18582 + dev_if->out_ep_regs[ep->dwc_ep.num];
18583 + desc_sts.d32 = 0;
18584 + if(core_if->dma_enable) {
18585 + //dma_unmap_single(NULL,ep->dwc_ep.dma_addr,ep->dwc_ep.xfer_count,DMA_FROM_DEVICE);
18586 + if(core_if->dma_desc_enable) {
18587 + DWC_WARN("\n\n%s: we need a cache invalidation here!!\n\n",__func__);
18588 + dma_desc = ep->dwc_ep.desc_addr;
18589 + byte_count = 0;
18590 + ep->dwc_ep.sent_zlp = 0;
18591 + for(i = 0; i < ep->dwc_ep.desc_cnt; ++i) {
18592 + desc_sts.d32 = readl(dma_desc);
18593 + byte_count += desc_sts.b.bytes;
18594 + dma_desc++;
18595 + }
18596 +
18597 + ep->dwc_ep.xfer_count = ep->dwc_ep.total_len
18598 + - byte_count + ((4 - (ep->dwc_ep.total_len & 0x3)) & 0x3);
18599 +
18600 + //todo: invalidate cache & aligned buf patch on completion
18601 + //
18602 +
18603 + is_last = 1;
18604 + } else {
18605 + deptsiz.d32 = 0;
18606 + deptsiz.d32 = dwc_read_reg32(&out_ep_regs->doeptsiz);
18607 +
18608 + byte_count = (ep->dwc_ep.xfer_len -
18609 + ep->dwc_ep.xfer_count - deptsiz.b.xfersize);
18610 +
18611 +// dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
18612 +
18613 +DWC_DEBUGPL(DBG_PCDV,"ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
18614 + //todo: invalidate cache & aligned buf patch on completion
18615 + dma_sync_single_for_device(NULL,ep->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
18616 + aligned_buf_patch_on_buf_dma_oep_completion(ep,byte_count);
18617 +
18618 + ep->dwc_ep.xfer_buff += byte_count;
18619 + ep->dwc_ep.dma_addr += byte_count;
18620 + ep->dwc_ep.xfer_count += byte_count;
18621 +
18622 + /* Check if the whole transfer was completed,
18623 + * if no, setup transfer for next portion of data
18624 + */
18625 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18626 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18627 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, byte_count(%.8x) = (ep->dwc_ep.xfer_len(%.8x) - ep->dwc_ep.xfer_count(%.8x) - deptsiz.b.xfersize(%.8x)\n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, byte_count ,ep->dwc_ep.xfer_len , ep->dwc_ep.xfer_count , deptsiz.b.xfersize);
18628 + }
18629 + else if(ep->dwc_ep.sent_zlp) {
18630 + /*
18631 + * This fragment of code should initiate 0
18632 + * length trasfer in case if it is queued
18633 + * a trasfer with size divisible to EPs max
18634 + * packet size and with usb_request zero field
18635 + * is set, which means that after data is transfered,
18636 + * it is also should be transfered
18637 + * a 0 length packet at the end. For Slave and
18638 + * Buffer DMA modes in this case SW has
18639 + * to initiate 2 transfers one with transfer size,
18640 + * and the second with 0 size. For Desriptor
18641 + * DMA mode SW is able to initiate a transfer,
18642 + * which will handle all the packets including
18643 + * the last 0 legth.
18644 + */
18645 + ep->dwc_ep.sent_zlp = 0;
18646 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18647 + } else {
18648 + is_last = 1;
18649 + }
18650 + }
18651 + } else {
18652 + /* Check if the whole transfer was completed,
18653 + * if no, setup transfer for next portion of data
18654 + */
18655 + if(ep->dwc_ep.xfer_len < ep->dwc_ep.total_len) {
18656 + //dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
18657 +printk("Warning: transfer ended, but specified len is not accomplished!! ep->total_len=%.x,ep->dwc_ep.sent_zlp=%d, ep->dwc_ep.xfer_len(%.8x) \n", ep->dwc_ep.total_len, ep->dwc_ep.sent_zlp, ep->dwc_ep.xfer_len );
18658 + }
18659 + else if(ep->dwc_ep.sent_zlp) {
18660 + /*
18661 + * This fragment of code should initiate 0
18662 + * length trasfer in case if it is queued
18663 + * a trasfer with size divisible to EPs max
18664 + * packet size and with usb_request zero field
18665 + * is set, which means that after data is transfered,
18666 + * it is also should be transfered
18667 + * a 0 length packet at the end. For Slave and
18668 + * Buffer DMA modes in this case SW has
18669 + * to initiate 2 transfers one with transfer size,
18670 + * and the second with 0 size. For Desriptor
18671 + * DMA mode SW is able to initiate a transfer,
18672 + * which will handle all the packets including
18673 + * the last 0 legth.
18674 + */
18675 + ep->dwc_ep.sent_zlp = 0;
18676 + dwc_otg_ep_start_zl_transfer(core_if, &ep->dwc_ep);
18677 + } else {
18678 + is_last = 1;
18679 + }
18680 + }
18681 +
18682 +#ifdef DEBUG
18683 +
18684 + DWC_DEBUGPL(DBG_PCDV, "addr %p, %s len=%d cnt=%d xsize=%d pktcnt=%d\n",
18685 + &out_ep_regs->doeptsiz, ep->ep.name, ep->dwc_ep.xfer_len,
18686 + ep->dwc_ep.xfer_count,
18687 + deptsiz.b.xfersize,
18688 + deptsiz.b.pktcnt);
18689 +#endif
18690 + }
18691 +
18692 + /* Complete the request */
18693 + if (is_last) {
18694 + req->req.actual = ep->dwc_ep.xfer_count;
18695 +
18696 + dwc_otg_request_done(ep, req, 0);
18697 +
18698 + ep->dwc_ep.start_xfer_buff = 0;
18699 + ep->dwc_ep.xfer_buff = 0;
18700 + ep->dwc_ep.xfer_len = 0;
18701 +
18702 + /* If there is a request in the queue start it.*/
18703 + start_next_request(ep);
18704 + }
18705 +}
18706 +
18707 +
18708 +#ifdef DWC_EN_ISOC
18709 +
18710 +/**
18711 + * This function BNA interrupt for Isochronous EPs
18712 + *
18713 + */
18714 +static void dwc_otg_pcd_handle_iso_bna(dwc_otg_pcd_ep_t *ep)
18715 +{
18716 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
18717 + volatile uint32_t *addr;
18718 + depctl_data_t depctl = {.d32 = 0};
18719 + dwc_otg_pcd_t *pcd = ep->pcd;
18720 + dwc_otg_dma_desc_t *dma_desc;
18721 + int i;
18722 +
18723 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * (dwc_ep->proc_buf_num);
18724 +
18725 + if(dwc_ep->is_in) {
18726 + desc_sts_data_t sts = {.d32 = 0};
18727 + for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
18728 + {
18729 + sts.d32 = readl(&dma_desc->status);
18730 + sts.b_iso_in.bs = BS_HOST_READY;
18731 + writel(sts.d32,&dma_desc->status);
18732 + }
18733 + }
18734 + else {
18735 + desc_sts_data_t sts = {.d32 = 0};
18736 + for(i = 0;i < dwc_ep->desc_cnt; ++i, ++dma_desc)
18737 + {
18738 + sts.d32 = readl(&dma_desc->status);
18739 + sts.b_iso_out.bs = BS_HOST_READY;
18740 + writel(sts.d32,&dma_desc->status);
18741 + }
18742 + }
18743 +
18744 + if(dwc_ep->is_in == 0){
18745 + addr = &GET_CORE_IF(pcd)->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
18746 + }
18747 + else{
18748 + addr = &GET_CORE_IF(pcd)->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
18749 + }
18750 + depctl.b.epena = 1;
18751 + dwc_modify_reg32(addr,depctl.d32,depctl.d32);
18752 +}
18753 +
18754 +/**
18755 + * This function sets latest iso packet information(non-PTI mode)
18756 + *
18757 + * @param core_if Programming view of DWC_otg controller.
18758 + * @param ep The EP to start the transfer on.
18759 + *
18760 + */
18761 +void set_current_pkt_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
18762 +{
18763 + deptsiz_data_t deptsiz = { .d32 = 0 };
18764 + dma_addr_t dma_addr;
18765 + uint32_t offset;
18766 +
18767 + if(ep->proc_buf_num)
18768 + dma_addr = ep->dma_addr1;
18769 + else
18770 + dma_addr = ep->dma_addr0;
18771 +
18772 + if(ep->is_in) {
18773 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
18774 + offset = ep->data_per_frame;
18775 + } else {
18776 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
18777 + offset = ep->data_per_frame + (0x4 & (0x4 - (ep->data_per_frame & 0x3)));
18778 + }
18779 +
18780 + if(!deptsiz.b.xfersize) {
18781 + ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
18782 + ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
18783 + ep->pkt_info[ep->cur_pkt].status = 0;
18784 + } else {
18785 + ep->pkt_info[ep->cur_pkt].length = ep->data_per_frame;
18786 + ep->pkt_info[ep->cur_pkt].offset = ep->cur_pkt_dma_addr - dma_addr;
18787 + ep->pkt_info[ep->cur_pkt].status = -ENODATA;
18788 + }
18789 + ep->cur_pkt_addr += offset;
18790 + ep->cur_pkt_dma_addr += offset;
18791 + ep->cur_pkt++;
18792 +}
18793 +
18794 +/**
18795 + * This function sets latest iso packet information(DDMA mode)
18796 + *
18797 + * @param core_if Programming view of DWC_otg controller.
18798 + * @param dwc_ep The EP to start the transfer on.
18799 + *
18800 + */
18801 +static void set_ddma_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
18802 +{
18803 + dwc_otg_dma_desc_t* dma_desc;
18804 + desc_sts_data_t sts = {.d32 = 0};
18805 + iso_pkt_info_t *iso_packet;
18806 + uint32_t data_per_desc;
18807 + uint32_t offset;
18808 + int i, j;
18809 +
18810 + iso_packet = dwc_ep->pkt_info;
18811 +
18812 + /** Reinit closed DMA Descriptors*/
18813 + /** ISO OUT EP */
18814 + if(dwc_ep->is_in == 0) {
18815 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
18816 + offset = 0;
18817 +
18818 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
18819 + {
18820 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
18821 + {
18822 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18823 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18824 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18825 +
18826 + sts.d32 = readl(&dma_desc->status);
18827 +
18828 + /* Write status in iso_packet_decsriptor */
18829 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
18830 + if(iso_packet->status) {
18831 + iso_packet->status = -ENODATA;
18832 + }
18833 +
18834 + /* Received data length */
18835 + if(!sts.b_iso_out.rxbytes){
18836 + iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes;
18837 + } else {
18838 + iso_packet->length = data_per_desc - sts.b_iso_out.rxbytes +
18839 + (4 - dwc_ep->data_per_frame % 4);
18840 + }
18841 +
18842 + iso_packet->offset = offset;
18843 +
18844 + offset += data_per_desc;
18845 + dma_desc ++;
18846 + iso_packet ++;
18847 + }
18848 + }
18849 +
18850 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
18851 + {
18852 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18853 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18854 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18855 +
18856 + sts.d32 = readl(&dma_desc->status);
18857 +
18858 + /* Write status in iso_packet_decsriptor */
18859 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
18860 + if(iso_packet->status) {
18861 + iso_packet->status = -ENODATA;
18862 + }
18863 +
18864 + /* Received data length */
18865 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
18866 +
18867 + iso_packet->offset = offset;
18868 +
18869 + offset += data_per_desc;
18870 + iso_packet++;
18871 + dma_desc++;
18872 + }
18873 +
18874 + sts.d32 = readl(&dma_desc->status);
18875 +
18876 + /* Write status in iso_packet_decsriptor */
18877 + iso_packet->status = sts.b_iso_out.rxsts + (sts.b_iso_out.bs^BS_DMA_DONE);
18878 + if(iso_packet->status) {
18879 + iso_packet->status = -ENODATA;
18880 + }
18881 + /* Received data length */
18882 + if(!sts.b_iso_out.rxbytes){
18883 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes;
18884 + } else {
18885 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_out.rxbytes +
18886 + (4 - dwc_ep->data_per_frame % 4);
18887 + }
18888 +
18889 + iso_packet->offset = offset;
18890 + }
18891 + else /** ISO IN EP */
18892 + {
18893 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
18894 +
18895 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
18896 + {
18897 + sts.d32 = readl(&dma_desc->status);
18898 +
18899 + /* Write status in iso packet descriptor */
18900 + iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
18901 + if(iso_packet->status != 0) {
18902 + iso_packet->status = -ENODATA;
18903 +
18904 + }
18905 + /* Bytes has been transfered */
18906 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
18907 +
18908 + dma_desc ++;
18909 + iso_packet++;
18910 + }
18911 +
18912 + sts.d32 = readl(&dma_desc->status);
18913 + while(sts.b_iso_in.bs == BS_DMA_BUSY) {
18914 + sts.d32 = readl(&dma_desc->status);
18915 + }
18916 +
18917 + /* Write status in iso packet descriptor ??? do be done with ERROR codes*/
18918 + iso_packet->status = sts.b_iso_in.txsts + (sts.b_iso_in.bs^BS_DMA_DONE);
18919 + if(iso_packet->status != 0) {
18920 + iso_packet->status = -ENODATA;
18921 + }
18922 +
18923 + /* Bytes has been transfered */
18924 + iso_packet->length = dwc_ep->data_per_frame - sts.b_iso_in.txbytes;
18925 + }
18926 +}
18927 +
18928 +/**
18929 + * This function reinitialize DMA Descriptors for Isochronous transfer
18930 + *
18931 + * @param core_if Programming view of DWC_otg controller.
18932 + * @param dwc_ep The EP to start the transfer on.
18933 + *
18934 + */
18935 +static void reinit_ddma_iso_xfer(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
18936 +{
18937 + int i, j;
18938 + dwc_otg_dma_desc_t* dma_desc;
18939 + dma_addr_t dma_ad;
18940 + volatile uint32_t *addr;
18941 + desc_sts_data_t sts = { .d32 =0 };
18942 + uint32_t data_per_desc;
18943 +
18944 + if(dwc_ep->is_in == 0) {
18945 + addr = &core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl;
18946 + }
18947 + else {
18948 + addr = &core_if->dev_if->in_ep_regs[dwc_ep->num]->diepctl;
18949 + }
18950 +
18951 +
18952 + if(dwc_ep->proc_buf_num == 0) {
18953 + /** Buffer 0 descriptors setup */
18954 + dma_ad = dwc_ep->dma_addr0;
18955 + }
18956 + else {
18957 + /** Buffer 1 descriptors setup */
18958 + dma_ad = dwc_ep->dma_addr1;
18959 + }
18960 +
18961 + /** Reinit closed DMA Descriptors*/
18962 + /** ISO OUT EP */
18963 + if(dwc_ep->is_in == 0) {
18964 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
18965 +
18966 + sts.b_iso_out.bs = BS_HOST_READY;
18967 + sts.b_iso_out.rxsts = 0;
18968 + sts.b_iso_out.l = 0;
18969 + sts.b_iso_out.sp = 0;
18970 + sts.b_iso_out.ioc = 0;
18971 + sts.b_iso_out.pid = 0;
18972 + sts.b_iso_out.framenum = 0;
18973 +
18974 + for(i = 0; i < dwc_ep->desc_cnt - dwc_ep->pkt_per_frm; i+= dwc_ep->pkt_per_frm)
18975 + {
18976 + for(j = 0; j < dwc_ep->pkt_per_frm; ++j)
18977 + {
18978 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18979 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18980 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18981 + sts.b_iso_out.rxbytes = data_per_desc;
18982 + writel((uint32_t)dma_ad, &dma_desc->buf);
18983 + writel(sts.d32, &dma_desc->status);
18984 +
18985 + //(uint32_t)dma_ad += data_per_desc;
18986 + dma_ad = (uint32_t)dma_ad + data_per_desc;
18987 + dma_desc ++;
18988 + }
18989 + }
18990 +
18991 + for(j = 0; j < dwc_ep->pkt_per_frm - 1; ++j)
18992 + {
18993 +
18994 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
18995 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
18996 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
18997 + sts.b_iso_out.rxbytes = data_per_desc;
18998 +
18999 + writel((uint32_t)dma_ad, &dma_desc->buf);
19000 + writel(sts.d32, &dma_desc->status);
19001 +
19002 + dma_desc++;
19003 + //(uint32_t)dma_ad += data_per_desc;
19004 + dma_ad = (uint32_t)dma_ad + data_per_desc;
19005 + }
19006 +
19007 + sts.b_iso_out.ioc = 1;
19008 + sts.b_iso_out.l = dwc_ep->proc_buf_num;
19009 +
19010 + data_per_desc = ((j + 1) * dwc_ep->maxpacket > dwc_ep->data_per_frame) ?
19011 + dwc_ep->data_per_frame - j * dwc_ep->maxpacket : dwc_ep->maxpacket;
19012 + data_per_desc += (data_per_desc % 4) ? (4 - data_per_desc % 4):0;
19013 + sts.b_iso_out.rxbytes = data_per_desc;
19014 +
19015 + writel((uint32_t)dma_ad, &dma_desc->buf);
19016 + writel(sts.d32, &dma_desc->status);
19017 + }
19018 + else /** ISO IN EP */
19019 + {
19020 + dma_desc = dwc_ep->iso_desc_addr + dwc_ep->desc_cnt * dwc_ep->proc_buf_num;
19021 +
19022 + sts.b_iso_in.bs = BS_HOST_READY;
19023 + sts.b_iso_in.txsts = 0;
19024 + sts.b_iso_in.sp = 0;
19025 + sts.b_iso_in.ioc = 0;
19026 + sts.b_iso_in.pid = dwc_ep->pkt_per_frm;
19027 + sts.b_iso_in.framenum = dwc_ep->next_frame;
19028 + sts.b_iso_in.txbytes = dwc_ep->data_per_frame;
19029 + sts.b_iso_in.l = 0;
19030 +
19031 + for(i = 0; i < dwc_ep->desc_cnt - 1; i++)
19032 + {
19033 + writel((uint32_t)dma_ad, &dma_desc->buf);
19034 + writel(sts.d32, &dma_desc->status);
19035 +
19036 + sts.b_iso_in.framenum += dwc_ep->bInterval;
19037 + //(uint32_t)dma_ad += dwc_ep->data_per_frame;
19038 + dma_ad = (uint32_t)dma_ad + dwc_ep->data_per_frame;
19039 + dma_desc ++;
19040 + }
19041 +
19042 + sts.b_iso_in.ioc = 1;
19043 + sts.b_iso_in.l = dwc_ep->proc_buf_num;
19044 +
19045 + writel((uint32_t)dma_ad, &dma_desc->buf);
19046 + writel(sts.d32, &dma_desc->status);
19047 +
19048 + dwc_ep->next_frame = sts.b_iso_in.framenum + dwc_ep->bInterval * 1;
19049 + }
19050 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19051 +}
19052 +
19053 +
19054 +/**
19055 + * This function is to handle Iso EP transfer complete interrupt
19056 + * in case Iso out packet was dropped
19057 + *
19058 + * @param core_if Programming view of DWC_otg controller.
19059 + * @param dwc_ep The EP for wihich transfer complete was asserted
19060 + *
19061 + */
19062 +static uint32_t handle_iso_out_pkt_dropped(dwc_otg_core_if_t *core_if, dwc_ep_t *dwc_ep)
19063 +{
19064 + uint32_t dma_addr;
19065 + uint32_t drp_pkt;
19066 + uint32_t drp_pkt_cnt;
19067 + deptsiz_data_t deptsiz = { .d32 = 0 };
19068 + depctl_data_t depctl = { .d32 = 0 };
19069 + int i;
19070 +
19071 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz);
19072 +
19073 + drp_pkt = dwc_ep->pkt_cnt - deptsiz.b.pktcnt;
19074 + drp_pkt_cnt = dwc_ep->pkt_per_frm - (drp_pkt % dwc_ep->pkt_per_frm);
19075 +
19076 + /* Setting dropped packets status */
19077 + for(i = 0; i < drp_pkt_cnt; ++i) {
19078 + dwc_ep->pkt_info[drp_pkt].status = -ENODATA;
19079 + drp_pkt ++;
19080 + deptsiz.b.pktcnt--;
19081 + }
19082 +
19083 +
19084 + if(deptsiz.b.pktcnt > 0) {
19085 + deptsiz.b.xfersize = dwc_ep->xfer_len - (dwc_ep->pkt_cnt - deptsiz.b.pktcnt) * dwc_ep->maxpacket;
19086 + } else {
19087 + deptsiz.b.xfersize = 0;
19088 + deptsiz.b.pktcnt = 0;
19089 + }
19090 +
19091 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doeptsiz, deptsiz.d32);
19092 +
19093 + if(deptsiz.b.pktcnt > 0) {
19094 + if(dwc_ep->proc_buf_num) {
19095 + dma_addr = dwc_ep->dma_addr1 + dwc_ep->xfer_len - deptsiz.b.xfersize;
19096 + } else {
19097 + dma_addr = dwc_ep->dma_addr0 + dwc_ep->xfer_len - deptsiz.b.xfersize;;
19098 + }
19099 +
19100 + VERIFY_PCD_DMA_ADDR(dma_addr);
19101 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepdma, dma_addr);
19102 +
19103 + /** Re-enable endpoint, clear nak */
19104 + depctl.d32 = 0;
19105 + depctl.b.epena = 1;
19106 + depctl.b.cnak = 1;
19107 +
19108 + dwc_modify_reg32(&core_if->dev_if->out_ep_regs[dwc_ep->num]->doepctl,
19109 + depctl.d32,depctl.d32);
19110 + return 0;
19111 + } else {
19112 + return 1;
19113 + }
19114 +}
19115 +
19116 +/**
19117 + * This function sets iso packets information(PTI mode)
19118 + *
19119 + * @param core_if Programming view of DWC_otg controller.
19120 + * @param ep The EP to start the transfer on.
19121 + *
19122 + */
19123 +static uint32_t set_iso_pkts_info(dwc_otg_core_if_t *core_if, dwc_ep_t *ep)
19124 +{
19125 + int i, j;
19126 + dma_addr_t dma_ad;
19127 + iso_pkt_info_t *packet_info = ep->pkt_info;
19128 + uint32_t offset;
19129 + uint32_t frame_data;
19130 + deptsiz_data_t deptsiz;
19131 +
19132 + if(ep->proc_buf_num == 0) {
19133 + /** Buffer 0 descriptors setup */
19134 + dma_ad = ep->dma_addr0;
19135 + }
19136 + else {
19137 + /** Buffer 1 descriptors setup */
19138 + dma_ad = ep->dma_addr1;
19139 + }
19140 +
19141 + if(ep->is_in) {
19142 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[ep->num]->dieptsiz);
19143 + } else {
19144 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[ep->num]->doeptsiz);
19145 + }
19146 +
19147 + if(!deptsiz.b.xfersize) {
19148 + offset = 0;
19149 + for(i = 0; i < ep->pkt_cnt; i += ep->pkt_per_frm)
19150 + {
19151 + frame_data = ep->data_per_frame;
19152 + for(j = 0; j < ep->pkt_per_frm; ++j) {
19153 +
19154 + /* Packet status - is not set as initially
19155 + * it is set to 0 and if packet was sent
19156 + successfully, status field will remain 0*/
19157 +
19158 + /* Bytes has been transfered */
19159 + packet_info->length = (ep->maxpacket < frame_data) ?
19160 + ep->maxpacket : frame_data;
19161 +
19162 + /* Received packet offset */
19163 + packet_info->offset = offset;
19164 + offset += packet_info->length;
19165 + frame_data -= packet_info->length;
19166 +
19167 + packet_info ++;
19168 + }
19169 + }
19170 + return 1;
19171 + } else {
19172 + /* This is a workaround for in case of Transfer Complete with
19173 + * PktDrpSts interrupts merging - in this case Transfer complete
19174 + * interrupt for Isoc Out Endpoint is asserted without PktDrpSts
19175 + * set and with DOEPTSIZ register non zero. Investigations showed,
19176 + * that this happens when Out packet is dropped, but because of
19177 + * interrupts merging during first interrupt handling PktDrpSts
19178 + * bit is cleared and for next merged interrupts it is not reset.
19179 + * In this case SW hadles the interrupt as if PktDrpSts bit is set.
19180 + */
19181 + if(ep->is_in) {
19182 + return 1;
19183 + } else {
19184 + return handle_iso_out_pkt_dropped(core_if, ep);
19185 + }
19186 + }
19187 +}
19188 +
19189 +/**
19190 + * This function is to handle Iso EP transfer complete interrupt
19191 + *
19192 + * @param ep The EP for which transfer complete was asserted
19193 + *
19194 + */
19195 +static void complete_iso_ep(dwc_otg_pcd_ep_t *ep)
19196 +{
19197 + dwc_otg_core_if_t *core_if = GET_CORE_IF(ep->pcd);
19198 + dwc_ep_t *dwc_ep = &ep->dwc_ep;
19199 + uint8_t is_last = 0;
19200 +
19201 + if(core_if->dma_enable) {
19202 + if(core_if->dma_desc_enable) {
19203 + set_ddma_iso_pkts_info(core_if, dwc_ep);
19204 + reinit_ddma_iso_xfer(core_if, dwc_ep);
19205 + is_last = 1;
19206 + } else {
19207 + if(core_if->pti_enh_enable) {
19208 + if(set_iso_pkts_info(core_if, dwc_ep)) {
19209 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19210 + dwc_otg_iso_ep_start_buf_transfer(core_if, dwc_ep);
19211 + is_last = 1;
19212 + }
19213 + } else {
19214 + set_current_pkt_info(core_if, dwc_ep);
19215 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
19216 + is_last = 1;
19217 + dwc_ep->cur_pkt = 0;
19218 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19219 + if(dwc_ep->proc_buf_num) {
19220 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
19221 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
19222 + } else {
19223 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
19224 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
19225 + }
19226 + }
19227 + dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
19228 + }
19229 + }
19230 + } else {
19231 + set_current_pkt_info(core_if, dwc_ep);
19232 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
19233 + is_last = 1;
19234 + dwc_ep->cur_pkt = 0;
19235 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
19236 + if(dwc_ep->proc_buf_num) {
19237 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
19238 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
19239 + } else {
19240 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
19241 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
19242 + }
19243 + }
19244 + dwc_otg_iso_ep_start_frm_transfer(core_if, dwc_ep);
19245 + }
19246 + if(is_last)
19247 + dwc_otg_iso_buffer_done(ep, ep->iso_req);
19248 +}
19249 +
19250 +#endif //DWC_EN_ISOC
19251 +
19252 +
19253 +/**
19254 + * This function handles EP0 Control transfers.
19255 + *
19256 + * The state of the control tranfers are tracked in
19257 + * <code>ep0state</code>.
19258 + */
19259 +static void handle_ep0(dwc_otg_pcd_t *pcd)
19260 +{
19261 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19262 + dwc_otg_pcd_ep_t *ep0 = &pcd->ep0;
19263 + desc_sts_data_t desc_sts;
19264 + deptsiz0_data_t deptsiz;
19265 + uint32_t byte_count;
19266 +
19267 +#ifdef DEBUG_EP0
19268 + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
19269 + print_ep0_state(pcd);
19270 +#endif
19271 +
19272 + switch (pcd->ep0state) {
19273 + case EP0_DISCONNECT:
19274 + break;
19275 +
19276 + case EP0_IDLE:
19277 + pcd->request_config = 0;
19278 +
19279 + pcd_setup(pcd);
19280 + break;
19281 +
19282 + case EP0_IN_DATA_PHASE:
19283 +#ifdef DEBUG_EP0
19284 + DWC_DEBUGPL(DBG_PCD, "DATA_IN EP%d-%s: type=%d, mps=%d\n",
19285 + ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
19286 + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
19287 +#endif
19288 +
19289 + if (core_if->dma_enable != 0) {
19290 + /*
19291 + * For EP0 we can only program 1 packet at a time so we
19292 + * need to do the make calculations after each complete.
19293 + * Call write_packet to make the calculations, as in
19294 + * slave mode, and use those values to determine if we
19295 + * can complete.
19296 + */
19297 + if(core_if->dma_desc_enable == 0) {
19298 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->in_ep_regs[0]->dieptsiz);
19299 + byte_count = ep0->dwc_ep.xfer_len - deptsiz.b.xfersize;
19300 + }
19301 + else {
19302 + desc_sts.d32 = readl(core_if->dev_if->in_desc_addr);
19303 + byte_count = ep0->dwc_ep.xfer_len - desc_sts.b.bytes;
19304 + }
19305 +
19306 + ep0->dwc_ep.xfer_count += byte_count;
19307 + ep0->dwc_ep.xfer_buff += byte_count;
19308 + ep0->dwc_ep.dma_addr += byte_count;
19309 + }
19310 + if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
19311 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19312 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19313 + }
19314 + else if(ep0->dwc_ep.sent_zlp) {
19315 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19316 + ep0->dwc_ep.sent_zlp = 0;
19317 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19318 + }
19319 + else {
19320 + ep0_complete_request(ep0);
19321 + DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
19322 + }
19323 + break;
19324 + case EP0_OUT_DATA_PHASE:
19325 +#ifdef DEBUG_EP0
19326 + DWC_DEBUGPL(DBG_PCD, "DATA_OUT EP%d-%s: type=%d, mps=%d\n",
19327 + ep0->dwc_ep.num, (ep0->dwc_ep.is_in ?"IN":"OUT"),
19328 + ep0->dwc_ep.type, ep0->dwc_ep.maxpacket);
19329 +#endif
19330 + if (core_if->dma_enable != 0) {
19331 + if(core_if->dma_desc_enable == 0) {
19332 + deptsiz.d32 = dwc_read_reg32(&core_if->dev_if->out_ep_regs[0]->doeptsiz);
19333 + byte_count = ep0->dwc_ep.maxpacket - deptsiz.b.xfersize;
19334 +
19335 + //todo: invalidate cache & aligned buf patch on completion
19336 + dma_sync_single_for_device(NULL,ep0->dwc_ep.dma_addr,byte_count,DMA_FROM_DEVICE);
19337 + aligned_buf_patch_on_buf_dma_oep_completion(ep0,byte_count);
19338 + }
19339 + else {
19340 + desc_sts.d32 = readl(core_if->dev_if->out_desc_addr);
19341 + byte_count = ep0->dwc_ep.maxpacket - desc_sts.b.bytes;
19342 +
19343 + //todo: invalidate cache & aligned buf patch on completion
19344 + //
19345 +
19346 + }
19347 + ep0->dwc_ep.xfer_count += byte_count;
19348 + ep0->dwc_ep.xfer_buff += byte_count;
19349 + ep0->dwc_ep.dma_addr += byte_count;
19350 + }
19351 + if (ep0->dwc_ep.xfer_count < ep0->dwc_ep.total_len) {
19352 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19353 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19354 + }
19355 + else if(ep0->dwc_ep.sent_zlp) {
19356 + dwc_otg_ep0_continue_transfer (GET_CORE_IF(pcd), &ep0->dwc_ep);
19357 + ep0->dwc_ep.sent_zlp = 0;
19358 + DWC_DEBUGPL(DBG_PCD, "CONTINUE TRANSFER\n");
19359 + }
19360 + else {
19361 + ep0_complete_request(ep0);
19362 + DWC_DEBUGPL(DBG_PCD, "COMPLETE TRANSFER\n");
19363 + }
19364 + break;
19365 +
19366 + case EP0_IN_STATUS_PHASE:
19367 + case EP0_OUT_STATUS_PHASE:
19368 + DWC_DEBUGPL(DBG_PCD, "CASE: EP0_STATUS\n");
19369 + ep0_complete_request(ep0);
19370 + pcd->ep0state = EP0_IDLE;
19371 + ep0->stopped = 1;
19372 + ep0->dwc_ep.is_in = 0; /* OUT for next SETUP */
19373 +
19374 + /* Prepare for more SETUP Packets */
19375 + if(core_if->dma_enable) {
19376 + ep0_out_start(core_if, pcd);
19377 + }
19378 + break;
19379 +
19380 + case EP0_STALL:
19381 + DWC_ERROR("EP0 STALLed, should not get here pcd_setup()\n");
19382 + break;
19383 + }
19384 +#ifdef DEBUG_EP0
19385 + print_ep0_state(pcd);
19386 +#endif
19387 +}
19388 +
19389 +
19390 +/**
19391 + * Restart transfer
19392 + */
19393 +static void restart_transfer(dwc_otg_pcd_t *pcd, const uint32_t epnum)
19394 +{
19395 + dwc_otg_core_if_t *core_if;
19396 + dwc_otg_dev_if_t *dev_if;
19397 + deptsiz_data_t dieptsiz = {.d32=0};
19398 + dwc_otg_pcd_ep_t *ep;
19399 +
19400 + ep = get_in_ep(pcd, epnum);
19401 +
19402 +#ifdef DWC_EN_ISOC
19403 + if(ep->dwc_ep.type == DWC_OTG_EP_TYPE_ISOC) {
19404 + return;
19405 + }
19406 +#endif /* DWC_EN_ISOC */
19407 +
19408 + core_if = GET_CORE_IF(pcd);
19409 + dev_if = core_if->dev_if;
19410 +
19411 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
19412 +
19413 + DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x xfer_len=%0x"
19414 + " stopped=%d\n", ep->dwc_ep.xfer_buff,
19415 + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
19416 + ep->stopped);
19417 + /*
19418 + * If xfersize is 0 and pktcnt in not 0, resend the last packet.
19419 + */
19420 + if (dieptsiz.b.pktcnt && dieptsiz.b.xfersize == 0 &&
19421 + ep->dwc_ep.start_xfer_buff != 0) {
19422 + if (ep->dwc_ep.total_len <= ep->dwc_ep.maxpacket) {
19423 + ep->dwc_ep.xfer_count = 0;
19424 + ep->dwc_ep.xfer_buff = ep->dwc_ep.start_xfer_buff;
19425 + ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
19426 + }
19427 + else {
19428 + ep->dwc_ep.xfer_count -= ep->dwc_ep.maxpacket;
19429 + /* convert packet size to dwords. */
19430 + ep->dwc_ep.xfer_buff -= ep->dwc_ep.maxpacket;
19431 + ep->dwc_ep.xfer_len = ep->dwc_ep.xfer_count;
19432 + }
19433 + ep->stopped = 0;
19434 + DWC_DEBUGPL(DBG_PCD,"xfer_buff=%p xfer_count=%0x "
19435 + "xfer_len=%0x stopped=%d\n",
19436 + ep->dwc_ep.xfer_buff,
19437 + ep->dwc_ep.xfer_count, ep->dwc_ep.xfer_len ,
19438 + ep->stopped
19439 + );
19440 + if (epnum == 0) {
19441 + dwc_otg_ep0_start_transfer(core_if, &ep->dwc_ep);
19442 + }
19443 + else {
19444 + dwc_otg_ep_start_transfer(core_if, &ep->dwc_ep);
19445 + }
19446 + }
19447 +}
19448 +
19449 +
19450 +/**
19451 + * handle the IN EP disable interrupt.
19452 + */
19453 +static inline void handle_in_ep_disable_intr(dwc_otg_pcd_t *pcd,
19454 + const uint32_t epnum)
19455 +{
19456 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19457 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19458 + deptsiz_data_t dieptsiz = {.d32=0};
19459 + dctl_data_t dctl = {.d32=0};
19460 + dwc_otg_pcd_ep_t *ep;
19461 + dwc_ep_t *dwc_ep;
19462 +
19463 + ep = get_in_ep(pcd, epnum);
19464 + dwc_ep = &ep->dwc_ep;
19465 +
19466 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19467 + dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
19468 + return;
19469 + }
19470 +
19471 + DWC_DEBUGPL(DBG_PCD,"diepctl%d=%0x\n", epnum,
19472 + dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl));
19473 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->dieptsiz);
19474 +
19475 + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
19476 + dieptsiz.b.pktcnt,
19477 + dieptsiz.b.xfersize);
19478 +
19479 + if (ep->stopped) {
19480 + /* Flush the Tx FIFO */
19481 + dwc_otg_flush_tx_fifo(core_if, dwc_ep->tx_fifo_num);
19482 + /* Clear the Global IN NP NAK */
19483 + dctl.d32 = 0;
19484 + dctl.b.cgnpinnak = 1;
19485 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
19486 + dctl.d32, 0);
19487 + /* Restart the transaction */
19488 + if (dieptsiz.b.pktcnt != 0 ||
19489 + dieptsiz.b.xfersize != 0) {
19490 + restart_transfer(pcd, epnum);
19491 + }
19492 + }
19493 + else {
19494 + /* Restart the transaction */
19495 + if (dieptsiz.b.pktcnt != 0 ||
19496 + dieptsiz.b.xfersize != 0) {
19497 + restart_transfer(pcd, epnum);
19498 + }
19499 + DWC_DEBUGPL(DBG_ANY, "STOPPED!!!\n");
19500 + }
19501 +}
19502 +
19503 +/**
19504 + * Handler for the IN EP timeout handshake interrupt.
19505 + */
19506 +static inline void handle_in_ep_timeout_intr(dwc_otg_pcd_t *pcd,
19507 + const uint32_t epnum)
19508 +{
19509 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19510 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19511 +
19512 +#ifdef DEBUG
19513 + deptsiz_data_t dieptsiz = {.d32=0};
19514 + uint32_t num = 0;
19515 +#endif
19516 + dctl_data_t dctl = {.d32=0};
19517 + dwc_otg_pcd_ep_t *ep;
19518 +
19519 + gintmsk_data_t intr_mask = {.d32 = 0};
19520 +
19521 + ep = get_in_ep(pcd, epnum);
19522 +
19523 + /* Disable the NP Tx Fifo Empty Interrrupt */
19524 + if (!core_if->dma_enable) {
19525 + intr_mask.b.nptxfempty = 1;
19526 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
19527 + }
19528 + /** @todo NGS Check EP type.
19529 + * Implement for Periodic EPs */
19530 + /*
19531 + * Non-periodic EP
19532 + */
19533 + /* Enable the Global IN NAK Effective Interrupt */
19534 + intr_mask.b.ginnakeff = 1;
19535 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk,
19536 + 0, intr_mask.d32);
19537 +
19538 + /* Set Global IN NAK */
19539 + dctl.b.sgnpinnak = 1;
19540 + dwc_modify_reg32(&dev_if->dev_global_regs->dctl,
19541 + dctl.d32, dctl.d32);
19542 +
19543 + ep->stopped = 1;
19544 +
19545 +#ifdef DEBUG
19546 + dieptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[num]->dieptsiz);
19547 + DWC_DEBUGPL(DBG_ANY, "pktcnt=%d size=%d\n",
19548 + dieptsiz.b.pktcnt,
19549 + dieptsiz.b.xfersize);
19550 +#endif
19551 +
19552 +#ifdef DISABLE_PERIODIC_EP
19553 + /*
19554 + * Set the NAK bit for this EP to
19555 + * start the disable process.
19556 + */
19557 + diepctl.d32 = 0;
19558 + diepctl.b.snak = 1;
19559 + dwc_modify_reg32(&dev_if->in_ep_regs[num]->diepctl, diepctl.d32, diepctl.d32);
19560 + ep->disabling = 1;
19561 + ep->stopped = 1;
19562 +#endif
19563 +}
19564 +
19565 +/**
19566 + * Handler for the IN EP NAK interrupt.
19567 + */
19568 +static inline int32_t handle_in_ep_nak_intr(dwc_otg_pcd_t *pcd,
19569 + const uint32_t epnum)
19570 +{
19571 + /** @todo implement ISR */
19572 + dwc_otg_core_if_t* core_if;
19573 + diepmsk_data_t intr_mask = { .d32 = 0};
19574 +
19575 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "IN EP NAK");
19576 + core_if = GET_CORE_IF(pcd);
19577 + intr_mask.b.nak = 1;
19578 +
19579 + if(core_if->multiproc_int_enable) {
19580 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepeachintmsk[epnum],
19581 + intr_mask.d32, 0);
19582 + } else {
19583 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->diepmsk,
19584 + intr_mask.d32, 0);
19585 + }
19586 +
19587 + return 1;
19588 +}
19589 +
19590 +/**
19591 + * Handler for the OUT EP Babble interrupt.
19592 + */
19593 +static inline int32_t handle_out_ep_babble_intr(dwc_otg_pcd_t *pcd,
19594 + const uint32_t epnum)
19595 +{
19596 + /** @todo implement ISR */
19597 + dwc_otg_core_if_t* core_if;
19598 + doepmsk_data_t intr_mask = { .d32 = 0};
19599 +
19600 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP Babble");
19601 + core_if = GET_CORE_IF(pcd);
19602 + intr_mask.b.babble = 1;
19603 +
19604 + if(core_if->multiproc_int_enable) {
19605 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
19606 + intr_mask.d32, 0);
19607 + } else {
19608 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
19609 + intr_mask.d32, 0);
19610 + }
19611 +
19612 + return 1;
19613 +}
19614 +
19615 +/**
19616 + * Handler for the OUT EP NAK interrupt.
19617 + */
19618 +static inline int32_t handle_out_ep_nak_intr(dwc_otg_pcd_t *pcd,
19619 + const uint32_t epnum)
19620 +{
19621 + /** @todo implement ISR */
19622 + dwc_otg_core_if_t* core_if;
19623 + doepmsk_data_t intr_mask = { .d32 = 0};
19624 +
19625 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NAK");
19626 + core_if = GET_CORE_IF(pcd);
19627 + intr_mask.b.nak = 1;
19628 +
19629 + if(core_if->multiproc_int_enable) {
19630 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
19631 + intr_mask.d32, 0);
19632 + } else {
19633 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
19634 + intr_mask.d32, 0);
19635 + }
19636 +
19637 + return 1;
19638 +}
19639 +
19640 +/**
19641 + * Handler for the OUT EP NYET interrupt.
19642 + */
19643 +static inline int32_t handle_out_ep_nyet_intr(dwc_otg_pcd_t *pcd,
19644 + const uint32_t epnum)
19645 +{
19646 + /** @todo implement ISR */
19647 + dwc_otg_core_if_t* core_if;
19648 + doepmsk_data_t intr_mask = { .d32 = 0};
19649 +
19650 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n", "OUT EP NYET");
19651 + core_if = GET_CORE_IF(pcd);
19652 + intr_mask.b.nyet = 1;
19653 +
19654 + if(core_if->multiproc_int_enable) {
19655 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepeachintmsk[epnum],
19656 + intr_mask.d32, 0);
19657 + } else {
19658 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->doepmsk,
19659 + intr_mask.d32, 0);
19660 + }
19661 +
19662 + return 1;
19663 +}
19664 +
19665 +/**
19666 + * This interrupt indicates that an IN EP has a pending Interrupt.
19667 + * The sequence for handling the IN EP interrupt is shown below:
19668 + * -# Read the Device All Endpoint Interrupt register
19669 + * -# Repeat the following for each IN EP interrupt bit set (from
19670 + * LSB to MSB).
19671 + * -# Read the Device Endpoint Interrupt (DIEPINTn) register
19672 + * -# If "Transfer Complete" call the request complete function
19673 + * -# If "Endpoint Disabled" complete the EP disable procedure.
19674 + * -# If "AHB Error Interrupt" log error
19675 + * -# If "Time-out Handshake" log error
19676 + * -# If "IN Token Received when TxFIFO Empty" write packet to Tx
19677 + * FIFO.
19678 + * -# If "IN Token EP Mismatch" (disable, this is handled by EP
19679 + * Mismatch Interrupt)
19680 + */
19681 +static int32_t dwc_otg_pcd_handle_in_ep_intr(dwc_otg_pcd_t *pcd)
19682 +{
19683 +#define CLEAR_IN_EP_INTR(__core_if,__epnum,__intr) \
19684 +do { \
19685 + diepint_data_t diepint = {.d32=0}; \
19686 + diepint.b.__intr = 1; \
19687 + dwc_write_reg32(&__core_if->dev_if->in_ep_regs[__epnum]->diepint, \
19688 + diepint.d32); \
19689 +} while (0)
19690 +
19691 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19692 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19693 + diepint_data_t diepint = {.d32=0};
19694 + dctl_data_t dctl = {.d32=0};
19695 + depctl_data_t depctl = {.d32=0};
19696 + uint32_t ep_intr;
19697 + uint32_t epnum = 0;
19698 + dwc_otg_pcd_ep_t *ep;
19699 + dwc_ep_t *dwc_ep;
19700 + gintmsk_data_t intr_mask = {.d32 = 0};
19701 +
19702 + DWC_DEBUGPL(DBG_PCDV, "%s(%p)\n", __func__, pcd);
19703 +
19704 + /* Read in the device interrupt bits */
19705 + ep_intr = dwc_otg_read_dev_all_in_ep_intr(core_if);
19706 +
19707 + /* Service the Device IN interrupts for each endpoint */
19708 + while(ep_intr) {
19709 + if (ep_intr&0x1) {
19710 + uint32_t empty_msk;
19711 + /* Get EP pointer */
19712 + ep = get_in_ep(pcd, epnum);
19713 + dwc_ep = &ep->dwc_ep;
19714 +
19715 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
19716 + empty_msk = dwc_read_reg32(&dev_if->dev_global_regs->dtknqr4_fifoemptymsk);
19717 +
19718 + DWC_DEBUGPL(DBG_PCDV,
19719 + "IN EP INTERRUPT - %d\nepmty_msk - %8x diepctl - %8x\n",
19720 + epnum,
19721 + empty_msk,
19722 + depctl.d32);
19723 +
19724 + DWC_DEBUGPL(DBG_PCD,
19725 + "EP%d-%s: type=%d, mps=%d\n",
19726 + dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
19727 + dwc_ep->type, dwc_ep->maxpacket);
19728 +
19729 + diepint.d32 = dwc_otg_read_dev_in_ep_intr(core_if, dwc_ep);
19730 +
19731 + DWC_DEBUGPL(DBG_PCDV, "EP %d Interrupt Register - 0x%x\n", epnum, diepint.d32);
19732 + /* Transfer complete */
19733 + if (diepint.b.xfercompl) {
19734 + /* Disable the NP Tx FIFO Empty
19735 + * Interrrupt */
19736 + if(core_if->en_multiple_tx_fifo == 0) {
19737 + intr_mask.b.nptxfempty = 1;
19738 + dwc_modify_reg32(&core_if->core_global_regs->gintmsk, intr_mask.d32, 0);
19739 + }
19740 + else {
19741 + /* Disable the Tx FIFO Empty Interrupt for this EP */
19742 + uint32_t fifoemptymsk = 0x1 << dwc_ep->num;
19743 + dwc_modify_reg32(&core_if->dev_if->dev_global_regs->dtknqr4_fifoemptymsk,
19744 + fifoemptymsk, 0);
19745 + }
19746 + /* Clear the bit in DIEPINTn for this interrupt */
19747 + CLEAR_IN_EP_INTR(core_if,epnum,xfercompl);
19748 +
19749 + /* Complete the transfer */
19750 + if (epnum == 0) {
19751 + handle_ep0(pcd);
19752 + }
19753 +#ifdef DWC_EN_ISOC
19754 + else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19755 + if(!ep->stopped)
19756 + complete_iso_ep(ep);
19757 + }
19758 +#endif //DWC_EN_ISOC
19759 + else {
19760 +
19761 + complete_ep(ep);
19762 + }
19763 + }
19764 + /* Endpoint disable */
19765 + if (diepint.b.epdisabled) {
19766 + DWC_DEBUGPL(DBG_ANY,"EP%d IN disabled\n", epnum);
19767 + handle_in_ep_disable_intr(pcd, epnum);
19768 +
19769 + /* Clear the bit in DIEPINTn for this interrupt */
19770 + CLEAR_IN_EP_INTR(core_if,epnum,epdisabled);
19771 + }
19772 + /* AHB Error */
19773 + if (diepint.b.ahberr) {
19774 + DWC_DEBUGPL(DBG_ANY,"EP%d IN AHB Error\n", epnum);
19775 + /* Clear the bit in DIEPINTn for this interrupt */
19776 + CLEAR_IN_EP_INTR(core_if,epnum,ahberr);
19777 + }
19778 + /* TimeOUT Handshake (non-ISOC IN EPs) */
19779 + if (diepint.b.timeout) {
19780 + DWC_DEBUGPL(DBG_ANY,"EP%d IN Time-out\n", epnum);
19781 + handle_in_ep_timeout_intr(pcd, epnum);
19782 +
19783 + CLEAR_IN_EP_INTR(core_if,epnum,timeout);
19784 + }
19785 + /** IN Token received with TxF Empty */
19786 + if (diepint.b.intktxfemp) {
19787 + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN TxFifo Empty\n",
19788 + epnum);
19789 + if (!ep->stopped && epnum != 0) {
19790 +
19791 + diepmsk_data_t diepmsk = { .d32 = 0};
19792 + diepmsk.b.intktxfemp = 1;
19793 +
19794 + if(core_if->multiproc_int_enable) {
19795 + dwc_modify_reg32(&dev_if->dev_global_regs->diepeachintmsk[epnum],
19796 + diepmsk.d32, 0);
19797 + } else {
19798 + dwc_modify_reg32(&dev_if->dev_global_regs->diepmsk, diepmsk.d32, 0);
19799 + }
19800 + start_next_request(ep);
19801 + }
19802 + else if(core_if->dma_desc_enable && epnum == 0 &&
19803 + pcd->ep0state == EP0_OUT_STATUS_PHASE) {
19804 + // EP0 IN set STALL
19805 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[epnum]->diepctl);
19806 +
19807 + /* set the disable and stall bits */
19808 + if (depctl.b.epena) {
19809 + depctl.b.epdis = 1;
19810 + }
19811 + depctl.b.stall = 1;
19812 + dwc_write_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32);
19813 + }
19814 + CLEAR_IN_EP_INTR(core_if,epnum,intktxfemp);
19815 + }
19816 + /** IN Token Received with EP mismatch */
19817 + if (diepint.b.intknepmis) {
19818 + DWC_DEBUGPL(DBG_ANY,"EP%d IN TKN EP Mismatch\n", epnum);
19819 + CLEAR_IN_EP_INTR(core_if,epnum,intknepmis);
19820 + }
19821 + /** IN Endpoint NAK Effective */
19822 + if (diepint.b.inepnakeff) {
19823 + DWC_DEBUGPL(DBG_ANY,"EP%d IN EP NAK Effective\n", epnum);
19824 + /* Periodic EP */
19825 + if (ep->disabling) {
19826 + depctl.d32 = 0;
19827 + depctl.b.snak = 1;
19828 + depctl.b.epdis = 1;
19829 + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
19830 + }
19831 + CLEAR_IN_EP_INTR(core_if,epnum,inepnakeff);
19832 +
19833 + }
19834 +
19835 + /** IN EP Tx FIFO Empty Intr */
19836 + if (diepint.b.emptyintr) {
19837 + DWC_DEBUGPL(DBG_ANY,"EP%d Tx FIFO Empty Intr \n", epnum);
19838 + write_empty_tx_fifo(pcd, epnum);
19839 +
19840 + CLEAR_IN_EP_INTR(core_if,epnum,emptyintr);
19841 + }
19842 +
19843 + /** IN EP BNA Intr */
19844 + if (diepint.b.bna) {
19845 + CLEAR_IN_EP_INTR(core_if,epnum,bna);
19846 + if(core_if->dma_desc_enable) {
19847 +#ifdef DWC_EN_ISOC
19848 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19849 + /*
19850 + * This checking is performed to prevent first "false" BNA
19851 + * handling occuring right after reconnect
19852 + */
19853 + if(dwc_ep->next_frame != 0xffffffff)
19854 + dwc_otg_pcd_handle_iso_bna(ep);
19855 + }
19856 + else
19857 +#endif //DWC_EN_ISOC
19858 + {
19859 + dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
19860 +
19861 + /* If Global Continue on BNA is disabled - disable EP */
19862 + if(!dctl.b.gcontbna) {
19863 + depctl.d32 = 0;
19864 + depctl.b.snak = 1;
19865 + depctl.b.epdis = 1;
19866 + dwc_modify_reg32(&dev_if->in_ep_regs[epnum]->diepctl, depctl.d32, depctl.d32);
19867 + } else {
19868 + start_next_request(ep);
19869 + }
19870 + }
19871 + }
19872 + }
19873 + /* NAK Interrutp */
19874 + if (diepint.b.nak) {
19875 + DWC_DEBUGPL(DBG_ANY,"EP%d IN NAK Interrupt\n", epnum);
19876 + handle_in_ep_nak_intr(pcd, epnum);
19877 +
19878 + CLEAR_IN_EP_INTR(core_if,epnum,nak);
19879 + }
19880 + }
19881 + epnum++;
19882 + ep_intr >>=1;
19883 + }
19884 +
19885 + return 1;
19886 +#undef CLEAR_IN_EP_INTR
19887 +}
19888 +
19889 +/**
19890 + * This interrupt indicates that an OUT EP has a pending Interrupt.
19891 + * The sequence for handling the OUT EP interrupt is shown below:
19892 + * -# Read the Device All Endpoint Interrupt register
19893 + * -# Repeat the following for each OUT EP interrupt bit set (from
19894 + * LSB to MSB).
19895 + * -# Read the Device Endpoint Interrupt (DOEPINTn) register
19896 + * -# If "Transfer Complete" call the request complete function
19897 + * -# If "Endpoint Disabled" complete the EP disable procedure.
19898 + * -# If "AHB Error Interrupt" log error
19899 + * -# If "Setup Phase Done" process Setup Packet (See Standard USB
19900 + * Command Processing)
19901 + */
19902 +static int32_t dwc_otg_pcd_handle_out_ep_intr(dwc_otg_pcd_t *pcd)
19903 +{
19904 +#define CLEAR_OUT_EP_INTR(__core_if,__epnum,__intr) \
19905 +do { \
19906 + doepint_data_t doepint = {.d32=0}; \
19907 + doepint.b.__intr = 1; \
19908 + dwc_write_reg32(&__core_if->dev_if->out_ep_regs[__epnum]->doepint, \
19909 + doepint.d32); \
19910 +} while (0)
19911 +
19912 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
19913 + dwc_otg_dev_if_t *dev_if = core_if->dev_if;
19914 + uint32_t ep_intr;
19915 + doepint_data_t doepint = {.d32=0};
19916 + dctl_data_t dctl = {.d32=0};
19917 + depctl_data_t doepctl = {.d32=0};
19918 + uint32_t epnum = 0;
19919 + dwc_otg_pcd_ep_t *ep;
19920 + dwc_ep_t *dwc_ep;
19921 +
19922 + DWC_DEBUGPL(DBG_PCDV, "%s()\n", __func__);
19923 +
19924 + /* Read in the device interrupt bits */
19925 + ep_intr = dwc_otg_read_dev_all_out_ep_intr(core_if);
19926 +
19927 + while(ep_intr) {
19928 + if (ep_intr&0x1) {
19929 + /* Get EP pointer */
19930 + ep = get_out_ep(pcd, epnum);
19931 + dwc_ep = &ep->dwc_ep;
19932 +
19933 +#ifdef VERBOSE
19934 + DWC_DEBUGPL(DBG_PCDV,
19935 + "EP%d-%s: type=%d, mps=%d\n",
19936 + dwc_ep->num, (dwc_ep->is_in ?"IN":"OUT"),
19937 + dwc_ep->type, dwc_ep->maxpacket);
19938 +#endif
19939 + doepint.d32 = dwc_otg_read_dev_out_ep_intr(core_if, dwc_ep);
19940 +
19941 + /* Transfer complete */
19942 + if (doepint.b.xfercompl) {
19943 + if (epnum == 0) {
19944 + /* Clear the bit in DOEPINTn for this interrupt */
19945 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
19946 + if(core_if->dma_desc_enable == 0 || pcd->ep0state != EP0_IDLE)
19947 + handle_ep0(pcd);
19948 +#ifdef DWC_EN_ISOC
19949 + } else if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
19950 + if (doepint.b.pktdrpsts == 0) {
19951 + /* Clear the bit in DOEPINTn for this interrupt */
19952 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
19953 + complete_iso_ep(ep);
19954 + } else {
19955 + doepint_data_t doepint = {.d32=0};
19956 + doepint.b.xfercompl = 1;
19957 + doepint.b.pktdrpsts = 1;
19958 + dwc_write_reg32(&core_if->dev_if->out_ep_regs[epnum]->doepint,
19959 + doepint.d32);
19960 + if(handle_iso_out_pkt_dropped(core_if,dwc_ep)) {
19961 + complete_iso_ep(ep);
19962 + }
19963 + }
19964 +#endif //DWC_EN_ISOC
19965 + } else {
19966 + /* Clear the bit in DOEPINTn for this interrupt */
19967 + CLEAR_OUT_EP_INTR(core_if,epnum,xfercompl);
19968 + complete_ep(ep);
19969 + }
19970 +
19971 + }
19972 +
19973 + /* Endpoint disable */
19974 + if (doepint.b.epdisabled) {
19975 + /* Clear the bit in DOEPINTn for this interrupt */
19976 + CLEAR_OUT_EP_INTR(core_if,epnum,epdisabled);
19977 + }
19978 + /* AHB Error */
19979 + if (doepint.b.ahberr) {
19980 + DWC_DEBUGPL(DBG_PCD,"EP%d OUT AHB Error\n", epnum);
19981 + DWC_DEBUGPL(DBG_PCD,"EP DMA REG %d \n", core_if->dev_if->out_ep_regs[epnum]->doepdma);
19982 + CLEAR_OUT_EP_INTR(core_if,epnum,ahberr);
19983 + }
19984 + /* Setup Phase Done (contorl EPs) */
19985 + if (doepint.b.setup) {
19986 +#ifdef DEBUG_EP0
19987 + DWC_DEBUGPL(DBG_PCD,"EP%d SETUP Done\n",
19988 + epnum);
19989 +#endif
19990 + CLEAR_OUT_EP_INTR(core_if,epnum,setup);
19991 + handle_ep0(pcd);
19992 + }
19993 +
19994 + /** OUT EP BNA Intr */
19995 + if (doepint.b.bna) {
19996 + CLEAR_OUT_EP_INTR(core_if,epnum,bna);
19997 + if(core_if->dma_desc_enable) {
19998 +#ifdef DWC_EN_ISOC
19999 + if(dwc_ep->type == DWC_OTG_EP_TYPE_ISOC) {
20000 + /*
20001 + * This checking is performed to prevent first "false" BNA
20002 + * handling occuring right after reconnect
20003 + */
20004 + if(dwc_ep->next_frame != 0xffffffff)
20005 + dwc_otg_pcd_handle_iso_bna(ep);
20006 + }
20007 + else
20008 +#endif //DWC_EN_ISOC
20009 + {
20010 + dctl.d32 = dwc_read_reg32(&dev_if->dev_global_regs->dctl);
20011 +
20012 + /* If Global Continue on BNA is disabled - disable EP*/
20013 + if(!dctl.b.gcontbna) {
20014 + doepctl.d32 = 0;
20015 + doepctl.b.snak = 1;
20016 + doepctl.b.epdis = 1;
20017 + dwc_modify_reg32(&dev_if->out_ep_regs[epnum]->doepctl, doepctl.d32, doepctl.d32);
20018 + } else {
20019 + start_next_request(ep);
20020 + }
20021 + }
20022 + }
20023 + }
20024 + if (doepint.b.stsphsercvd) {
20025 + CLEAR_OUT_EP_INTR(core_if,epnum,stsphsercvd);
20026 + if(core_if->dma_desc_enable) {
20027 + do_setup_in_status_phase(pcd);
20028 + }
20029 + }
20030 + /* Babble Interrutp */
20031 + if (doepint.b.babble) {
20032 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT Babble\n", epnum);
20033 + handle_out_ep_babble_intr(pcd, epnum);
20034 +
20035 + CLEAR_OUT_EP_INTR(core_if,epnum,babble);
20036 + }
20037 + /* NAK Interrutp */
20038 + if (doepint.b.nak) {
20039 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT NAK\n", epnum);
20040 + handle_out_ep_nak_intr(pcd, epnum);
20041 +
20042 + CLEAR_OUT_EP_INTR(core_if,epnum,nak);
20043 + }
20044 + /* NYET Interrutp */
20045 + if (doepint.b.nyet) {
20046 + DWC_DEBUGPL(DBG_ANY,"EP%d OUT NYET\n", epnum);
20047 + handle_out_ep_nyet_intr(pcd, epnum);
20048 +
20049 + CLEAR_OUT_EP_INTR(core_if,epnum,nyet);
20050 + }
20051 + }
20052 +
20053 + epnum++;
20054 + ep_intr >>=1;
20055 + }
20056 +
20057 + return 1;
20058 +
20059 +#undef CLEAR_OUT_EP_INTR
20060 +}
20061 +
20062 +
20063 +/**
20064 + * Incomplete ISO IN Transfer Interrupt.
20065 + * This interrupt indicates one of the following conditions occurred
20066 + * while transmitting an ISOC transaction.
20067 + * - Corrupted IN Token for ISOC EP.
20068 + * - Packet not complete in FIFO.
20069 + * The follow actions will be taken:
20070 + * -# Determine the EP
20071 + * -# Set incomplete flag in dwc_ep structure
20072 + * -# Disable EP; when "Endpoint Disabled" interrupt is received
20073 + * Flush FIFO
20074 + */
20075 +int32_t dwc_otg_pcd_handle_incomplete_isoc_in_intr(dwc_otg_pcd_t *pcd)
20076 +{
20077 + gintsts_data_t gintsts;
20078 +
20079 +
20080 +#ifdef DWC_EN_ISOC
20081 + dwc_otg_dev_if_t *dev_if;
20082 + deptsiz_data_t deptsiz = { .d32 = 0};
20083 + depctl_data_t depctl = { .d32 = 0};
20084 + dsts_data_t dsts = { .d32 = 0};
20085 + dwc_ep_t *dwc_ep;
20086 + int i;
20087 +
20088 + dev_if = GET_CORE_IF(pcd)->dev_if;
20089 +
20090 + for(i = 1; i <= dev_if->num_in_eps; ++i) {
20091 + dwc_ep = &pcd->in_ep[i].dwc_ep;
20092 + if(dwc_ep->active &&
20093 + dwc_ep->type == USB_ENDPOINT_XFER_ISOC)
20094 + {
20095 + deptsiz.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->dieptsiz);
20096 + depctl.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
20097 +
20098 + if(depctl.b.epdis && deptsiz.d32) {
20099 + set_current_pkt_info(GET_CORE_IF(pcd), dwc_ep);
20100 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
20101 + dwc_ep->cur_pkt = 0;
20102 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
20103 +
20104 + if(dwc_ep->proc_buf_num) {
20105 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
20106 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
20107 + } else {
20108 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
20109 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
20110 + }
20111 + }
20112 +
20113 + dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
20114 + dwc_ep->next_frame = dsts.b.soffn;
20115 +
20116 + dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
20117 + }
20118 + }
20119 + }
20120 +
20121 +#else
20122 + gintmsk_data_t intr_mask = { .d32 = 0};
20123 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
20124 + "IN ISOC Incomplete");
20125 +
20126 + intr_mask.b.incomplisoin = 1;
20127 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20128 + intr_mask.d32, 0);
20129 +#endif //DWC_EN_ISOC
20130 +
20131 + /* Clear interrupt */
20132 + gintsts.d32 = 0;
20133 + gintsts.b.incomplisoin = 1;
20134 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20135 + gintsts.d32);
20136 +
20137 + return 1;
20138 +}
20139 +
20140 +/**
20141 + * Incomplete ISO OUT Transfer Interrupt.
20142 + *
20143 + * This interrupt indicates that the core has dropped an ISO OUT
20144 + * packet. The following conditions can be the cause:
20145 + * - FIFO Full, the entire packet would not fit in the FIFO.
20146 + * - CRC Error
20147 + * - Corrupted Token
20148 + * The follow actions will be taken:
20149 + * -# Determine the EP
20150 + * -# Set incomplete flag in dwc_ep structure
20151 + * -# Read any data from the FIFO
20152 + * -# Disable EP. when "Endpoint Disabled" interrupt is received
20153 + * re-enable EP.
20154 + */
20155 +int32_t dwc_otg_pcd_handle_incomplete_isoc_out_intr(dwc_otg_pcd_t *pcd)
20156 +{
20157 + /* @todo implement ISR */
20158 + gintsts_data_t gintsts;
20159 +
20160 +#ifdef DWC_EN_ISOC
20161 + dwc_otg_dev_if_t *dev_if;
20162 + deptsiz_data_t deptsiz = { .d32 = 0};
20163 + depctl_data_t depctl = { .d32 = 0};
20164 + dsts_data_t dsts = { .d32 = 0};
20165 + dwc_ep_t *dwc_ep;
20166 + int i;
20167 +
20168 + dev_if = GET_CORE_IF(pcd)->dev_if;
20169 +
20170 + for(i = 1; i <= dev_if->num_out_eps; ++i) {
20171 + dwc_ep = &pcd->in_ep[i].dwc_ep;
20172 + if(pcd->out_ep[i].dwc_ep.active &&
20173 + pcd->out_ep[i].dwc_ep.type == USB_ENDPOINT_XFER_ISOC)
20174 + {
20175 + deptsiz.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doeptsiz);
20176 + depctl.d32 = dwc_read_reg32(&dev_if->out_ep_regs[i]->doepctl);
20177 +
20178 + if(depctl.b.epdis && deptsiz.d32) {
20179 + set_current_pkt_info(GET_CORE_IF(pcd), &pcd->out_ep[i].dwc_ep);
20180 + if(dwc_ep->cur_pkt >= dwc_ep->pkt_cnt) {
20181 + dwc_ep->cur_pkt = 0;
20182 + dwc_ep->proc_buf_num = (dwc_ep->proc_buf_num ^ 1) & 0x1;
20183 +
20184 + if(dwc_ep->proc_buf_num) {
20185 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff1;
20186 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr1;
20187 + } else {
20188 + dwc_ep->cur_pkt_addr = dwc_ep->xfer_buff0;
20189 + dwc_ep->cur_pkt_dma_addr = dwc_ep->dma_addr0;
20190 + }
20191 + }
20192 +
20193 + dsts.d32 = dwc_read_reg32(&GET_CORE_IF(pcd)->dev_if->dev_global_regs->dsts);
20194 + dwc_ep->next_frame = dsts.b.soffn;
20195 +
20196 + dwc_otg_iso_ep_start_frm_transfer(GET_CORE_IF(pcd), dwc_ep);
20197 + }
20198 + }
20199 + }
20200 +#else
20201 + /** @todo implement ISR */
20202 + gintmsk_data_t intr_mask = { .d32 = 0};
20203 +
20204 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
20205 + "OUT ISOC Incomplete");
20206 +
20207 + intr_mask.b.incomplisoout = 1;
20208 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20209 + intr_mask.d32, 0);
20210 +
20211 +#endif // DWC_EN_ISOC
20212 +
20213 + /* Clear interrupt */
20214 + gintsts.d32 = 0;
20215 + gintsts.b.incomplisoout = 1;
20216 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20217 + gintsts.d32);
20218 +
20219 + return 1;
20220 +}
20221 +
20222 +/**
20223 + * This function handles the Global IN NAK Effective interrupt.
20224 + *
20225 + */
20226 +int32_t dwc_otg_pcd_handle_in_nak_effective(dwc_otg_pcd_t *pcd)
20227 +{
20228 + dwc_otg_dev_if_t *dev_if = GET_CORE_IF(pcd)->dev_if;
20229 + depctl_data_t diepctl = { .d32 = 0};
20230 + depctl_data_t diepctl_rd = { .d32 = 0};
20231 + gintmsk_data_t intr_mask = { .d32 = 0};
20232 + gintsts_data_t gintsts;
20233 + int i;
20234 +
20235 + DWC_DEBUGPL(DBG_PCD, "Global IN NAK Effective\n");
20236 +
20237 + /* Disable all active IN EPs */
20238 + diepctl.b.epdis = 1;
20239 + diepctl.b.snak = 1;
20240 +
20241 + for (i=0; i <= dev_if->num_in_eps; i++)
20242 + {
20243 + diepctl_rd.d32 = dwc_read_reg32(&dev_if->in_ep_regs[i]->diepctl);
20244 + if (diepctl_rd.b.epena) {
20245 + dwc_write_reg32(&dev_if->in_ep_regs[i]->diepctl,
20246 + diepctl.d32);
20247 + }
20248 + }
20249 + /* Disable the Global IN NAK Effective Interrupt */
20250 + intr_mask.b.ginnakeff = 1;
20251 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20252 + intr_mask.d32, 0);
20253 +
20254 + /* Clear interrupt */
20255 + gintsts.d32 = 0;
20256 + gintsts.b.ginnakeff = 1;
20257 + dwc_write_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20258 + gintsts.d32);
20259 +
20260 + return 1;
20261 +}
20262 +
20263 +/**
20264 + * OUT NAK Effective.
20265 + *
20266 + */
20267 +int32_t dwc_otg_pcd_handle_out_nak_effective(dwc_otg_pcd_t *pcd)
20268 +{
20269 + gintmsk_data_t intr_mask = { .d32 = 0};
20270 + gintsts_data_t gintsts;
20271 +
20272 + DWC_PRINT("INTERRUPT Handler not implemented for %s\n",
20273 + "Global IN NAK Effective\n");
20274 + /* Disable the Global IN NAK Effective Interrupt */
20275 + intr_mask.b.goutnakeff = 1;
20276 + dwc_modify_reg32(&GET_CORE_IF(pcd)->core_global_regs->gintmsk,
20277 + intr_mask.d32, 0);
20278 +
20279 + /* Clear interrupt */
20280 + gintsts.d32 = 0;
20281 + gintsts.b.goutnakeff = 1;
20282 + dwc_write_reg32 (&GET_CORE_IF(pcd)->core_global_regs->gintsts,
20283 + gintsts.d32);
20284 +
20285 + return 1;
20286 +}
20287 +
20288 +
20289 +/**
20290 + * PCD interrupt handler.
20291 + *
20292 + * The PCD handles the device interrupts. Many conditions can cause a
20293 + * device interrupt. When an interrupt occurs, the device interrupt
20294 + * service routine determines the cause of the interrupt and
20295 + * dispatches handling to the appropriate function. These interrupt
20296 + * handling functions are described below.
20297 + *
20298 + * All interrupt registers are processed from LSB to MSB.
20299 + *
20300 + */
20301 +int32_t dwc_otg_pcd_handle_intr(dwc_otg_pcd_t *pcd)
20302 +{
20303 + dwc_otg_core_if_t *core_if = GET_CORE_IF(pcd);
20304 +#ifdef VERBOSE
20305 + dwc_otg_core_global_regs_t *global_regs =
20306 + core_if->core_global_regs;
20307 +#endif
20308 + gintsts_data_t gintr_status;
20309 + int32_t retval = 0;
20310 +
20311 +
20312 +#ifdef VERBOSE
20313 + DWC_DEBUGPL(DBG_ANY, "%s() gintsts=%08x gintmsk=%08x\n",
20314 + __func__,
20315 + dwc_read_reg32(&global_regs->gintsts),
20316 + dwc_read_reg32(&global_regs->gintmsk));
20317 +#endif
20318 +
20319 + if (dwc_otg_is_device_mode(core_if)) {
20320 + SPIN_LOCK(&pcd->lock);
20321 +#ifdef VERBOSE
20322 + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%08x gintmsk=%08x\n",
20323 + __func__,
20324 + dwc_read_reg32(&global_regs->gintsts),
20325 + dwc_read_reg32(&global_regs->gintmsk));
20326 +#endif
20327 +
20328 + gintr_status.d32 = dwc_otg_read_core_intr(core_if);
20329 +/*
20330 + if (!gintr_status.d32) {
20331 + SPIN_UNLOCK(&pcd->lock);
20332 + return 0;
20333 + }
20334 +*/
20335 + DWC_DEBUGPL(DBG_PCDV, "%s: gintsts&gintmsk=%08x\n",
20336 + __func__, gintr_status.d32);
20337 +
20338 + if (gintr_status.b.sofintr) {
20339 + retval |= dwc_otg_pcd_handle_sof_intr(pcd);
20340 + }
20341 + if (gintr_status.b.rxstsqlvl) {
20342 + retval |= dwc_otg_pcd_handle_rx_status_q_level_intr(pcd);
20343 + }
20344 + if (gintr_status.b.nptxfempty) {
20345 + retval |= dwc_otg_pcd_handle_np_tx_fifo_empty_intr(pcd);
20346 + }
20347 + if (gintr_status.b.ginnakeff) {
20348 + retval |= dwc_otg_pcd_handle_in_nak_effective(pcd);
20349 + }
20350 + if (gintr_status.b.goutnakeff) {
20351 + retval |= dwc_otg_pcd_handle_out_nak_effective(pcd);
20352 + }
20353 + if (gintr_status.b.i2cintr) {
20354 + retval |= dwc_otg_pcd_handle_i2c_intr(pcd);
20355 + }
20356 + if (gintr_status.b.erlysuspend) {
20357 + retval |= dwc_otg_pcd_handle_early_suspend_intr(pcd);
20358 + }
20359 + if (gintr_status.b.usbreset) {
20360 + retval |= dwc_otg_pcd_handle_usb_reset_intr(pcd);
20361 + }
20362 + if (gintr_status.b.enumdone) {
20363 + retval |= dwc_otg_pcd_handle_enum_done_intr(pcd);
20364 + }
20365 + if (gintr_status.b.isooutdrop) {
20366 + retval |= dwc_otg_pcd_handle_isoc_out_packet_dropped_intr(pcd);
20367 + }
20368 + if (gintr_status.b.eopframe) {
20369 + retval |= dwc_otg_pcd_handle_end_periodic_frame_intr(pcd);
20370 + }
20371 + if (gintr_status.b.epmismatch) {
20372 + retval |= dwc_otg_pcd_handle_ep_mismatch_intr(core_if);
20373 + }
20374 + if (gintr_status.b.inepint) {
20375 + if(!core_if->multiproc_int_enable) {
20376 + retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
20377 + }
20378 + }
20379 + if (gintr_status.b.outepintr) {
20380 + if(!core_if->multiproc_int_enable) {
20381 + retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
20382 + }
20383 + }
20384 + if (gintr_status.b.incomplisoin) {
20385 + retval |= dwc_otg_pcd_handle_incomplete_isoc_in_intr(pcd);
20386 + }
20387 + if (gintr_status.b.incomplisoout) {
20388 + retval |= dwc_otg_pcd_handle_incomplete_isoc_out_intr(pcd);
20389 + }
20390 +
20391 + /* In MPI mode De vice Endpoints intterrupts are asserted
20392 + * without setting outepintr and inepint bits set, so these
20393 + * Interrupt handlers are called without checking these bit-fields
20394 + */
20395 + if(core_if->multiproc_int_enable) {
20396 + retval |= dwc_otg_pcd_handle_in_ep_intr(pcd);
20397 + retval |= dwc_otg_pcd_handle_out_ep_intr(pcd);
20398 + }
20399 +#ifdef VERBOSE
20400 + DWC_DEBUGPL(DBG_PCDV, "%s() gintsts=%0x\n", __func__,
20401 + dwc_read_reg32(&global_regs->gintsts));
20402 +#endif
20403 + SPIN_UNLOCK(&pcd->lock);
20404 + }
20405 + S3C2410X_CLEAR_EINTPEND();
20406 +
20407 + return retval;
20408 +}
20409 +
20410 +#endif /* DWC_HOST_ONLY */
20411 --- /dev/null
20412 +++ b/drivers/usb/dwc/otg_plat.h
20413 @@ -0,0 +1,266 @@
20414 +/* ==========================================================================
20415 + * $File: //dwh/usb_iip/dev/software/otg/linux/platform/dwc_otg_plat.h $
20416 + * $Revision: #23 $
20417 + * $Date: 2008/07/15 $
20418 + * $Change: 1064915 $
20419 + *
20420 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
20421 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
20422 + * otherwise expressly agreed to in writing between Synopsys and you.
20423 + *
20424 + * The Software IS NOT an item of Licensed Software or Licensed Product under
20425 + * any End User Software License Agreement or Agreement for Licensed Product
20426 + * with Synopsys or any supplement thereto. You are permitted to use and
20427 + * redistribute this Software in source and binary forms, with or without
20428 + * modification, provided that redistributions of source code must retain this
20429 + * notice. You may not view, use, disclose, copy or distribute this file or
20430 + * any information contained herein except pursuant to this license grant from
20431 + * Synopsys. If you do not agree with this notice, including the disclaimer
20432 + * below, then you are not authorized to use the Software.
20433 + *
20434 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
20435 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20436 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20437 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
20438 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20439 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20440 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
20441 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20442 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
20443 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
20444 + * DAMAGE.
20445 + * ========================================================================== */
20446 +
20447 +#if !defined(__DWC_OTG_PLAT_H__)
20448 +#define __DWC_OTG_PLAT_H__
20449 +
20450 +#include <linux/types.h>
20451 +#include <linux/slab.h>
20452 +#include <linux/list.h>
20453 +#include <linux/delay.h>
20454 +#include <asm/io.h>
20455 +
20456 +/* Changed all readl and writel to __raw_readl, __raw_writel */
20457 +
20458 +/**
20459 + * @file
20460 + *
20461 + * This file contains the Platform Specific constants, interfaces
20462 + * (functions and macros) for Linux.
20463 + *
20464 + */
20465 +//#if !defined(__LINUX_ARM_ARCH__)
20466 +//#error "The contents of this file is Linux specific!!!"
20467 +//#endif
20468 +
20469 +/**
20470 + * Reads the content of a register.
20471 + *
20472 + * @param reg address of register to read.
20473 + * @return contents of the register.
20474 + *
20475 +
20476 + * Usage:<br>
20477 + * <code>uint32_t dev_ctl = dwc_read_reg32(&dev_regs->dctl);</code>
20478 + */
20479 +static __inline__ uint32_t dwc_read_reg32( volatile uint32_t *reg)
20480 +{
20481 + return __raw_readl(reg);
20482 + // return readl(reg);
20483 +};
20484 +
20485 +/**
20486 + * Writes a register with a 32 bit value.
20487 + *
20488 + * @param reg address of register to read.
20489 + * @param value to write to _reg.
20490 + *
20491 + * Usage:<br>
20492 + * <code>dwc_write_reg32(&dev_regs->dctl, 0); </code>
20493 + */
20494 +static __inline__ void dwc_write_reg32( volatile uint32_t *reg, const uint32_t value)
20495 +{
20496 + // writel( value, reg );
20497 + __raw_writel(value, reg);
20498 +
20499 +};
20500 +
20501 +/**
20502 + * This function modifies bit values in a register. Using the
20503 + * algorithm: (reg_contents & ~clear_mask) | set_mask.
20504 + *
20505 + * @param reg address of register to read.
20506 + * @param clear_mask bit mask to be cleared.
20507 + * @param set_mask bit mask to be set.
20508 + *
20509 + * Usage:<br>
20510 + * <code> // Clear the SOF Interrupt Mask bit and <br>
20511 + * // set the OTG Interrupt mask bit, leaving all others as they were.
20512 + * dwc_modify_reg32(&dev_regs->gintmsk, DWC_SOF_INT, DWC_OTG_INT);</code>
20513 + */
20514 +static __inline__
20515 + void dwc_modify_reg32( volatile uint32_t *reg, const uint32_t clear_mask, const uint32_t set_mask)
20516 +{
20517 + // writel( (readl(reg) & ~clear_mask) | set_mask, reg );
20518 + __raw_writel( (__raw_readl(reg) & ~clear_mask) | set_mask, reg );
20519 +};
20520 +
20521 +
20522 +/**
20523 + * Wrapper for the OS micro-second delay function.
20524 + * @param[in] usecs Microseconds of delay
20525 + */
20526 +static __inline__ void UDELAY( const uint32_t usecs )
20527 +{
20528 + udelay( usecs );
20529 +}
20530 +
20531 +/**
20532 + * Wrapper for the OS milli-second delay function.
20533 + * @param[in] msecs milliseconds of delay
20534 + */
20535 +static __inline__ void MDELAY( const uint32_t msecs )
20536 +{
20537 + mdelay( msecs );
20538 +}
20539 +
20540 +/**
20541 + * Wrapper for the Linux spin_lock. On the ARM (Integrator)
20542 + * spin_lock() is a nop.
20543 + *
20544 + * @param lock Pointer to the spinlock.
20545 + */
20546 +static __inline__ void SPIN_LOCK( spinlock_t *lock )
20547 +{
20548 + spin_lock(lock);
20549 +}
20550 +
20551 +/**
20552 + * Wrapper for the Linux spin_unlock. On the ARM (Integrator)
20553 + * spin_lock() is a nop.
20554 + *
20555 + * @param lock Pointer to the spinlock.
20556 + */
20557 +static __inline__ void SPIN_UNLOCK( spinlock_t *lock )
20558 +{
20559 + spin_unlock(lock);
20560 +}
20561 +
20562 +/**
20563 + * Wrapper (macro) for the Linux spin_lock_irqsave. On the ARM
20564 + * (Integrator) spin_lock() is a nop.
20565 + *
20566 + * @param l Pointer to the spinlock.
20567 + * @param f unsigned long for irq flags storage.
20568 + */
20569 +#define SPIN_LOCK_IRQSAVE( l, f ) spin_lock_irqsave(l,f);
20570 +
20571 +/**
20572 + * Wrapper (macro) for the Linux spin_unlock_irqrestore. On the ARM
20573 + * (Integrator) spin_lock() is a nop.
20574 + *
20575 + * @param l Pointer to the spinlock.
20576 + * @param f unsigned long for irq flags storage.
20577 + */
20578 +#define SPIN_UNLOCK_IRQRESTORE( l,f ) spin_unlock_irqrestore(l,f);
20579 +
20580 +/*
20581 + * Debugging support vanishes in non-debug builds.
20582 + */
20583 +
20584 +
20585 +/**
20586 + * The Debug Level bit-mask variable.
20587 + */
20588 +extern uint32_t g_dbg_lvl;
20589 +/**
20590 + * Set the Debug Level variable.
20591 + */
20592 +static inline uint32_t SET_DEBUG_LEVEL( const uint32_t new )
20593 +{
20594 + uint32_t old = g_dbg_lvl;
20595 + g_dbg_lvl = new;
20596 + return old;
20597 +}
20598 +
20599 +/** When debug level has the DBG_CIL bit set, display CIL Debug messages. */
20600 +#define DBG_CIL (0x2)
20601 +/** When debug level has the DBG_CILV bit set, display CIL Verbose debug
20602 + * messages */
20603 +#define DBG_CILV (0x20)
20604 +/** When debug level has the DBG_PCD bit set, display PCD (Device) debug
20605 + * messages */
20606 +#define DBG_PCD (0x4)
20607 +/** When debug level has the DBG_PCDV set, display PCD (Device) Verbose debug
20608 + * messages */
20609 +#define DBG_PCDV (0x40)
20610 +/** When debug level has the DBG_HCD bit set, display Host debug messages */
20611 +#define DBG_HCD (0x8)
20612 +/** When debug level has the DBG_HCDV bit set, display Verbose Host debug
20613 + * messages */
20614 +#define DBG_HCDV (0x80)
20615 +/** When debug level has the DBG_HCD_URB bit set, display enqueued URBs in host
20616 + * mode. */
20617 +#define DBG_HCD_URB (0x800)
20618 +
20619 +/** When debug level has any bit set, display debug messages */
20620 +#define DBG_ANY (0xFF)
20621 +
20622 +/** All debug messages off */
20623 +#define DBG_OFF 0
20624 +
20625 +/** Prefix string for DWC_DEBUG print macros. */
20626 +#define USB_DWC "DWC_otg: "
20627 +
20628 +/**
20629 + * Print a debug message when the Global debug level variable contains
20630 + * the bit defined in <code>lvl</code>.
20631 + *
20632 + * @param[in] lvl - Debug level, use one of the DBG_ constants above.
20633 + * @param[in] x - like printf
20634 + *
20635 + * Example:<p>
20636 + * <code>
20637 + * DWC_DEBUGPL( DBG_ANY, "%s(%p)\n", __func__, _reg_base_addr);
20638 + * </code>
20639 + * <br>
20640 + * results in:<br>
20641 + * <code>
20642 + * usb-DWC_otg: dwc_otg_cil_init(ca867000)
20643 + * </code>
20644 + */
20645 +#ifdef DEBUG
20646 +
20647 +# define DWC_DEBUGPL(lvl, x...) do{ if ((lvl)&g_dbg_lvl)printk( KERN_DEBUG USB_DWC x ); }while(0)
20648 +# define DWC_DEBUGP(x...) DWC_DEBUGPL(DBG_ANY, x )
20649 +
20650 +# define CHK_DEBUG_LEVEL(level) ((level) & g_dbg_lvl)
20651 +
20652 +#else
20653 +
20654 +# define DWC_DEBUGPL(lvl, x...) do{}while(0)
20655 +# define DWC_DEBUGP(x...)
20656 +
20657 +# define CHK_DEBUG_LEVEL(level) (0)
20658 +
20659 +#endif /*DEBUG*/
20660 +
20661 +/**
20662 + * Print an Error message.
20663 + */
20664 +#define DWC_ERROR(x...) printk( KERN_ERR USB_DWC x )
20665 +/**
20666 + * Print a Warning message.
20667 + */
20668 +#define DWC_WARN(x...) printk( KERN_WARNING USB_DWC x )
20669 +/**
20670 + * Print a notice (normal but significant message).
20671 + */
20672 +#define DWC_NOTICE(x...) printk( KERN_NOTICE USB_DWC x )
20673 +/**
20674 + * Basic message printing.
20675 + */
20676 +#define DWC_PRINT(x...) printk( KERN_INFO USB_DWC x )
20677 +
20678 +#endif
20679 +
20680 --- /dev/null
20681 +++ b/drivers/usb/dwc/otg_regs.h
20682 @@ -0,0 +1,2059 @@
20683 +/* ==========================================================================
20684 + * $File: //dwh/usb_iip/dev/software/otg/linux/drivers/dwc_otg_regs.h $
20685 + * $Revision: #72 $
20686 + * $Date: 2008/09/19 $
20687 + * $Change: 1099526 $
20688 + *
20689 + * Synopsys HS OTG Linux Software Driver and documentation (hereinafter,
20690 + * "Software") is an Unsupported proprietary work of Synopsys, Inc. unless
20691 + * otherwise expressly agreed to in writing between Synopsys and you.
20692 + *
20693 + * The Software IS NOT an item of Licensed Software or Licensed Product under
20694 + * any End User Software License Agreement or Agreement for Licensed Product
20695 + * with Synopsys or any supplement thereto. You are permitted to use and
20696 + * redistribute this Software in source and binary forms, with or without
20697 + * modification, provided that redistributions of source code must retain this
20698 + * notice. You may not view, use, disclose, copy or distribute this file or
20699 + * any information contained herein except pursuant to this license grant from
20700 + * Synopsys. If you do not agree with this notice, including the disclaimer
20701 + * below, then you are not authorized to use the Software.
20702 + *
20703 + * THIS SOFTWARE IS BEING DISTRIBUTED BY SYNOPSYS SOLELY ON AN "AS IS" BASIS
20704 + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20705 + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20706 + * ARE HEREBY DISCLAIMED. IN NO EVENT SHALL SYNOPSYS BE LIABLE FOR ANY DIRECT,
20707 + * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20708 + * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
20709 + * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
20710 + * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
20711 + * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
20712 + * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
20713 + * DAMAGE.
20714 + * ========================================================================== */
20715 +
20716 +#ifndef __DWC_OTG_REGS_H__
20717 +#define __DWC_OTG_REGS_H__
20718 +
20719 +/**
20720 + * @file
20721 + *
20722 + * This file contains the data structures for accessing the DWC_otg core registers.
20723 + *
20724 + * The application interfaces with the HS OTG core by reading from and
20725 + * writing to the Control and Status Register (CSR) space through the
20726 + * AHB Slave interface. These registers are 32 bits wide, and the
20727 + * addresses are 32-bit-block aligned.
20728 + * CSRs are classified as follows:
20729 + * - Core Global Registers
20730 + * - Device Mode Registers
20731 + * - Device Global Registers
20732 + * - Device Endpoint Specific Registers
20733 + * - Host Mode Registers
20734 + * - Host Global Registers
20735 + * - Host Port CSRs
20736 + * - Host Channel Specific Registers
20737 + *
20738 + * Only the Core Global registers can be accessed in both Device and
20739 + * Host modes. When the HS OTG core is operating in one mode, either
20740 + * Device or Host, the application must not access registers from the
20741 + * other mode. When the core switches from one mode to another, the
20742 + * registers in the new mode of operation must be reprogrammed as they
20743 + * would be after a power-on reset.
20744 + */
20745 +
20746 +/** Maximum number of Periodic FIFOs */
20747 +#define MAX_PERIO_FIFOS 15
20748 +/** Maximum number of Transmit FIFOs */
20749 +#define MAX_TX_FIFOS 15
20750 +
20751 +/** Maximum number of Endpoints/HostChannels */
20752 +#define MAX_EPS_CHANNELS 16
20753 +
20754 +/****************************************************************************/
20755 +/** DWC_otg Core registers .
20756 + * The dwc_otg_core_global_regs structure defines the size
20757 + * and relative field offsets for the Core Global registers.
20758 + */
20759 +typedef struct dwc_otg_core_global_regs
20760 +{
20761 + /** OTG Control and Status Register. <i>Offset: 000h</i> */
20762 + volatile uint32_t gotgctl;
20763 + /** OTG Interrupt Register. <i>Offset: 004h</i> */
20764 + volatile uint32_t gotgint;
20765 + /**Core AHB Configuration Register. <i>Offset: 008h</i> */
20766 + volatile uint32_t gahbcfg;
20767 +
20768 +#define DWC_GLBINTRMASK 0x0001
20769 +#define DWC_DMAENABLE 0x0020
20770 +#define DWC_NPTXEMPTYLVL_EMPTY 0x0080
20771 +#define DWC_NPTXEMPTYLVL_HALFEMPTY 0x0000
20772 +#define DWC_PTXEMPTYLVL_EMPTY 0x0100
20773 +#define DWC_PTXEMPTYLVL_HALFEMPTY 0x0000
20774 +
20775 + /**Core USB Configuration Register. <i>Offset: 00Ch</i> */
20776 + volatile uint32_t gusbcfg;
20777 + /**Core Reset Register. <i>Offset: 010h</i> */
20778 + volatile uint32_t grstctl;
20779 + /**Core Interrupt Register. <i>Offset: 014h</i> */
20780 + volatile uint32_t gintsts;
20781 + /**Core Interrupt Mask Register. <i>Offset: 018h</i> */
20782 + volatile uint32_t gintmsk;
20783 + /**Receive Status Queue Read Register (Read Only). <i>Offset: 01Ch</i> */
20784 + volatile uint32_t grxstsr;
20785 + /**Receive Status Queue Read & POP Register (Read Only). <i>Offset: 020h</i>*/
20786 + volatile uint32_t grxstsp;
20787 + /**Receive FIFO Size Register. <i>Offset: 024h</i> */
20788 + volatile uint32_t grxfsiz;
20789 + /**Non Periodic Transmit FIFO Size Register. <i>Offset: 028h</i> */
20790 + volatile uint32_t gnptxfsiz;
20791 + /**Non Periodic Transmit FIFO/Queue Status Register (Read
20792 + * Only). <i>Offset: 02Ch</i> */
20793 + volatile uint32_t gnptxsts;
20794 + /**I2C Access Register. <i>Offset: 030h</i> */
20795 + volatile uint32_t gi2cctl;
20796 + /**PHY Vendor Control Register. <i>Offset: 034h</i> */
20797 + volatile uint32_t gpvndctl;
20798 + /**General Purpose Input/Output Register. <i>Offset: 038h</i> */
20799 + volatile uint32_t ggpio;
20800 + /**User ID Register. <i>Offset: 03Ch</i> */
20801 + volatile uint32_t guid;
20802 + /**Synopsys ID Register (Read Only). <i>Offset: 040h</i> */
20803 + volatile uint32_t gsnpsid;
20804 + /**User HW Config1 Register (Read Only). <i>Offset: 044h</i> */
20805 + volatile uint32_t ghwcfg1;
20806 + /**User HW Config2 Register (Read Only). <i>Offset: 048h</i> */
20807 + volatile uint32_t ghwcfg2;
20808 +#define DWC_SLAVE_ONLY_ARCH 0
20809 +#define DWC_EXT_DMA_ARCH 1
20810 +#define DWC_INT_DMA_ARCH 2
20811 +
20812 +#define DWC_MODE_HNP_SRP_CAPABLE 0
20813 +#define DWC_MODE_SRP_ONLY_CAPABLE 1
20814 +#define DWC_MODE_NO_HNP_SRP_CAPABLE 2
20815 +#define DWC_MODE_SRP_CAPABLE_DEVICE 3
20816 +#define DWC_MODE_NO_SRP_CAPABLE_DEVICE 4
20817 +#define DWC_MODE_SRP_CAPABLE_HOST 5
20818 +#define DWC_MODE_NO_SRP_CAPABLE_HOST 6
20819 +
20820 + /**User HW Config3 Register (Read Only). <i>Offset: 04Ch</i> */
20821 + volatile uint32_t ghwcfg3;
20822 + /**User HW Config4 Register (Read Only). <i>Offset: 050h</i>*/
20823 + volatile uint32_t ghwcfg4;
20824 + /** Reserved <i>Offset: 054h-0FFh</i> */
20825 + volatile uint32_t reserved[43];
20826 + /** Host Periodic Transmit FIFO Size Register. <i>Offset: 100h</i> */
20827 + volatile uint32_t hptxfsiz;
20828 + /** Device Periodic Transmit FIFO#n Register if dedicated fifos are disabled,
20829 + otherwise Device Transmit FIFO#n Register.
20830 + * <i>Offset: 104h + (FIFO_Number-1)*04h, 1 <= FIFO Number <= 15 (1<=n<=15).</i> */
20831 + volatile uint32_t dptxfsiz_dieptxf[15];
20832 +} dwc_otg_core_global_regs_t;
20833 +
20834 +/**
20835 + * This union represents the bit fields of the Core OTG Control
20836 + * and Status Register (GOTGCTL). Set the bits using the bit
20837 + * fields then write the <i>d32</i> value to the register.
20838 + */
20839 +typedef union gotgctl_data
20840 +{
20841 + /** raw register data */
20842 + uint32_t d32;
20843 + /** register bits */
20844 + struct
20845 + {
20846 + unsigned sesreqscs : 1;
20847 + unsigned sesreq : 1;
20848 + unsigned reserved2_7 : 6;
20849 + unsigned hstnegscs : 1;
20850 + unsigned hnpreq : 1;
20851 + unsigned hstsethnpen : 1;
20852 + unsigned devhnpen : 1;
20853 + unsigned reserved12_15 : 4;
20854 + unsigned conidsts : 1;
20855 + unsigned reserved17 : 1;
20856 + unsigned asesvld : 1;
20857 + unsigned bsesvld : 1;
20858 + unsigned currmod : 1;
20859 + unsigned reserved21_31 : 11;
20860 + } b;
20861 +} gotgctl_data_t;
20862 +
20863 +/**
20864 + * This union represents the bit fields of the Core OTG Interrupt Register
20865 + * (GOTGINT). Set/clear the bits using the bit fields then write the <i>d32</i>
20866 + * value to the register.
20867 + */
20868 +typedef union gotgint_data
20869 +{
20870 + /** raw register data */
20871 + uint32_t d32;
20872 + /** register bits */
20873 + struct
20874 + {
20875 + /** Current Mode */
20876 + unsigned reserved0_1 : 2;
20877 +
20878 + /** Session End Detected */
20879 + unsigned sesenddet : 1;
20880 +
20881 + unsigned reserved3_7 : 5;
20882 +
20883 + /** Session Request Success Status Change */
20884 + unsigned sesreqsucstschng : 1;
20885 + /** Host Negotiation Success Status Change */
20886 + unsigned hstnegsucstschng : 1;
20887 +
20888 + unsigned reserver10_16 : 7;
20889 +
20890 + /** Host Negotiation Detected */
20891 + unsigned hstnegdet : 1;
20892 + /** A-Device Timeout Change */
20893 + unsigned adevtoutchng : 1;
20894 + /** Debounce Done */
20895 + unsigned debdone : 1;
20896 +
20897 + unsigned reserved31_20 : 12;
20898 +
20899 + } b;
20900 +} gotgint_data_t;
20901 +
20902 +
20903 +/**
20904 + * This union represents the bit fields of the Core AHB Configuration
20905 + * Register (GAHBCFG). Set/clear the bits using the bit fields then
20906 + * write the <i>d32</i> value to the register.
20907 + */
20908 +typedef union gahbcfg_data
20909 +{
20910 + /** raw register data */
20911 + uint32_t d32;
20912 + /** register bits */
20913 + struct
20914 + {
20915 + unsigned glblintrmsk : 1;
20916 +#define DWC_GAHBCFG_GLBINT_ENABLE 1
20917 +
20918 + unsigned hburstlen : 4;
20919 +#define DWC_GAHBCFG_INT_DMA_BURST_SINGLE 0
20920 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR 1
20921 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR4 3
20922 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR8 5
20923 +#define DWC_GAHBCFG_INT_DMA_BURST_INCR16 7
20924 +
20925 + unsigned dmaenable : 1;
20926 +#define DWC_GAHBCFG_DMAENABLE 1
20927 + unsigned reserved : 1;
20928 + unsigned nptxfemplvl_txfemplvl : 1;
20929 + unsigned ptxfemplvl : 1;
20930 +#define DWC_GAHBCFG_TXFEMPTYLVL_EMPTY 1
20931 +#define DWC_GAHBCFG_TXFEMPTYLVL_HALFEMPTY 0
20932 + unsigned reserved9_31 : 23;
20933 + } b;
20934 +} gahbcfg_data_t;
20935 +
20936 +/**
20937 + * This union represents the bit fields of the Core USB Configuration
20938 + * Register (GUSBCFG). Set the bits using the bit fields then write
20939 + * the <i>d32</i> value to the register.
20940 + */
20941 +typedef union gusbcfg_data
20942 +{
20943 + /** raw register data */
20944 + uint32_t d32;
20945 + /** register bits */
20946 + struct
20947 + {
20948 + unsigned toutcal : 3;
20949 + unsigned phyif : 1;
20950 + unsigned ulpi_utmi_sel : 1;
20951 + unsigned fsintf : 1;
20952 + unsigned physel : 1;
20953 + unsigned ddrsel : 1;
20954 + unsigned srpcap : 1;
20955 + unsigned hnpcap : 1;
20956 + unsigned usbtrdtim : 4;
20957 + unsigned nptxfrwnden : 1;
20958 + unsigned phylpwrclksel : 1;
20959 + unsigned otgutmifssel : 1;
20960 + unsigned ulpi_fsls : 1;
20961 + unsigned ulpi_auto_res : 1;
20962 + unsigned ulpi_clk_sus_m : 1;
20963 + unsigned ulpi_ext_vbus_drv : 1;
20964 + unsigned ulpi_int_vbus_indicator : 1;
20965 + unsigned term_sel_dl_pulse : 1;
20966 + unsigned reserved23_27 : 5;
20967 + unsigned tx_end_delay : 1;
20968 + unsigned reserved29_31 : 3;
20969 + } b;
20970 +} gusbcfg_data_t;
20971 +
20972 +/**
20973 + * This union represents the bit fields of the Core Reset Register
20974 + * (GRSTCTL). Set/clear the bits using the bit fields then write the
20975 + * <i>d32</i> value to the register.
20976 + */
20977 +typedef union grstctl_data
20978 +{
20979 + /** raw register data */
20980 + uint32_t d32;
20981 + /** register bits */
20982 + struct
20983 + {
20984 + /** Core Soft Reset (CSftRst) (Device and Host)
20985 + *
20986 + * The application can flush the control logic in the
20987 + * entire core using this bit. This bit resets the
20988 + * pipelines in the AHB Clock domain as well as the
20989 + * PHY Clock domain.
20990 + *
20991 + * The state machines are reset to an IDLE state, the
20992 + * control bits in the CSRs are cleared, all the
20993 + * transmit FIFOs and the receive FIFO are flushed.
20994 + *
20995 + * The status mask bits that control the generation of
20996 + * the interrupt, are cleared, to clear the
20997 + * interrupt. The interrupt status bits are not
20998 + * cleared, so the application can get the status of
20999 + * any events that occurred in the core after it has
21000 + * set this bit.
21001 + *
21002 + * Any transactions on the AHB are terminated as soon
21003 + * as possible following the protocol. Any
21004 + * transactions on the USB are terminated immediately.
21005 + *
21006 + * The configuration settings in the CSRs are
21007 + * unchanged, so the software doesn't have to
21008 + * reprogram these registers (Device
21009 + * Configuration/Host Configuration/Core System
21010 + * Configuration/Core PHY Configuration).
21011 + *
21012 + * The application can write to this bit, any time it
21013 + * wants to reset the core. This is a self clearing
21014 + * bit and the core clears this bit after all the
21015 + * necessary logic is reset in the core, which may
21016 + * take several clocks, depending on the current state
21017 + * of the core.
21018 + */
21019 + unsigned csftrst : 1;
21020 + /** Hclk Soft Reset
21021 + *
21022 + * The application uses this bit to reset the control logic in
21023 + * the AHB clock domain. Only AHB clock domain pipelines are
21024 + * reset.
21025 + */
21026 + unsigned hsftrst : 1;
21027 + /** Host Frame Counter Reset (Host Only)<br>
21028 + *
21029 + * The application can reset the (micro)frame number
21030 + * counter inside the core, using this bit. When the
21031 + * (micro)frame counter is reset, the subsequent SOF
21032 + * sent out by the core, will have a (micro)frame
21033 + * number of 0.
21034 + */
21035 + unsigned hstfrm : 1;
21036 + /** In Token Sequence Learning Queue Flush
21037 + * (INTknQFlsh) (Device Only)
21038 + */
21039 + unsigned intknqflsh : 1;
21040 + /** RxFIFO Flush (RxFFlsh) (Device and Host)
21041 + *
21042 + * The application can flush the entire Receive FIFO
21043 + * using this bit. <p>The application must first
21044 + * ensure that the core is not in the middle of a
21045 + * transaction. <p>The application should write into
21046 + * this bit, only after making sure that neither the
21047 + * DMA engine is reading from the RxFIFO nor the MAC
21048 + * is writing the data in to the FIFO. <p>The
21049 + * application should wait until the bit is cleared
21050 + * before performing any other operations. This bit
21051 + * will takes 8 clocks (slowest of PHY or AHB clock)
21052 + * to clear.
21053 + */
21054 + unsigned rxfflsh : 1;
21055 + /** TxFIFO Flush (TxFFlsh) (Device and Host).
21056 + *
21057 + * This bit is used to selectively flush a single or
21058 + * all transmit FIFOs. The application must first
21059 + * ensure that the core is not in the middle of a
21060 + * transaction. <p>The application should write into
21061 + * this bit, only after making sure that neither the
21062 + * DMA engine is writing into the TxFIFO nor the MAC
21063 + * is reading the data out of the FIFO. <p>The
21064 + * application should wait until the core clears this
21065 + * bit, before performing any operations. This bit
21066 + * will takes 8 clocks (slowest of PHY or AHB clock)
21067 + * to clear.
21068 + */
21069 + unsigned txfflsh : 1;
21070 + /** TxFIFO Number (TxFNum) (Device and Host).
21071 + *
21072 + * This is the FIFO number which needs to be flushed,
21073 + * using the TxFIFO Flush bit. This field should not
21074 + * be changed until the TxFIFO Flush bit is cleared by
21075 + * the core.
21076 + * - 0x0 : Non Periodic TxFIFO Flush
21077 + * - 0x1 : Periodic TxFIFO #1 Flush in device mode
21078 + * or Periodic TxFIFO in host mode
21079 + * - 0x2 : Periodic TxFIFO #2 Flush in device mode.
21080 + * - ...
21081 + * - 0xF : Periodic TxFIFO #15 Flush in device mode
21082 + * - 0x10: Flush all the Transmit NonPeriodic and
21083 + * Transmit Periodic FIFOs in the core
21084 + */
21085 + unsigned txfnum : 5;
21086 + /** Reserved */
21087 + unsigned reserved11_29 : 19;
21088 + /** DMA Request Signal. Indicated DMA request is in
21089 + * probress. Used for debug purpose. */
21090 + unsigned dmareq : 1;
21091 + /** AHB Master Idle. Indicates the AHB Master State
21092 + * Machine is in IDLE condition. */
21093 + unsigned ahbidle : 1;
21094 + } b;
21095 +} grstctl_t;
21096 +
21097 +
21098 +/**
21099 + * This union represents the bit fields of the Core Interrupt Mask
21100 + * Register (GINTMSK). Set/clear the bits using the bit fields then
21101 + * write the <i>d32</i> value to the register.
21102 + */
21103 +typedef union gintmsk_data
21104 +{
21105 + /** raw register data */
21106 + uint32_t d32;
21107 + /** register bits */
21108 + struct
21109 + {
21110 + unsigned reserved0 : 1;
21111 + unsigned modemismatch : 1;
21112 + unsigned otgintr : 1;
21113 + unsigned sofintr : 1;
21114 + unsigned rxstsqlvl : 1;
21115 + unsigned nptxfempty : 1;
21116 + unsigned ginnakeff : 1;
21117 + unsigned goutnakeff : 1;
21118 + unsigned reserved8 : 1;
21119 + unsigned i2cintr : 1;
21120 + unsigned erlysuspend : 1;
21121 + unsigned usbsuspend : 1;
21122 + unsigned usbreset : 1;
21123 + unsigned enumdone : 1;
21124 + unsigned isooutdrop : 1;
21125 + unsigned eopframe : 1;
21126 + unsigned reserved16 : 1;
21127 + unsigned epmismatch : 1;
21128 + unsigned inepintr : 1;
21129 + unsigned outepintr : 1;
21130 + unsigned incomplisoin : 1;
21131 + unsigned incomplisoout : 1;
21132 + unsigned reserved22_23 : 2;
21133 + unsigned portintr : 1;
21134 + unsigned hcintr : 1;
21135 + unsigned ptxfempty : 1;
21136 + unsigned reserved27 : 1;
21137 + unsigned conidstschng : 1;
21138 + unsigned disconnect : 1;
21139 + unsigned sessreqintr : 1;
21140 + unsigned wkupintr : 1;
21141 + } b;
21142 +} gintmsk_data_t;
21143 +/**
21144 + * This union represents the bit fields of the Core Interrupt Register
21145 + * (GINTSTS). Set/clear the bits using the bit fields then write the
21146 + * <i>d32</i> value to the register.
21147 + */
21148 +typedef union gintsts_data
21149 +{
21150 + /** raw register data */
21151 + uint32_t d32;
21152 +#define DWC_SOF_INTR_MASK 0x0008
21153 + /** register bits */
21154 + struct
21155 + {
21156 +#define DWC_HOST_MODE 1
21157 + unsigned curmode : 1;
21158 + unsigned modemismatch : 1;
21159 + unsigned otgintr : 1;
21160 + unsigned sofintr : 1;
21161 + unsigned rxstsqlvl : 1;
21162 + unsigned nptxfempty : 1;
21163 + unsigned ginnakeff : 1;
21164 + unsigned goutnakeff : 1;
21165 + unsigned reserved8 : 1;
21166 + unsigned i2cintr : 1;
21167 + unsigned erlysuspend : 1;
21168 + unsigned usbsuspend : 1;
21169 + unsigned usbreset : 1;
21170 + unsigned enumdone : 1;
21171 + unsigned isooutdrop : 1;
21172 + unsigned eopframe : 1;
21173 + unsigned intokenrx : 1;
21174 + unsigned epmismatch : 1;
21175 + unsigned inepint: 1;
21176 + unsigned outepintr : 1;
21177 + unsigned incomplisoin : 1;
21178 + unsigned incomplisoout : 1;
21179 + unsigned reserved22_23 : 2;
21180 + unsigned portintr : 1;
21181 + unsigned hcintr : 1;
21182 + unsigned ptxfempty : 1;
21183 + unsigned reserved27 : 1;
21184 + unsigned conidstschng : 1;
21185 + unsigned disconnect : 1;
21186 + unsigned sessreqintr : 1;
21187 + unsigned wkupintr : 1;
21188 + } b;
21189 +} gintsts_data_t;
21190 +
21191 +
21192 +/**
21193 + * This union represents the bit fields in the Device Receive Status Read and
21194 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
21195 + * element then read out the bits using the <i>b</i>it elements.
21196 + */
21197 +typedef union device_grxsts_data
21198 +{
21199 + /** raw register data */
21200 + uint32_t d32;
21201 + /** register bits */
21202 + struct
21203 + {
21204 + unsigned epnum : 4;
21205 + unsigned bcnt : 11;
21206 + unsigned dpid : 2;
21207 +#define DWC_STS_DATA_UPDT 0x2 // OUT Data Packet
21208 +#define DWC_STS_XFER_COMP 0x3 // OUT Data Transfer Complete
21209 +
21210 +#define DWC_DSTS_GOUT_NAK 0x1 // Global OUT NAK
21211 +#define DWC_DSTS_SETUP_COMP 0x4 // Setup Phase Complete
21212 +#define DWC_DSTS_SETUP_UPDT 0x6 // SETUP Packet
21213 + unsigned pktsts : 4;
21214 + unsigned fn : 4;
21215 + unsigned reserved : 7;
21216 + } b;
21217 +} device_grxsts_data_t;
21218 +
21219 +/**
21220 + * This union represents the bit fields in the Host Receive Status Read and
21221 + * Pop Registers (GRXSTSR, GRXSTSP) Read the register into the <i>d32</i>
21222 + * element then read out the bits using the <i>b</i>it elements.
21223 + */
21224 +typedef union host_grxsts_data
21225 +{
21226 + /** raw register data */
21227 + uint32_t d32;
21228 + /** register bits */
21229 + struct
21230 + {
21231 + unsigned chnum : 4;
21232 + unsigned bcnt : 11;
21233 + unsigned dpid : 2;
21234 + unsigned pktsts : 4;
21235 +#define DWC_GRXSTS_PKTSTS_IN 0x2
21236 +#define DWC_GRXSTS_PKTSTS_IN_XFER_COMP 0x3
21237 +#define DWC_GRXSTS_PKTSTS_DATA_TOGGLE_ERR 0x5
21238 +#define DWC_GRXSTS_PKTSTS_CH_HALTED 0x7
21239 + unsigned reserved : 11;
21240 + } b;
21241 +} host_grxsts_data_t;
21242 +
21243 +/**
21244 + * This union represents the bit fields in the FIFO Size Registers (HPTXFSIZ,
21245 + * GNPTXFSIZ, DPTXFSIZn, DIEPTXFn). Read the register into the <i>d32</i> element then
21246 + * read out the bits using the <i>b</i>it elements.
21247 + */
21248 +typedef union fifosize_data
21249 +{
21250 + /** raw register data */
21251 + uint32_t d32;
21252 + /** register bits */
21253 + struct
21254 + {
21255 + unsigned startaddr : 16;
21256 + unsigned depth : 16;
21257 + } b;
21258 +} fifosize_data_t;
21259 +
21260 +/**
21261 + * This union represents the bit fields in the Non-Periodic Transmit
21262 + * FIFO/Queue Status Register (GNPTXSTS). Read the register into the
21263 + * <i>d32</i> element then read out the bits using the <i>b</i>it
21264 + * elements.
21265 + */
21266 +typedef union gnptxsts_data
21267 +{
21268 + /** raw register data */
21269 + uint32_t d32;
21270 + /** register bits */
21271 + struct
21272 + {
21273 + unsigned nptxfspcavail : 16;
21274 + unsigned nptxqspcavail : 8;
21275 + /** Top of the Non-Periodic Transmit Request Queue
21276 + * - bit 24 - Terminate (Last entry for the selected
21277 + * channel/EP)
21278 + * - bits 26:25 - Token Type
21279 + * - 2'b00 - IN/OUT
21280 + * - 2'b01 - Zero Length OUT
21281 + * - 2'b10 - PING/Complete Split
21282 + * - 2'b11 - Channel Halt
21283 + * - bits 30:27 - Channel/EP Number
21284 + */
21285 + unsigned nptxqtop_terminate : 1;
21286 + unsigned nptxqtop_token : 2;
21287 + unsigned nptxqtop_chnep : 4;
21288 + unsigned reserved : 1;
21289 + } b;
21290 +} gnptxsts_data_t;
21291 +
21292 +/**
21293 + * This union represents the bit fields in the Transmit
21294 + * FIFO Status Register (DTXFSTS). Read the register into the
21295 + * <i>d32</i> element then read out the bits using the <i>b</i>it
21296 + * elements.
21297 + */
21298 +typedef union dtxfsts_data
21299 +{
21300 + /** raw register data */
21301 + uint32_t d32;
21302 + /** register bits */
21303 + struct
21304 + {
21305 + unsigned txfspcavail : 16;
21306 + unsigned reserved : 16;
21307 + } b;
21308 +} dtxfsts_data_t;
21309 +
21310 +/**
21311 + * This union represents the bit fields in the I2C Control Register
21312 + * (I2CCTL). Read the register into the <i>d32</i> element then read out the
21313 + * bits using the <i>b</i>it elements.
21314 + */
21315 +typedef union gi2cctl_data
21316 +{
21317 + /** raw register data */
21318 + uint32_t d32;
21319 + /** register bits */
21320 + struct
21321 + {
21322 + unsigned rwdata : 8;
21323 + unsigned regaddr : 8;
21324 + unsigned addr : 7;
21325 + unsigned i2cen : 1;
21326 + unsigned ack : 1;
21327 + unsigned i2csuspctl : 1;
21328 + unsigned i2cdevaddr : 2;
21329 + unsigned reserved : 2;
21330 + unsigned rw : 1;
21331 + unsigned bsydne : 1;
21332 + } b;
21333 +} gi2cctl_data_t;
21334 +
21335 +/**
21336 + * This union represents the bit fields in the User HW Config1
21337 + * Register. Read the register into the <i>d32</i> element then read
21338 + * out the bits using the <i>b</i>it elements.
21339 + */
21340 +typedef union hwcfg1_data
21341 +{
21342 + /** raw register data */
21343 + uint32_t d32;
21344 + /** register bits */
21345 + struct
21346 + {
21347 + unsigned ep_dir0 : 2;
21348 + unsigned ep_dir1 : 2;
21349 + unsigned ep_dir2 : 2;
21350 + unsigned ep_dir3 : 2;
21351 + unsigned ep_dir4 : 2;
21352 + unsigned ep_dir5 : 2;
21353 + unsigned ep_dir6 : 2;
21354 + unsigned ep_dir7 : 2;
21355 + unsigned ep_dir8 : 2;
21356 + unsigned ep_dir9 : 2;
21357 + unsigned ep_dir10 : 2;
21358 + unsigned ep_dir11 : 2;
21359 + unsigned ep_dir12 : 2;
21360 + unsigned ep_dir13 : 2;
21361 + unsigned ep_dir14 : 2;
21362 + unsigned ep_dir15 : 2;
21363 + } b;
21364 +} hwcfg1_data_t;
21365 +
21366 +/**
21367 + * This union represents the bit fields in the User HW Config2
21368 + * Register. Read the register into the <i>d32</i> element then read
21369 + * out the bits using the <i>b</i>it elements.
21370 + */
21371 +typedef union hwcfg2_data
21372 +{
21373 + /** raw register data */
21374 + uint32_t d32;
21375 + /** register bits */
21376 + struct
21377 + {
21378 + /* GHWCFG2 */
21379 + unsigned op_mode : 3;
21380 +#define DWC_HWCFG2_OP_MODE_HNP_SRP_CAPABLE_OTG 0
21381 +#define DWC_HWCFG2_OP_MODE_SRP_ONLY_CAPABLE_OTG 1
21382 +#define DWC_HWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE_OTG 2
21383 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_DEVICE 3
21384 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE 4
21385 +#define DWC_HWCFG2_OP_MODE_SRP_CAPABLE_HOST 5
21386 +#define DWC_HWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST 6
21387 +
21388 + unsigned architecture : 2;
21389 + unsigned point2point : 1;
21390 + unsigned hs_phy_type : 2;
21391 +#define DWC_HWCFG2_HS_PHY_TYPE_NOT_SUPPORTED 0
21392 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI 1
21393 +#define DWC_HWCFG2_HS_PHY_TYPE_ULPI 2
21394 +#define DWC_HWCFG2_HS_PHY_TYPE_UTMI_ULPI 3
21395 +
21396 + unsigned fs_phy_type : 2;
21397 + unsigned num_dev_ep : 4;
21398 + unsigned num_host_chan : 4;
21399 + unsigned perio_ep_supported : 1;
21400 + unsigned dynamic_fifo : 1;
21401 + unsigned multi_proc_int : 1;
21402 + unsigned reserved21 : 1;
21403 + unsigned nonperio_tx_q_depth : 2;
21404 + unsigned host_perio_tx_q_depth : 2;
21405 + unsigned dev_token_q_depth : 5;
21406 + unsigned reserved31 : 1;
21407 + } b;
21408 +} hwcfg2_data_t;
21409 +
21410 +/**
21411 + * This union represents the bit fields in the User HW Config3
21412 + * Register. Read the register into the <i>d32</i> element then read
21413 + * out the bits using the <i>b</i>it elements.
21414 + */
21415 +typedef union hwcfg3_data
21416 +{
21417 + /** raw register data */
21418 + uint32_t d32;
21419 + /** register bits */
21420 + struct
21421 + {
21422 + /* GHWCFG3 */
21423 + unsigned xfer_size_cntr_width : 4;
21424 + unsigned packet_size_cntr_width : 3;
21425 + unsigned otg_func : 1;
21426 + unsigned i2c : 1;
21427 + unsigned vendor_ctrl_if : 1;
21428 + unsigned optional_features : 1;
21429 + unsigned synch_reset_type : 1;
21430 + unsigned ahb_phy_clock_synch : 1;
21431 + unsigned reserved15_13 : 3;
21432 + unsigned dfifo_depth : 16;
21433 + } b;
21434 +} hwcfg3_data_t;
21435 +
21436 +/**
21437 + * This union represents the bit fields in the User HW Config4
21438 + * Register. Read the register into the <i>d32</i> element then read
21439 + * out the bits using the <i>b</i>it elements.
21440 + */
21441 +typedef union hwcfg4_data
21442 +{
21443 + /** raw register data */
21444 + uint32_t d32;
21445 + /** register bits */
21446 + struct
21447 + {
21448 + unsigned num_dev_perio_in_ep : 4;
21449 + unsigned power_optimiz : 1;
21450 + unsigned min_ahb_freq : 9;
21451 + unsigned utmi_phy_data_width : 2;
21452 + unsigned num_dev_mode_ctrl_ep : 4;
21453 + unsigned iddig_filt_en : 1;
21454 + unsigned vbus_valid_filt_en : 1;
21455 + unsigned a_valid_filt_en : 1;
21456 + unsigned b_valid_filt_en : 1;
21457 + unsigned session_end_filt_en : 1;
21458 + unsigned ded_fifo_en : 1;
21459 + unsigned num_in_eps : 4;
21460 + unsigned desc_dma : 1;
21461 + unsigned desc_dma_dyn : 1;
21462 + } b;
21463 +} hwcfg4_data_t;
21464 +
21465 +////////////////////////////////////////////
21466 +// Device Registers
21467 +/**
21468 + * Device Global Registers. <i>Offsets 800h-BFFh</i>
21469 + *
21470 + * The following structures define the size and relative field offsets
21471 + * for the Device Mode Registers.
21472 + *
21473 + * <i>These registers are visible only in Device mode and must not be
21474 + * accessed in Host mode, as the results are unknown.</i>
21475 + */
21476 +typedef struct dwc_otg_dev_global_regs
21477 +{
21478 + /** Device Configuration Register. <i>Offset 800h</i> */
21479 + volatile uint32_t dcfg;
21480 + /** Device Control Register. <i>Offset: 804h</i> */
21481 + volatile uint32_t dctl;
21482 + /** Device Status Register (Read Only). <i>Offset: 808h</i> */
21483 + volatile uint32_t dsts;
21484 + /** Reserved. <i>Offset: 80Ch</i> */
21485 + uint32_t unused;
21486 + /** Device IN Endpoint Common Interrupt Mask
21487 + * Register. <i>Offset: 810h</i> */
21488 + volatile uint32_t diepmsk;
21489 + /** Device OUT Endpoint Common Interrupt Mask
21490 + * Register. <i>Offset: 814h</i> */
21491 + volatile uint32_t doepmsk;
21492 + /** Device All Endpoints Interrupt Register. <i>Offset: 818h</i> */
21493 + volatile uint32_t daint;
21494 + /** Device All Endpoints Interrupt Mask Register. <i>Offset:
21495 + * 81Ch</i> */
21496 + volatile uint32_t daintmsk;
21497 + /** Device IN Token Queue Read Register-1 (Read Only).
21498 + * <i>Offset: 820h</i> */
21499 + volatile uint32_t dtknqr1;
21500 + /** Device IN Token Queue Read Register-2 (Read Only).
21501 + * <i>Offset: 824h</i> */
21502 + volatile uint32_t dtknqr2;
21503 + /** Device VBUS discharge Register. <i>Offset: 828h</i> */
21504 + volatile uint32_t dvbusdis;
21505 + /** Device VBUS Pulse Register. <i>Offset: 82Ch</i> */
21506 + volatile uint32_t dvbuspulse;
21507 + /** Device IN Token Queue Read Register-3 (Read Only). /
21508 + * Device Thresholding control register (Read/Write)
21509 + * <i>Offset: 830h</i> */
21510 + volatile uint32_t dtknqr3_dthrctl;
21511 + /** Device IN Token Queue Read Register-4 (Read Only). /
21512 + * Device IN EPs empty Inr. Mask Register (Read/Write)
21513 + * <i>Offset: 834h</i> */
21514 + volatile uint32_t dtknqr4_fifoemptymsk;
21515 + /** Device Each Endpoint Interrupt Register (Read Only). /
21516 + * <i>Offset: 838h</i> */
21517 + volatile uint32_t deachint;
21518 + /** Device Each Endpoint Interrupt mask Register (Read/Write). /
21519 + * <i>Offset: 83Ch</i> */
21520 + volatile uint32_t deachintmsk;
21521 + /** Device Each In Endpoint Interrupt mask Register (Read/Write). /
21522 + * <i>Offset: 840h</i> */
21523 + volatile uint32_t diepeachintmsk[MAX_EPS_CHANNELS];
21524 + /** Device Each Out Endpoint Interrupt mask Register (Read/Write). /
21525 + * <i>Offset: 880h</i> */
21526 + volatile uint32_t doepeachintmsk[MAX_EPS_CHANNELS];
21527 +} dwc_otg_device_global_regs_t;
21528 +
21529 +/**
21530 + * This union represents the bit fields in the Device Configuration
21531 + * Register. Read the register into the <i>d32</i> member then
21532 + * set/clear the bits using the <i>b</i>it elements. Write the
21533 + * <i>d32</i> member to the dcfg register.
21534 + */
21535 +typedef union dcfg_data
21536 +{
21537 + /** raw register data */
21538 + uint32_t d32;
21539 + /** register bits */
21540 + struct
21541 + {
21542 + /** Device Speed */
21543 + unsigned devspd : 2;
21544 + /** Non Zero Length Status OUT Handshake */
21545 + unsigned nzstsouthshk : 1;
21546 +#define DWC_DCFG_SEND_STALL 1
21547 +
21548 + unsigned reserved3 : 1;
21549 + /** Device Addresses */
21550 + unsigned devaddr : 7;
21551 + /** Periodic Frame Interval */
21552 + unsigned perfrint : 2;
21553 +#define DWC_DCFG_FRAME_INTERVAL_80 0
21554 +#define DWC_DCFG_FRAME_INTERVAL_85 1
21555 +#define DWC_DCFG_FRAME_INTERVAL_90 2
21556 +#define DWC_DCFG_FRAME_INTERVAL_95 3
21557 +
21558 + unsigned reserved13_17 : 5;
21559 + /** In Endpoint Mis-match count */
21560 + unsigned epmscnt : 5;
21561 + /** Enable Descriptor DMA in Device mode */
21562 + unsigned descdma : 1;
21563 + } b;
21564 +} dcfg_data_t;
21565 +
21566 +/**
21567 + * This union represents the bit fields in the Device Control
21568 + * Register. Read the register into the <i>d32</i> member then
21569 + * set/clear the bits using the <i>b</i>it elements.
21570 + */
21571 +typedef union dctl_data
21572 +{
21573 + /** raw register data */
21574 + uint32_t d32;
21575 + /** register bits */
21576 + struct
21577 + {
21578 + /** Remote Wakeup */
21579 + unsigned rmtwkupsig : 1;
21580 + /** Soft Disconnect */
21581 + unsigned sftdiscon : 1;
21582 + /** Global Non-Periodic IN NAK Status */
21583 + unsigned gnpinnaksts : 1;
21584 + /** Global OUT NAK Status */
21585 + unsigned goutnaksts : 1;
21586 + /** Test Control */
21587 + unsigned tstctl : 3;
21588 + /** Set Global Non-Periodic IN NAK */
21589 + unsigned sgnpinnak : 1;
21590 + /** Clear Global Non-Periodic IN NAK */
21591 + unsigned cgnpinnak : 1;
21592 + /** Set Global OUT NAK */
21593 + unsigned sgoutnak : 1;
21594 + /** Clear Global OUT NAK */
21595 + unsigned cgoutnak : 1;
21596 +
21597 + /** Power-On Programming Done */
21598 + unsigned pwronprgdone : 1;
21599 + /** Global Continue on BNA */
21600 + unsigned gcontbna : 1;
21601 + /** Global Multi Count */
21602 + unsigned gmc : 2;
21603 + /** Ignore Frame Number for ISOC EPs */
21604 + unsigned ifrmnum : 1;
21605 + /** NAK on Babble */
21606 + unsigned nakonbble : 1;
21607 +
21608 + unsigned reserved16_31 : 16;
21609 + } b;
21610 +} dctl_data_t;
21611 +
21612 +/**
21613 + * This union represents the bit fields in the Device Status
21614 + * Register. Read the register into the <i>d32</i> member then
21615 + * set/clear the bits using the <i>b</i>it elements.
21616 + */
21617 +typedef union dsts_data
21618 +{
21619 + /** raw register data */
21620 + uint32_t d32;
21621 + /** register bits */
21622 + struct
21623 + {
21624 + /** Suspend Status */
21625 + unsigned suspsts : 1;
21626 + /** Enumerated Speed */
21627 + unsigned enumspd : 2;
21628 +#define DWC_DSTS_ENUMSPD_HS_PHY_30MHZ_OR_60MHZ 0
21629 +#define DWC_DSTS_ENUMSPD_FS_PHY_30MHZ_OR_60MHZ 1
21630 +#define DWC_DSTS_ENUMSPD_LS_PHY_6MHZ 2
21631 +#define DWC_DSTS_ENUMSPD_FS_PHY_48MHZ 3
21632 + /** Erratic Error */
21633 + unsigned errticerr : 1;
21634 + unsigned reserved4_7: 4;
21635 + /** Frame or Microframe Number of the received SOF */
21636 + unsigned soffn : 14;
21637 + unsigned reserved22_31 : 10;
21638 + } b;
21639 +} dsts_data_t;
21640 +
21641 +
21642 +/**
21643 + * This union represents the bit fields in the Device IN EP Interrupt
21644 + * Register and the Device IN EP Common Mask Register.
21645 + *
21646 + * - Read the register into the <i>d32</i> member then set/clear the
21647 + * bits using the <i>b</i>it elements.
21648 + */
21649 +typedef union diepint_data
21650 +{
21651 + /** raw register data */
21652 + uint32_t d32;
21653 + /** register bits */
21654 + struct
21655 + {
21656 + /** Transfer complete mask */
21657 + unsigned xfercompl : 1;
21658 + /** Endpoint disable mask */
21659 + unsigned epdisabled : 1;
21660 + /** AHB Error mask */
21661 + unsigned ahberr : 1;
21662 + /** TimeOUT Handshake mask (non-ISOC EPs) */
21663 + unsigned timeout : 1;
21664 + /** IN Token received with TxF Empty mask */
21665 + unsigned intktxfemp : 1;
21666 + /** IN Token Received with EP mismatch mask */
21667 + unsigned intknepmis : 1;
21668 + /** IN Endpoint HAK Effective mask */
21669 + unsigned inepnakeff : 1;
21670 + /** IN Endpoint HAK Effective mask */
21671 + unsigned emptyintr : 1;
21672 + unsigned txfifoundrn : 1;
21673 +
21674 + /** BNA Interrupt mask */
21675 + unsigned bna : 1;
21676 + unsigned reserved10_12 : 3;
21677 + /** BNA Interrupt mask */
21678 + unsigned nak : 1;
21679 + unsigned reserved14_31 : 18;
21680 + } b;
21681 +} diepint_data_t;
21682 +
21683 +/**
21684 + * This union represents the bit fields in the Device IN EP
21685 + * Common/Dedicated Interrupt Mask Register.
21686 + */
21687 +typedef union diepint_data diepmsk_data_t;
21688 +
21689 +/**
21690 + * This union represents the bit fields in the Device OUT EP Interrupt
21691 + * Registerand Device OUT EP Common Interrupt Mask Register.
21692 + *
21693 + * - Read the register into the <i>d32</i> member then set/clear the
21694 + * bits using the <i>b</i>it elements.
21695 + */
21696 +typedef union doepint_data
21697 +{
21698 + /** raw register data */
21699 + uint32_t d32;
21700 + /** register bits */
21701 + struct
21702 + {
21703 + /** Transfer complete */
21704 + unsigned xfercompl : 1;
21705 + /** Endpoint disable */
21706 + unsigned epdisabled : 1;
21707 + /** AHB Error */
21708 + unsigned ahberr : 1;
21709 + /** Setup Phase Done (contorl EPs) */
21710 + unsigned setup : 1;
21711 + /** OUT Token Received when Endpoint Disabled */
21712 + unsigned outtknepdis : 1;
21713 + unsigned stsphsercvd : 1;
21714 + /** Back-to-Back SETUP Packets Received */
21715 + unsigned back2backsetup : 1;
21716 + unsigned reserved7 : 1;
21717 + /** OUT packet Error */
21718 + unsigned outpkterr : 1;
21719 + /** BNA Interrupt */
21720 + unsigned bna : 1;
21721 + unsigned reserved10 : 1;
21722 + /** Packet Drop Status */
21723 + unsigned pktdrpsts : 1;
21724 + /** Babble Interrupt */
21725 + unsigned babble : 1;
21726 + /** NAK Interrupt */
21727 + unsigned nak : 1;
21728 + /** NYET Interrupt */
21729 + unsigned nyet : 1;
21730 +
21731 + unsigned reserved15_31 : 17;
21732 + } b;
21733 +} doepint_data_t;
21734 +
21735 +/**
21736 + * This union represents the bit fields in the Device OUT EP
21737 + * Common/Dedicated Interrupt Mask Register.
21738 + */
21739 +typedef union doepint_data doepmsk_data_t;
21740 +
21741 +/**
21742 + * This union represents the bit fields in the Device All EP Interrupt
21743 + * and Mask Registers.
21744 + * - Read the register into the <i>d32</i> member then set/clear the
21745 + * bits using the <i>b</i>it elements.
21746 + */
21747 +typedef union daint_data
21748 +{
21749 + /** raw register data */
21750 + uint32_t d32;
21751 + /** register bits */
21752 + struct
21753 + {
21754 + /** IN Endpoint bits */
21755 + unsigned in : 16;
21756 + /** OUT Endpoint bits */
21757 + unsigned out : 16;
21758 + } ep;
21759 + struct
21760 + {
21761 + /** IN Endpoint bits */
21762 + unsigned inep0 : 1;
21763 + unsigned inep1 : 1;
21764 + unsigned inep2 : 1;
21765 + unsigned inep3 : 1;
21766 + unsigned inep4 : 1;
21767 + unsigned inep5 : 1;
21768 + unsigned inep6 : 1;
21769 + unsigned inep7 : 1;
21770 + unsigned inep8 : 1;
21771 + unsigned inep9 : 1;
21772 + unsigned inep10 : 1;
21773 + unsigned inep11 : 1;
21774 + unsigned inep12 : 1;
21775 + unsigned inep13 : 1;
21776 + unsigned inep14 : 1;
21777 + unsigned inep15 : 1;
21778 + /** OUT Endpoint bits */
21779 + unsigned outep0 : 1;
21780 + unsigned outep1 : 1;
21781 + unsigned outep2 : 1;
21782 + unsigned outep3 : 1;
21783 + unsigned outep4 : 1;
21784 + unsigned outep5 : 1;
21785 + unsigned outep6 : 1;
21786 + unsigned outep7 : 1;
21787 + unsigned outep8 : 1;
21788 + unsigned outep9 : 1;
21789 + unsigned outep10 : 1;
21790 + unsigned outep11 : 1;
21791 + unsigned outep12 : 1;
21792 + unsigned outep13 : 1;
21793 + unsigned outep14 : 1;
21794 + unsigned outep15 : 1;
21795 + } b;
21796 +} daint_data_t;
21797 +
21798 +/**
21799 + * This union represents the bit fields in the Device IN Token Queue
21800 + * Read Registers.
21801 + * - Read the register into the <i>d32</i> member.
21802 + * - READ-ONLY Register
21803 + */
21804 +typedef union dtknq1_data
21805 +{
21806 + /** raw register data */
21807 + uint32_t d32;
21808 + /** register bits */
21809 + struct
21810 + {
21811 + /** In Token Queue Write Pointer */
21812 + unsigned intknwptr : 5;
21813 + /** Reserved */
21814 + unsigned reserved05_06 : 2;
21815 + /** write pointer has wrapped. */
21816 + unsigned wrap_bit : 1;
21817 + /** EP Numbers of IN Tokens 0 ... 4 */
21818 + unsigned epnums0_5 : 24;
21819 + }b;
21820 +} dtknq1_data_t;
21821 +
21822 +/**
21823 + * This union represents Threshold control Register
21824 + * - Read and write the register into the <i>d32</i> member.
21825 + * - READ-WRITABLE Register
21826 + */
21827 +typedef union dthrctl_data
21828 +{
21829 + /** raw register data */
21830 + uint32_t d32;
21831 + /** register bits */
21832 + struct
21833 + {
21834 + /** non ISO Tx Thr. Enable */
21835 + unsigned non_iso_thr_en : 1;
21836 + /** ISO Tx Thr. Enable */
21837 + unsigned iso_thr_en : 1;
21838 + /** Tx Thr. Length */
21839 + unsigned tx_thr_len : 9;
21840 + /** Reserved */
21841 + unsigned reserved11_15 : 5;
21842 + /** Rx Thr. Enable */
21843 + unsigned rx_thr_en : 1;
21844 + /** Rx Thr. Length */
21845 + unsigned rx_thr_len : 9;
21846 + /** Reserved */
21847 + unsigned reserved26_31 : 6;
21848 + }b;
21849 +} dthrctl_data_t;
21850 +
21851 +
21852 +/**
21853 + * Device Logical IN Endpoint-Specific Registers. <i>Offsets
21854 + * 900h-AFCh</i>
21855 + *
21856 + * There will be one set of endpoint registers per logical endpoint
21857 + * implemented.
21858 + *
21859 + * <i>These registers are visible only in Device mode and must not be
21860 + * accessed in Host mode, as the results are unknown.</i>
21861 + */
21862 +typedef struct dwc_otg_dev_in_ep_regs
21863 +{
21864 + /** Device IN Endpoint Control Register. <i>Offset:900h +
21865 + * (ep_num * 20h) + 00h</i> */
21866 + volatile uint32_t diepctl;
21867 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 04h</i> */
21868 + uint32_t reserved04;
21869 + /** Device IN Endpoint Interrupt Register. <i>Offset:900h +
21870 + * (ep_num * 20h) + 08h</i> */
21871 + volatile uint32_t diepint;
21872 + /** Reserved. <i>Offset:900h + (ep_num * 20h) + 0Ch</i> */
21873 + uint32_t reserved0C;
21874 + /** Device IN Endpoint Transfer Size
21875 + * Register. <i>Offset:900h + (ep_num * 20h) + 10h</i> */
21876 + volatile uint32_t dieptsiz;
21877 + /** Device IN Endpoint DMA Address Register. <i>Offset:900h +
21878 + * (ep_num * 20h) + 14h</i> */
21879 + volatile uint32_t diepdma;
21880 + /** Device IN Endpoint Transmit FIFO Status Register. <i>Offset:900h +
21881 + * (ep_num * 20h) + 18h</i> */
21882 + volatile uint32_t dtxfsts;
21883 + /** Device IN Endpoint DMA Buffer Register. <i>Offset:900h +
21884 + * (ep_num * 20h) + 1Ch</i> */
21885 + volatile uint32_t diepdmab;
21886 +} dwc_otg_dev_in_ep_regs_t;
21887 +
21888 +/**
21889 + * Device Logical OUT Endpoint-Specific Registers. <i>Offsets:
21890 + * B00h-CFCh</i>
21891 + *
21892 + * There will be one set of endpoint registers per logical endpoint
21893 + * implemented.
21894 + *
21895 + * <i>These registers are visible only in Device mode and must not be
21896 + * accessed in Host mode, as the results are unknown.</i>
21897 + */
21898 +typedef struct dwc_otg_dev_out_ep_regs
21899 +{
21900 + /** Device OUT Endpoint Control Register. <i>Offset:B00h +
21901 + * (ep_num * 20h) + 00h</i> */
21902 + volatile uint32_t doepctl;
21903 + /** Device OUT Endpoint Frame number Register. <i>Offset:
21904 + * B00h + (ep_num * 20h) + 04h</i> */
21905 + volatile uint32_t doepfn;
21906 + /** Device OUT Endpoint Interrupt Register. <i>Offset:B00h +
21907 + * (ep_num * 20h) + 08h</i> */
21908 + volatile uint32_t doepint;
21909 + /** Reserved. <i>Offset:B00h + (ep_num * 20h) + 0Ch</i> */
21910 + uint32_t reserved0C;
21911 + /** Device OUT Endpoint Transfer Size Register. <i>Offset:
21912 + * B00h + (ep_num * 20h) + 10h</i> */
21913 + volatile uint32_t doeptsiz;
21914 + /** Device OUT Endpoint DMA Address Register. <i>Offset:B00h
21915 + * + (ep_num * 20h) + 14h</i> */
21916 + volatile uint32_t doepdma;
21917 + /** Reserved. <i>Offset:B00h + * (ep_num * 20h) + 1Ch</i> */
21918 + uint32_t unused;
21919 + /** Device OUT Endpoint DMA Buffer Register. <i>Offset:B00h
21920 + * + (ep_num * 20h) + 1Ch</i> */
21921 + uint32_t doepdmab;
21922 +} dwc_otg_dev_out_ep_regs_t;
21923 +
21924 +/**
21925 + * This union represents the bit fields in the Device EP Control
21926 + * Register. Read the register into the <i>d32</i> member then
21927 + * set/clear the bits using the <i>b</i>it elements.
21928 + */
21929 +typedef union depctl_data
21930 +{
21931 + /** raw register data */
21932 + uint32_t d32;
21933 + /** register bits */
21934 + struct
21935 + {
21936 + /** Maximum Packet Size
21937 + * IN/OUT EPn
21938 + * IN/OUT EP0 - 2 bits
21939 + * 2'b00: 64 Bytes
21940 + * 2'b01: 32
21941 + * 2'b10: 16
21942 + * 2'b11: 8 */
21943 + unsigned mps : 11;
21944 +#define DWC_DEP0CTL_MPS_64 0
21945 +#define DWC_DEP0CTL_MPS_32 1
21946 +#define DWC_DEP0CTL_MPS_16 2
21947 +#define DWC_DEP0CTL_MPS_8 3
21948 +
21949 + /** Next Endpoint
21950 + * IN EPn/IN EP0
21951 + * OUT EPn/OUT EP0 - reserved */
21952 + unsigned nextep : 4;
21953 +
21954 + /** USB Active Endpoint */
21955 + unsigned usbactep : 1;
21956 +
21957 + /** Endpoint DPID (INTR/Bulk IN and OUT endpoints)
21958 + * This field contains the PID of the packet going to
21959 + * be received or transmitted on this endpoint. The
21960 + * application should program the PID of the first
21961 + * packet going to be received or transmitted on this
21962 + * endpoint , after the endpoint is
21963 + * activated. Application use the SetD1PID and
21964 + * SetD0PID fields of this register to program either
21965 + * D0 or D1 PID.
21966 + *
21967 + * The encoding for this field is
21968 + * - 0: D0
21969 + * - 1: D1
21970 + */
21971 + unsigned dpid : 1;
21972 +
21973 + /** NAK Status */
21974 + unsigned naksts : 1;
21975 +
21976 + /** Endpoint Type
21977 + * 2'b00: Control
21978 + * 2'b01: Isochronous
21979 + * 2'b10: Bulk
21980 + * 2'b11: Interrupt */
21981 + unsigned eptype : 2;
21982 +
21983 + /** Snoop Mode
21984 + * OUT EPn/OUT EP0
21985 + * IN EPn/IN EP0 - reserved */
21986 + unsigned snp : 1;
21987 +
21988 + /** Stall Handshake */
21989 + unsigned stall : 1;
21990 +
21991 + /** Tx Fifo Number
21992 + * IN EPn/IN EP0
21993 + * OUT EPn/OUT EP0 - reserved */
21994 + unsigned txfnum : 4;
21995 +
21996 + /** Clear NAK */
21997 + unsigned cnak : 1;
21998 + /** Set NAK */
21999 + unsigned snak : 1;
22000 + /** Set DATA0 PID (INTR/Bulk IN and OUT endpoints)
22001 + * Writing to this field sets the Endpoint DPID (DPID)
22002 + * field in this register to DATA0. Set Even
22003 + * (micro)frame (SetEvenFr) (ISO IN and OUT Endpoints)
22004 + * Writing to this field sets the Even/Odd
22005 + * (micro)frame (EO_FrNum) field to even (micro)
22006 + * frame.
22007 + */
22008 + unsigned setd0pid : 1;
22009 + /** Set DATA1 PID (INTR/Bulk IN and OUT endpoints)
22010 + * Writing to this field sets the Endpoint DPID (DPID)
22011 + * field in this register to DATA1 Set Odd
22012 + * (micro)frame (SetOddFr) (ISO IN and OUT Endpoints)
22013 + * Writing to this field sets the Even/Odd
22014 + * (micro)frame (EO_FrNum) field to odd (micro) frame.
22015 + */
22016 + unsigned setd1pid : 1;
22017 + /** Endpoint Disable */
22018 + unsigned epdis : 1;
22019 + /** Endpoint Enable */
22020 + unsigned epena : 1;
22021 + } b;
22022 +} depctl_data_t;
22023 +
22024 +/**
22025 + * This union represents the bit fields in the Device EP Transfer
22026 + * Size Register. Read the register into the <i>d32</i> member then
22027 + * set/clear the bits using the <i>b</i>it elements.
22028 + */
22029 +typedef union deptsiz_data
22030 +{
22031 + /** raw register data */
22032 + uint32_t d32;
22033 + /** register bits */
22034 + struct {
22035 + /** Transfer size */
22036 + unsigned xfersize : 19;
22037 + /** Packet Count */
22038 + unsigned pktcnt : 10;
22039 + /** Multi Count - Periodic IN endpoints */
22040 + unsigned mc : 2;
22041 + unsigned reserved : 1;
22042 + } b;
22043 +} deptsiz_data_t;
22044 +
22045 +/**
22046 + * This union represents the bit fields in the Device EP 0 Transfer
22047 + * Size Register. Read the register into the <i>d32</i> member then
22048 + * set/clear the bits using the <i>b</i>it elements.
22049 + */
22050 +typedef union deptsiz0_data
22051 +{
22052 + /** raw register data */
22053 + uint32_t d32;
22054 + /** register bits */
22055 + struct {
22056 + /** Transfer size */
22057 + unsigned xfersize : 7;
22058 + /** Reserved */
22059 + unsigned reserved7_18 : 12;
22060 + /** Packet Count */
22061 + unsigned pktcnt : 1;
22062 + /** Reserved */
22063 + unsigned reserved20_28 : 9;
22064 + /**Setup Packet Count (DOEPTSIZ0 Only) */
22065 + unsigned supcnt : 2;
22066 + unsigned reserved31;
22067 + } b;
22068 +} deptsiz0_data_t;
22069 +
22070 +
22071 +/////////////////////////////////////////////////
22072 +// DMA Descriptor Specific Structures
22073 +//
22074 +
22075 +/** Buffer status definitions */
22076 +
22077 +#define BS_HOST_READY 0x0
22078 +#define BS_DMA_BUSY 0x1
22079 +#define BS_DMA_DONE 0x2
22080 +#define BS_HOST_BUSY 0x3
22081 +
22082 +/** Receive/Transmit status definitions */
22083 +
22084 +#define RTS_SUCCESS 0x0
22085 +#define RTS_BUFFLUSH 0x1
22086 +#define RTS_RESERVED 0x2
22087 +#define RTS_BUFERR 0x3
22088 +
22089 +
22090 +/**
22091 + * This union represents the bit fields in the DMA Descriptor
22092 + * status quadlet. Read the quadlet into the <i>d32</i> member then
22093 + * set/clear the bits using the <i>b</i>it, <i>b_iso_out</i> and
22094 + * <i>b_iso_in</i> elements.
22095 + */
22096 +typedef union desc_sts_data
22097 +{
22098 + /** raw register data */
22099 + uint32_t d32;
22100 + /** quadlet bits */
22101 + struct {
22102 + /** Received number of bytes */
22103 + unsigned bytes : 16;
22104 +
22105 + unsigned reserved16_22 : 7;
22106 + /** Multiple Transfer - only for OUT EPs */
22107 + unsigned mtrf : 1;
22108 + /** Setup Packet received - only for OUT EPs */
22109 + unsigned sr : 1;
22110 + /** Interrupt On Complete */
22111 + unsigned ioc : 1;
22112 + /** Short Packet */
22113 + unsigned sp : 1;
22114 + /** Last */
22115 + unsigned l : 1;
22116 + /** Receive Status */
22117 + unsigned sts : 2;
22118 + /** Buffer Status */
22119 + unsigned bs : 2;
22120 + } b;
22121 +
22122 +#ifdef DWC_EN_ISOC
22123 + /** iso out quadlet bits */
22124 + struct {
22125 + /** Received number of bytes */
22126 + unsigned rxbytes : 11;
22127 +
22128 + unsigned reserved11 : 1;
22129 + /** Frame Number */
22130 + unsigned framenum : 11;
22131 + /** Received ISO Data PID */
22132 + unsigned pid : 2;
22133 + /** Interrupt On Complete */
22134 + unsigned ioc : 1;
22135 + /** Short Packet */
22136 + unsigned sp : 1;
22137 + /** Last */
22138 + unsigned l : 1;
22139 + /** Receive Status */
22140 + unsigned rxsts : 2;
22141 + /** Buffer Status */
22142 + unsigned bs : 2;
22143 + } b_iso_out;
22144 +
22145 + /** iso in quadlet bits */
22146 + struct {
22147 + /** Transmited number of bytes */
22148 + unsigned txbytes : 12;
22149 + /** Frame Number */
22150 + unsigned framenum : 11;
22151 + /** Transmited ISO Data PID */
22152 + unsigned pid : 2;
22153 + /** Interrupt On Complete */
22154 + unsigned ioc : 1;
22155 + /** Short Packet */
22156 + unsigned sp : 1;
22157 + /** Last */
22158 + unsigned l : 1;
22159 + /** Transmit Status */
22160 + unsigned txsts : 2;
22161 + /** Buffer Status */
22162 + unsigned bs : 2;
22163 + } b_iso_in;
22164 +#endif //DWC_EN_ISOC
22165 +} desc_sts_data_t;
22166 +
22167 +/**
22168 + * DMA Descriptor structure
22169 + *
22170 + * DMA Descriptor structure contains two quadlets:
22171 + * Status quadlet and Data buffer pointer.
22172 + */
22173 +typedef struct dwc_otg_dma_desc
22174 +{
22175 + /** DMA Descriptor status quadlet */
22176 + desc_sts_data_t status;
22177 + /** DMA Descriptor data buffer pointer */
22178 + dma_addr_t buf;
22179 +} dwc_otg_dma_desc_t;
22180 +
22181 +/**
22182 + * The dwc_otg_dev_if structure contains information needed to manage
22183 + * the DWC_otg controller acting in device mode. It represents the
22184 + * programming view of the device-specific aspects of the controller.
22185 + */
22186 +typedef struct dwc_otg_dev_if
22187 +{
22188 + /** Pointer to device Global registers.
22189 + * Device Global Registers starting at offset 800h
22190 + */
22191 + dwc_otg_device_global_regs_t *dev_global_regs;
22192 +#define DWC_DEV_GLOBAL_REG_OFFSET 0x800
22193 +
22194 + /**
22195 + * Device Logical IN Endpoint-Specific Registers 900h-AFCh
22196 + */
22197 + dwc_otg_dev_in_ep_regs_t *in_ep_regs[MAX_EPS_CHANNELS];
22198 +#define DWC_DEV_IN_EP_REG_OFFSET 0x900
22199 +#define DWC_EP_REG_OFFSET 0x20
22200 +
22201 + /** Device Logical OUT Endpoint-Specific Registers B00h-CFCh */
22202 + dwc_otg_dev_out_ep_regs_t *out_ep_regs[MAX_EPS_CHANNELS];
22203 +#define DWC_DEV_OUT_EP_REG_OFFSET 0xB00
22204 +
22205 + /* Device configuration information*/
22206 + uint8_t speed; /**< Device Speed 0: Unknown, 1: LS, 2:FS, 3: HS */
22207 + uint8_t num_in_eps; /**< Number # of Tx EP range: 0-15 exept ep0 */
22208 + uint8_t num_out_eps; /**< Number # of Rx EP range: 0-15 exept ep 0*/
22209 +
22210 + /** Size of periodic FIFOs (Bytes) */
22211 + uint16_t perio_tx_fifo_size[MAX_PERIO_FIFOS];
22212 +
22213 + /** Size of Tx FIFOs (Bytes) */
22214 + uint16_t tx_fifo_size[MAX_TX_FIFOS];
22215 +
22216 + /** Thresholding enable flags and length varaiables **/
22217 + uint16_t rx_thr_en;
22218 + uint16_t iso_tx_thr_en;
22219 + uint16_t non_iso_tx_thr_en;
22220 +
22221 + uint16_t rx_thr_length;
22222 + uint16_t tx_thr_length;
22223 +
22224 + /**
22225 + * Pointers to the DMA Descriptors for EP0 Control
22226 + * transfers (virtual and physical)
22227 + */
22228 + /** 2 descriptors for SETUP packets */
22229 + uint32_t dma_setup_desc_addr[2];
22230 + dwc_otg_dma_desc_t* setup_desc_addr[2];
22231 +
22232 + /** Pointer to Descriptor with latest SETUP packet */
22233 + dwc_otg_dma_desc_t* psetup;
22234 +
22235 + /** Index of current SETUP handler descriptor */
22236 + uint32_t setup_desc_index;
22237 +
22238 + /** Descriptor for Data In or Status In phases */
22239 + uint32_t dma_in_desc_addr;
22240 + dwc_otg_dma_desc_t* in_desc_addr;;
22241 +
22242 + /** Descriptor for Data Out or Status Out phases */
22243 + uint32_t dma_out_desc_addr;
22244 + dwc_otg_dma_desc_t* out_desc_addr;
22245 +} dwc_otg_dev_if_t;
22246 +
22247 +
22248 +
22249 +
22250 +/////////////////////////////////////////////////
22251 +// Host Mode Register Structures
22252 +//
22253 +/**
22254 + * The Host Global Registers structure defines the size and relative
22255 + * field offsets for the Host Mode Global Registers. Host Global
22256 + * Registers offsets 400h-7FFh.
22257 +*/
22258 +typedef struct dwc_otg_host_global_regs
22259 +{
22260 + /** Host Configuration Register. <i>Offset: 400h</i> */
22261 + volatile uint32_t hcfg;
22262 + /** Host Frame Interval Register. <i>Offset: 404h</i> */
22263 + volatile uint32_t hfir;
22264 + /** Host Frame Number / Frame Remaining Register. <i>Offset: 408h</i> */
22265 + volatile uint32_t hfnum;
22266 + /** Reserved. <i>Offset: 40Ch</i> */
22267 + uint32_t reserved40C;
22268 + /** Host Periodic Transmit FIFO/ Queue Status Register. <i>Offset: 410h</i> */
22269 + volatile uint32_t hptxsts;
22270 + /** Host All Channels Interrupt Register. <i>Offset: 414h</i> */
22271 + volatile uint32_t haint;
22272 + /** Host All Channels Interrupt Mask Register. <i>Offset: 418h</i> */
22273 + volatile uint32_t haintmsk;
22274 +} dwc_otg_host_global_regs_t;
22275 +
22276 +/**
22277 + * This union represents the bit fields in the Host Configuration Register.
22278 + * Read the register into the <i>d32</i> member then set/clear the bits using
22279 + * the <i>b</i>it elements. Write the <i>d32</i> member to the hcfg register.
22280 + */
22281 +typedef union hcfg_data
22282 +{
22283 + /** raw register data */
22284 + uint32_t d32;
22285 +
22286 + /** register bits */
22287 + struct
22288 + {
22289 + /** FS/LS Phy Clock Select */
22290 + unsigned fslspclksel : 2;
22291 +#define DWC_HCFG_30_60_MHZ 0
22292 +#define DWC_HCFG_48_MHZ 1
22293 +#define DWC_HCFG_6_MHZ 2
22294 +
22295 + /** FS/LS Only Support */
22296 + unsigned fslssupp : 1;
22297 + } b;
22298 +} hcfg_data_t;
22299 +
22300 +/**
22301 + * This union represents the bit fields in the Host Frame Remaing/Number
22302 + * Register.
22303 + */
22304 +typedef union hfir_data
22305 +{
22306 + /** raw register data */
22307 + uint32_t d32;
22308 +
22309 + /** register bits */
22310 + struct
22311 + {
22312 + unsigned frint : 16;
22313 + unsigned reserved : 16;
22314 + } b;
22315 +} hfir_data_t;
22316 +
22317 +/**
22318 + * This union represents the bit fields in the Host Frame Remaing/Number
22319 + * Register.
22320 + */
22321 +typedef union hfnum_data
22322 +{
22323 + /** raw register data */
22324 + uint32_t d32;
22325 +
22326 + /** register bits */
22327 + struct
22328 + {
22329 + unsigned frnum : 16;
22330 +#define DWC_HFNUM_MAX_FRNUM 0x3FFF
22331 + unsigned frrem : 16;
22332 + } b;
22333 +} hfnum_data_t;
22334 +
22335 +typedef union hptxsts_data
22336 +{
22337 + /** raw register data */
22338 + uint32_t d32;
22339 +
22340 + /** register bits */
22341 + struct
22342 + {
22343 + unsigned ptxfspcavail : 16;
22344 + unsigned ptxqspcavail : 8;
22345 + /** Top of the Periodic Transmit Request Queue
22346 + * - bit 24 - Terminate (last entry for the selected channel)
22347 + * - bits 26:25 - Token Type
22348 + * - 2'b00 - Zero length
22349 + * - 2'b01 - Ping
22350 + * - 2'b10 - Disable
22351 + * - bits 30:27 - Channel Number
22352 + * - bit 31 - Odd/even microframe
22353 + */
22354 + unsigned ptxqtop_terminate : 1;
22355 + unsigned ptxqtop_token : 2;
22356 + unsigned ptxqtop_chnum : 4;
22357 + unsigned ptxqtop_odd : 1;
22358 + } b;
22359 +} hptxsts_data_t;
22360 +
22361 +/**
22362 + * This union represents the bit fields in the Host Port Control and Status
22363 + * Register. Read the register into the <i>d32</i> member then set/clear the
22364 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22365 + * hprt0 register.
22366 + */
22367 +typedef union hprt0_data
22368 +{
22369 + /** raw register data */
22370 + uint32_t d32;
22371 + /** register bits */
22372 + struct
22373 + {
22374 + unsigned prtconnsts : 1;
22375 + unsigned prtconndet : 1;
22376 + unsigned prtena : 1;
22377 + unsigned prtenchng : 1;
22378 + unsigned prtovrcurract : 1;
22379 + unsigned prtovrcurrchng : 1;
22380 + unsigned prtres : 1;
22381 + unsigned prtsusp : 1;
22382 + unsigned prtrst : 1;
22383 + unsigned reserved9 : 1;
22384 + unsigned prtlnsts : 2;
22385 + unsigned prtpwr : 1;
22386 + unsigned prttstctl : 4;
22387 + unsigned prtspd : 2;
22388 +#define DWC_HPRT0_PRTSPD_HIGH_SPEED 0
22389 +#define DWC_HPRT0_PRTSPD_FULL_SPEED 1
22390 +#define DWC_HPRT0_PRTSPD_LOW_SPEED 2
22391 + unsigned reserved19_31 : 13;
22392 + } b;
22393 +} hprt0_data_t;
22394 +
22395 +/**
22396 + * This union represents the bit fields in the Host All Interrupt
22397 + * Register.
22398 + */
22399 +typedef union haint_data
22400 +{
22401 + /** raw register data */
22402 + uint32_t d32;
22403 + /** register bits */
22404 + struct
22405 + {
22406 + unsigned ch0 : 1;
22407 + unsigned ch1 : 1;
22408 + unsigned ch2 : 1;
22409 + unsigned ch3 : 1;
22410 + unsigned ch4 : 1;
22411 + unsigned ch5 : 1;
22412 + unsigned ch6 : 1;
22413 + unsigned ch7 : 1;
22414 + unsigned ch8 : 1;
22415 + unsigned ch9 : 1;
22416 + unsigned ch10 : 1;
22417 + unsigned ch11 : 1;
22418 + unsigned ch12 : 1;
22419 + unsigned ch13 : 1;
22420 + unsigned ch14 : 1;
22421 + unsigned ch15 : 1;
22422 + unsigned reserved : 16;
22423 + } b;
22424 +
22425 + struct
22426 + {
22427 + unsigned chint : 16;
22428 + unsigned reserved : 16;
22429 + } b2;
22430 +} haint_data_t;
22431 +
22432 +/**
22433 + * This union represents the bit fields in the Host All Interrupt
22434 + * Register.
22435 + */
22436 +typedef union haintmsk_data
22437 +{
22438 + /** raw register data */
22439 + uint32_t d32;
22440 + /** register bits */
22441 + struct
22442 + {
22443 + unsigned ch0 : 1;
22444 + unsigned ch1 : 1;
22445 + unsigned ch2 : 1;
22446 + unsigned ch3 : 1;
22447 + unsigned ch4 : 1;
22448 + unsigned ch5 : 1;
22449 + unsigned ch6 : 1;
22450 + unsigned ch7 : 1;
22451 + unsigned ch8 : 1;
22452 + unsigned ch9 : 1;
22453 + unsigned ch10 : 1;
22454 + unsigned ch11 : 1;
22455 + unsigned ch12 : 1;
22456 + unsigned ch13 : 1;
22457 + unsigned ch14 : 1;
22458 + unsigned ch15 : 1;
22459 + unsigned reserved : 16;
22460 + } b;
22461 +
22462 + struct
22463 + {
22464 + unsigned chint : 16;
22465 + unsigned reserved : 16;
22466 + } b2;
22467 +} haintmsk_data_t;
22468 +
22469 +/**
22470 + * Host Channel Specific Registers. <i>500h-5FCh</i>
22471 + */
22472 +typedef struct dwc_otg_hc_regs
22473 +{
22474 + /** Host Channel 0 Characteristic Register. <i>Offset: 500h + (chan_num * 20h) + 00h</i> */
22475 + volatile uint32_t hcchar;
22476 + /** Host Channel 0 Split Control Register. <i>Offset: 500h + (chan_num * 20h) + 04h</i> */
22477 + volatile uint32_t hcsplt;
22478 + /** Host Channel 0 Interrupt Register. <i>Offset: 500h + (chan_num * 20h) + 08h</i> */
22479 + volatile uint32_t hcint;
22480 + /** Host Channel 0 Interrupt Mask Register. <i>Offset: 500h + (chan_num * 20h) + 0Ch</i> */
22481 + volatile uint32_t hcintmsk;
22482 + /** Host Channel 0 Transfer Size Register. <i>Offset: 500h + (chan_num * 20h) + 10h</i> */
22483 + volatile uint32_t hctsiz;
22484 + /** Host Channel 0 DMA Address Register. <i>Offset: 500h + (chan_num * 20h) + 14h</i> */
22485 + volatile uint32_t hcdma;
22486 + /** Reserved. <i>Offset: 500h + (chan_num * 20h) + 18h - 500h + (chan_num * 20h) + 1Ch</i> */
22487 + uint32_t reserved[2];
22488 +} dwc_otg_hc_regs_t;
22489 +
22490 +/**
22491 + * This union represents the bit fields in the Host Channel Characteristics
22492 + * Register. Read the register into the <i>d32</i> member then set/clear the
22493 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22494 + * hcchar register.
22495 + */
22496 +typedef union hcchar_data
22497 +{
22498 + /** raw register data */
22499 + uint32_t d32;
22500 +
22501 + /** register bits */
22502 + struct
22503 + {
22504 + /** Maximum packet size in bytes */
22505 + unsigned mps : 11;
22506 +
22507 + /** Endpoint number */
22508 + unsigned epnum : 4;
22509 +
22510 + /** 0: OUT, 1: IN */
22511 + unsigned epdir : 1;
22512 +
22513 + unsigned reserved : 1;
22514 +
22515 + /** 0: Full/high speed device, 1: Low speed device */
22516 + unsigned lspddev : 1;
22517 +
22518 + /** 0: Control, 1: Isoc, 2: Bulk, 3: Intr */
22519 + unsigned eptype : 2;
22520 +
22521 + /** Packets per frame for periodic transfers. 0 is reserved. */
22522 + unsigned multicnt : 2;
22523 +
22524 + /** Device address */
22525 + unsigned devaddr : 7;
22526 +
22527 + /**
22528 + * Frame to transmit periodic transaction.
22529 + * 0: even, 1: odd
22530 + */
22531 + unsigned oddfrm : 1;
22532 +
22533 + /** Channel disable */
22534 + unsigned chdis : 1;
22535 +
22536 + /** Channel enable */
22537 + unsigned chen : 1;
22538 + } b;
22539 +} hcchar_data_t;
22540 +
22541 +typedef union hcsplt_data
22542 +{
22543 + /** raw register data */
22544 + uint32_t d32;
22545 +
22546 + /** register bits */
22547 + struct
22548 + {
22549 + /** Port Address */
22550 + unsigned prtaddr : 7;
22551 +
22552 + /** Hub Address */
22553 + unsigned hubaddr : 7;
22554 +
22555 + /** Transaction Position */
22556 + unsigned xactpos : 2;
22557 +#define DWC_HCSPLIT_XACTPOS_MID 0
22558 +#define DWC_HCSPLIT_XACTPOS_END 1
22559 +#define DWC_HCSPLIT_XACTPOS_BEGIN 2
22560 +#define DWC_HCSPLIT_XACTPOS_ALL 3
22561 +
22562 + /** Do Complete Split */
22563 + unsigned compsplt : 1;
22564 +
22565 + /** Reserved */
22566 + unsigned reserved : 14;
22567 +
22568 + /** Split Enble */
22569 + unsigned spltena : 1;
22570 + } b;
22571 +} hcsplt_data_t;
22572 +
22573 +
22574 +/**
22575 + * This union represents the bit fields in the Host All Interrupt
22576 + * Register.
22577 + */
22578 +typedef union hcint_data
22579 +{
22580 + /** raw register data */
22581 + uint32_t d32;
22582 + /** register bits */
22583 + struct
22584 + {
22585 + /** Transfer Complete */
22586 + unsigned xfercomp : 1;
22587 + /** Channel Halted */
22588 + unsigned chhltd : 1;
22589 + /** AHB Error */
22590 + unsigned ahberr : 1;
22591 + /** STALL Response Received */
22592 + unsigned stall : 1;
22593 + /** NAK Response Received */
22594 + unsigned nak : 1;
22595 + /** ACK Response Received */
22596 + unsigned ack : 1;
22597 + /** NYET Response Received */
22598 + unsigned nyet : 1;
22599 + /** Transaction Err */
22600 + unsigned xacterr : 1;
22601 + /** Babble Error */
22602 + unsigned bblerr : 1;
22603 + /** Frame Overrun */
22604 + unsigned frmovrun : 1;
22605 + /** Data Toggle Error */
22606 + unsigned datatglerr : 1;
22607 + /** Reserved */
22608 + unsigned reserved : 21;
22609 + } b;
22610 +} hcint_data_t;
22611 +
22612 +/**
22613 + * This union represents the bit fields in the Host Channel Transfer Size
22614 + * Register. Read the register into the <i>d32</i> member then set/clear the
22615 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22616 + * hcchar register.
22617 + */
22618 +typedef union hctsiz_data
22619 +{
22620 + /** raw register data */
22621 + uint32_t d32;
22622 +
22623 + /** register bits */
22624 + struct
22625 + {
22626 + /** Total transfer size in bytes */
22627 + unsigned xfersize : 19;
22628 +
22629 + /** Data packets to transfer */
22630 + unsigned pktcnt : 10;
22631 +
22632 + /**
22633 + * Packet ID for next data packet
22634 + * 0: DATA0
22635 + * 1: DATA2
22636 + * 2: DATA1
22637 + * 3: MDATA (non-Control), SETUP (Control)
22638 + */
22639 + unsigned pid : 2;
22640 +#define DWC_HCTSIZ_DATA0 0
22641 +#define DWC_HCTSIZ_DATA1 2
22642 +#define DWC_HCTSIZ_DATA2 1
22643 +#define DWC_HCTSIZ_MDATA 3
22644 +#define DWC_HCTSIZ_SETUP 3
22645 +
22646 + /** Do PING protocol when 1 */
22647 + unsigned dopng : 1;
22648 + } b;
22649 +} hctsiz_data_t;
22650 +
22651 +/**
22652 + * This union represents the bit fields in the Host Channel Interrupt Mask
22653 + * Register. Read the register into the <i>d32</i> member then set/clear the
22654 + * bits using the <i>b</i>it elements. Write the <i>d32</i> member to the
22655 + * hcintmsk register.
22656 + */
22657 +typedef union hcintmsk_data
22658 +{
22659 + /** raw register data */
22660 + uint32_t d32;
22661 +
22662 + /** register bits */
22663 + struct
22664 + {
22665 + unsigned xfercompl : 1;
22666 + unsigned chhltd : 1;
22667 + unsigned ahberr : 1;
22668 + unsigned stall : 1;
22669 + unsigned nak : 1;
22670 + unsigned ack : 1;
22671 + unsigned nyet : 1;
22672 + unsigned xacterr : 1;
22673 + unsigned bblerr : 1;
22674 + unsigned frmovrun : 1;
22675 + unsigned datatglerr : 1;
22676 + unsigned reserved : 21;
22677 + } b;
22678 +} hcintmsk_data_t;
22679 +
22680 +/** OTG Host Interface Structure.
22681 + *
22682 + * The OTG Host Interface Structure structure contains information
22683 + * needed to manage the DWC_otg controller acting in host mode. It
22684 + * represents the programming view of the host-specific aspects of the
22685 + * controller.
22686 + */
22687 +typedef struct dwc_otg_host_if
22688 +{
22689 + /** Host Global Registers starting at offset 400h.*/
22690 + dwc_otg_host_global_regs_t *host_global_regs;
22691 +#define DWC_OTG_HOST_GLOBAL_REG_OFFSET 0x400
22692 +
22693 + /** Host Port 0 Control and Status Register */
22694 + volatile uint32_t *hprt0;
22695 +#define DWC_OTG_HOST_PORT_REGS_OFFSET 0x440
22696 +
22697 + /** Host Channel Specific Registers at offsets 500h-5FCh. */
22698 + dwc_otg_hc_regs_t *hc_regs[MAX_EPS_CHANNELS];
22699 +#define DWC_OTG_HOST_CHAN_REGS_OFFSET 0x500
22700 +#define DWC_OTG_CHAN_REGS_OFFSET 0x20
22701 +
22702 +
22703 + /* Host configuration information */
22704 + /** Number of Host Channels (range: 1-16) */
22705 + uint8_t num_host_channels;
22706 + /** Periodic EPs supported (0: no, 1: yes) */
22707 + uint8_t perio_eps_supported;
22708 + /** Periodic Tx FIFO Size (Only 1 host periodic Tx FIFO) */
22709 + uint16_t perio_tx_fifo_size;
22710 +} dwc_otg_host_if_t;
22711 +
22712 +
22713 +/**
22714 + * This union represents the bit fields in the Power and Clock Gating Control
22715 + * Register. Read the register into the <i>d32</i> member then set/clear the
22716 + * bits using the <i>b</i>it elements.
22717 + */
22718 +typedef union pcgcctl_data
22719 +{
22720 + /** raw register data */
22721 + uint32_t d32;
22722 +
22723 + /** register bits */
22724 + struct
22725 + {
22726 + /** Stop Pclk */
22727 + unsigned stoppclk : 1;
22728 + /** Gate Hclk */
22729 + unsigned gatehclk : 1;
22730 + /** Power Clamp */
22731 + unsigned pwrclmp : 1;
22732 + /** Reset Power Down Modules */
22733 + unsigned rstpdwnmodule : 1;
22734 + /** PHY Suspended */
22735 + unsigned physuspended : 1;
22736 + unsigned reserved : 27;
22737 + } b;
22738 +} pcgcctl_data_t;
22739 +
22740 +
22741 +#endif
22742 --- a/drivers/usb/core/urb.c
22743 +++ b/drivers/usb/core/urb.c
22744 @@ -17,7 +17,11 @@ static void urb_destroy(struct kref *kre
22745
22746 if (urb->transfer_flags & URB_FREE_BUFFER)
22747 kfree(urb->transfer_buffer);
22748 -
22749 + if (urb->aligned_transfer_buffer) {
22750 + kfree(urb->aligned_transfer_buffer);
22751 + urb->aligned_transfer_buffer = 0;
22752 + urb->aligned_transfer_dma = 0;
22753 + }
22754 kfree(urb);
22755 }
22756
22757 --- a/include/linux/usb.h
22758 +++ b/include/linux/usb.h
22759 @@ -1234,6 +1234,9 @@ struct urb {
22760 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
22761 void *transfer_buffer; /* (in) associated data buffer */
22762 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
22763 + void *aligned_transfer_buffer; /* (in) associeated data buffer */
22764 + dma_addr_t aligned_transfer_dma;/* (in) dma addr for transfer_buffer */
22765 + u32 aligned_transfer_buffer_length; /* (in) data buffer length */
22766 struct scatterlist *sg; /* (in) scatter gather buffer list */
22767 int num_mapped_sgs; /* (internal) mapped sg entries */
22768 int num_sgs; /* (in) number of entries in the sg list */
22769 --- a/drivers/usb/gadget/Kconfig
22770 +++ b/drivers/usb/gadget/Kconfig
22771 @@ -125,6 +125,7 @@ config USB_GADGET_STORAGE_NUM_BUFFERS
22772 #
22773 choice
22774 prompt "USB Peripheral Controller"
22775 + depends on !USB_DWC_OTG
22776 help
22777 A USB device uses a controller to talk to its host.
22778 Systems should have only one such upstream link.
22779 @@ -616,7 +617,7 @@ config USB_ETH
22780 help
22781 This driver implements Ethernet style communication, in one of
22782 several ways:
22783 -
22784 +
22785 - The "Communication Device Class" (CDC) Ethernet Control Model.
22786 That protocol is often avoided with pure Ethernet adapters, in
22787 favor of simpler vendor-specific hardware, but is widely
22788 @@ -656,7 +657,7 @@ config USB_ETH_RNDIS
22789 If you say "y" here, the Ethernet gadget driver will try to provide
22790 a second device configuration, supporting RNDIS to talk to such
22791 Microsoft USB hosts.
22792 -
22793 +
22794 To make MS-Windows work with this, use Documentation/usb/linux.inf
22795 as the "driver info file". For versions of MS-Windows older than
22796 XP, you'll need to download drivers from Microsoft's website; a URL
22797 --- a/drivers/usb/gadget/Makefile
22798 +++ b/drivers/usb/gadget/Makefile
22799 @@ -3,7 +3,7 @@
22800 #
22801 ccflags-$(CONFIG_USB_GADGET_DEBUG) := -DDEBUG
22802
22803 -obj-$(CONFIG_USB_GADGET) += udc-core.o
22804 +#obj-$(CONFIG_USB_GADGET) += udc-core.o
22805 obj-$(CONFIG_USB_DUMMY_HCD) += dummy_hcd.o
22806 obj-$(CONFIG_USB_NET2272) += net2272.o
22807 obj-$(CONFIG_USB_NET2280) += net2280.o